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Abstract

An obstacle representation of a graph G is a straight-line drawing of G
in the plane, together with a collection of connected subsets of the plane,
called obstacles, that block all non-edges of G while not blocking any
edges of G. The obstacle number obs(G) is the least number of obstacles
required to represent G.

We study the structure of graphs with obstacle number greater than
one. We show that the icosahedron has obstacle number 2, thus answering
a question of Alpert, Koch, & Laison asking whether all planar graphs
have obstacle number at most 1. We also show that the 1-skeleta of two
related polyhedra, the gyroelongated 4-bipyramid and the gyroelongated 6-
bipyramid, have obstacle number 2. The order of the former graph is 10,
which is also the order of the smallest known graph with obstacle number
2, making this the smallest known planar graph with obstacle number 2.

Our methods involve instances of the Satisfiability problem; we make
use of various “SAT solvers” in order to produce computer-assisted proofs.
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1 Introduction

All graphs will be finite, simple, and undirected. Following Alpert, Koch, &
Laison [2], we define an obstacle representation of a graph G to be a straight-
line drawing of G in the plane, together with a collection of connected subsets of
the plane, called obstacles, such that no obstacle meets the drawing of G, while
every non-edge of G is blocked by at least one obstacle. By non-edge, we mean a
pair of distinct vertices a, b of G where ab is not an edge of G. A non-edge ab is
blocked by an obstacle if the line segment joining a and b intersects the obstacle.
The least number of obstacles required to represent G is the obstacle number of
G, denoted obs(G). For clarity, we will sometimes refer to this as the ordinary
obstacle number. The study of the obstacle number per se was initiated by
Alpert, Koch, & Laison [2]. These parameters have since been investigated by
others [5, 7, 11, 12, 13, 14]. Determining whether obs(G) ≤ k for a given k is
not in NP, shown by Johnson and Sarıöz [7].

Alpert, Koch, & Laison [2, Thm. 2] showed that there exist graphs with
arbitrarily high obstacle number and asked [2, p. 229] for the smallest order of
a graph with obstacle number greater than 1. They proved [2, Thm. 4] that the
graph K∗5,7 has obstacle number 2, where K∗a,b (with a ≤ b) denotes the graph
obtained by removing a matching of size a from the complete bipartite graph
Ka,b. Pach & Sarıöz [14, Thm. 2.1] found a smaller example of a graph with
obstacle number 2; in particular, they showed obs(K∗5,5) = 2.

In an obstacle representation of a graph G, an outside obstacle is an obstacle
that is contained in the unbounded component of the complement of the drawing
of G. Any other obstacle is an interior obstacle. We define the outside obstacle
number of G to be the least number of obstacles required to represent G, such
that one of the obstacles is an outside obstacle—or zero if G has obstacle number
zero. We denote the outside obstacle number of G by obsout(G). Clearly we
have obs(G) ≤ obsout(G) ≤ obs(G) + 1 for every graph G.

Alpert, Koch, & Laison [2, p. 231] asked whether every planar graph has
obstacle number at most 1 (also see a series of questions in the Open Problem
Garden [6]). They further asked for the obstacle numbers of the icosahedron and
the dodecahedron. In Section 2, we develop tools for determining the obstacle
numbers of particular graphs, and we use them to address these questions. In
particular, we show that the obstacle number of the dodecahedron is 1, while
the obstacle number of the icosahedron is 2. In addition, we show that the
obstacle numbers of the 1-skeleta of the gyroelongated 4-bipyramid and the
gyroelongated 4-bipyramid are each 2. The former is a planar graph of order
10; this is the first example of a planar graph with obstacle number greater
than 1, and it is the smallest known example of such a graph.

We conclude this section with an easy observation, which we will make use
of throughout the remainder of this paper.

Observation 1 Given an obstacle representation of a graph G, we can per-
turb all vertices an arbitrarily small distance to obtain an essentially equivalent
obstacle representation in which no three vertices are collinear.
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Because of the above observation, we will generally assume that our obstacle
representations have the property that no three vertices are collinear. Lest there
be any confusion, only obstacles block edges; vertices do not. So the above
observation has no impact on the definition of obstacle number.

2 Obstacle Number and Satisfiability

We now begin our development of tools for explicitly determining the obstacle
number of a particular graph.

Our ideas are based on the Satisfiability Problem (SAT). For each graph G,
we construct a SAT instance encoding necessary conditions for the existence
of an obstacle representation using a single obstacle. Thus, if we can show
that the instance is not satisfiable, then we know that obs(G) ≥ 2. There
are a number of freely available, high-quality implementations of algorithms
to determine satisfiability of a SAT instance. Using these, we will construct
computer-aided proofs that obs(G) ≥ 2 for various planar graphs.

For a, b, and c ∈ R2, we say that abc is a clockwise triple if a, b, and c
appear in clockwise order. We similarly define counter-clockwise triple. Note
that for a triple abc, exactly one of the following is true: abc is clockwise, abc is
counter-clockwise, or a, b, and c are collinear. For each triple abc, we introduce
a Boolean variable xabc representing the statement that abc is a clockwise triple.
By Observation 1 we may assume that no three vertices are collinear, so ¬xabc

represents the statement that abc is a counter-clockwise triple.

The following two lemmas give properties that hold for all point arrange-
ments in the plane.

Lemma 1 (4-Point Rule) Let a, b, c, and d be distinct points in R2. If abc,
acd, and adb are clockwise triples, then bcd must also be a clockwise triple.

Proof: The 4-Point Rule is equivalent to what D. Knuth called the interiority
property of triples of points; see Knuth [9, p. 4, Axiom 4]. �

In a SAT instance, the 4-point rule is represented by the clause

¬xabc ∨ ¬xacd ∨ ¬xadb ∨ xbcd. (1)

Lemma 2 (5-Point Rule) Let a, b, c, d, and e be distinct points in R2. If
abc, acd, ade, and abe are clockwise triples, then either

(i) both abd and ace are clockwise triples, or

(ii) both abd and ace are counter-clockwise triples.

Proof: This is equivalent to what D. Knuth called the transitivity property of
triples of points; see Knuth [9, p. 4, Axiom 5]. �
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In a SAT instance, the 5-Point Rule is represented by the following two
clauses:

¬xabc ∨ ¬xacd ∨ ¬xade ∨ ¬xabe ∨ xabd ∨ ¬xace; (2)

¬xabc ∨ ¬xacd ∨ ¬xade ∨ ¬xabe ∨ ¬xabd ∨ xace. (3)

Our SAT instance includes clauses from the 4-Point Rule corresponding to
clause (1) for every set of 4 vertices of our graph, and every permutation of
these 4 vertices. It also includes clauses from the 5-Point Rule corresponding to
clauses (2) and (3) for every set of 5 vertices of our graph, and every permutation
of these 5 vertices.

Note that there are six ways to say vertices a, b, and c lie in clockwise order.
When we construct our SAT instance, we may choose one of the variables from
among
{xabc, xbca, xcab, xbac, xacb, xcba} as the canonical variable; we represent the other
five using either the canonical variable or its negation, as appropriate.

Additionally, the actions of even permutations of {b, c, d} on clauses (1)
and (2) result in statements equivalent to the original; likewise an even permu-
tation of {c, d, e} does not alter clause (3). This reduces the number of clauses
required by a factor of 3. Thus, for an n-vertex graph, our SAT instance in-
cludes

(
n
4

)
·4!/3 = 8

(
n
4

)
clauses based on the 4-Point Rule and 2

(
n
5

)
·5!/3 = 80

(
n
5

)
clauses based on the 5-Point Rule.

In the next lemma, given distinct points a and b, we denote the two closed

halfplanes determined by line
←→
ab as H+

ab and H−ab, where H+
ab contains all points

y such that either y is on line
←→
ab or aby is oriented clockwise. An ab-key-path

with respect to cd, denoted Pab(cd), is a path from a to b that does not cross

the line
←→
cd ; that is, a path in G from a to b that is entirely contained in one of

the closed halfplanes H+
cd or H−cd; see Figure 1.

a

b
c

d
P1

P2

Figure 1: An ab-key-path with respect to cd, denoted Pab(cd), is a path from a

to b that does not cross the line
↔
cd. The path P1 (blue) is an ab-key-path with

respect to cd, but the path P2 (red) is not.
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Lemma 3 Suppose we are given an obstacle representation of a graph G that
uses at most one obstacle. Then, for each non-edge ab, and for each non-edge
cd 6= ab (ab and cd may share one vertex), there exists a halfplane Hab(cd) ∈
{H+

ab, H
−
ab} such that if Pab(cd) is an ab-key-path with respect to cd, then some

internal vertex of Pab(cd) lies in the interior of Hab(cd).

Proof: Choose any non-edge ab, and then choose a second non-edge cd distinct

from ab. Perturbing slightly if necessary, we assume that
←→
ab 6=

←→
cd as well (see

Observation 1). Suppose for a contradiction that there exist two distinct ab
paths P1 and P2 in G, both ab-key-paths with respect to cd, that lie in different

closed halfplanes determined by
←→
ab . Without loss of generality, we may assume

that P1 ⊆ H+
ab and P2 ⊆ H−ab.

Now, each of P1, P2 is contained in one of the two halfplanes H+
cd, H−cd,

because they are key-paths with respect to cd. Since P1 and P2 have common
endpoints, namely a and b, we see that P1 and P2 must be contained in the

same halfplane determined by
←→
cd .

Therefore P1 ∪ P2 forms a closed path in the plane; the open line segment
ab lies in one component of the complement of this closed path; while the open
line segment cd lies in a different component. Since G has only one obstacle, it
is impossible for both segments to be blocked, a contradiction. �

Given a graph G, we can use Lemmas 1 (the 4-Point rule), 2 (the 5-Point
Rule), and 3 to create a SAT instance encoding necessary conditions for the
existence of an obstacle representation of G using at most 1 obstacle. If this
SAT instance is not satisfiable, then we may conclude that graph G requires at
least two obstacles, that is, that obs(G) > 1. If the SAT instance is satisfiable,
we can not conclude anything about the obstacle number of G.

We illustrate the encoding of Lemma 3 in terms of SAT clauses by showing
how to encode statements about a particular path. Let ab and cd be distinct
non-edges. Let a, s, t, . . . , u, b be the sequence of vertices in some ab-path P
(not necessarily a key-path), where vertices a, b are not adjacent (so that ab is
a non-edge).

We introduce a new variable kP (cd) to represent the statement that P is an
ab-key-path with respect to cd. If all vertices v of P , with v 6∈ {c, d}, produce
triangles cdv having the same orientation, then P is a key-path. This is encoded
by the following two clauses, where we omit literals involving triples in which
vertex c or d appears twice:

xcda ∨ xcds ∨ xcdt ∨ · · · ∨ xcdu ∨ xcdb ∨ kP (cd); (4)

¬xcda ∨ ¬xcds ∨ ¬xcdt ∨ · · · ∨ ¬xcdu ∨ ¬xcdb ∨ kP (cd). (5)

Next we encode the statement that given this ab and cd we can find a “spe-
cial” side of ab so that every ab-key-path with respect to cd has an internal
vertex lying on the special side of ab. The special side is encoded in another
variable, sab,cd. We canonically choose that sab,cd represents the statement that
the special halfplane is H+

ab; thus ¬sab,cd represents the statement that the spe-
cial halfplane is H−ab. Note that the special side of ab depends on the choice of
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non-edge cd. The following clauses encode the desired statement:

¬kP (cd) ∨ ¬sab,cd ∨ xabs ∨ xabt ∨ · · · ∨ xabu; (6)

¬kP (cd) ∨ sab,cd ∨ ¬xabs ∨ ¬xabt ∨ · · · ∨ ¬xabu. (7)

Observation 2 Let G be a graph. If obs(G) ≤ 1, then the SAT instance con-
sisting of all clauses of the forms (1)–(7), using canonical variables, is satisfi-
able.

It is important to note that if our SAT instance is not satisfiable, then we
are guaranteed that it is impossible to draw the graph using a single obstacle;
i.e., obs(G) ≥ 2. However, if the SAT instance is satisfiable, then it does not
follow that obs(G) ≤ 1; satisfiability is a necessary but not sufficient condition
for obs(G) ≤ 1.

Using these ideas, we can determine the exact value of the obstacle number
for the icosahedron and some similar graphs. Following Johnson [8], for n ≥ 3
we define the gyroelongated n-bipyramid to be a convex polyhedron formed by
adding pyramids to the top and bottom base of the n-antiprism; see Figure 2.
The gyroelongated square bipyramid, when constructed using equilateral tri-
angles, is also known as the Johnson solid J17. The gyroelongated pentagonal
bipyramid, again when constructed of equilateral triangles, is the regular icosa-
hedron. We denote the skeleton of the gyroelongated n-bipyramid by Xn. We
also refer to X5 as I, since it is the icosahedron.

The graph Xn can be constructed as two disjoint n-wheels, connected by a
2n-cycle that alternates between vertices of the wheel boundaries taken cycli-
cally. Figures 2, 3, 4, and 6 show gyroelongated n-bipyramids for various values
of n, while Figure 5 illustrates the general case.

1

2

3

1

23

(a) X3

1

23

4

2

3

4
1

(b) X4

5 1
2

3
4

5
1

23
4

(c) X5 = I

Figure 2: Gyroelongated n-bipyramid skeleta; the antiprisms are highlighted in
black and green, while the pyramids erected on the bases are shown in blue.

In each of these figures, the wheel boundaries are labeled with consecutive
integers and are shown in green, the spokes of the wheel in blue, and the connect-
ing cycle in black; the cycle connecting the two wheel boundaries corresponds
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(a)

4

5

3

1

2
1

2

5

3

4

(b)

Figure 3: Two 2-obstacle embeddings of the icosahedron. The interior obstacle
is highlighted in pale magenta, and non-edges blocked by that obstacle are
shown with thin magenta lines. The other obstacle is the outside obstacle, and
non-edges blocked by that obstacle are shown with thin gray lines.

to the sequence of labeled vertices 1, 1, 2, 2, . . . , n, n. Non-edges are shown with
thin gray or pink lines.

Proposition 3 All of the following hold.

1. obs(X4) = obsout(X4) = 2.

2. obs(I) = obsout(I) = 2.

3. obs(X6) = obsout(X6) = 2.

Proof: The lower bounds were found using a computer. We create a SAT
instance as described above, using clauses representing the 4-Point Rule, the 5-
Point Rule, and the statement of Lemma 3. See [4] for software to generate the
SAT instances. For each graph, a standard SAT solver (we used MiniSat [10],
PicoSAT [3], and zChaff [15]) indicates that the SAT instance is not satisfiable.

For the upper bounds, we exhibit an obstacle representation of each graph
using two obstacles, one of which is an outside obstacle. Figure 3 shows drawings
of the icosahedron, while Figure 4 shows drawings of X4 and X6. �

Proposition 3 answers in the negative a question of Alpert, Koch, & Laison [2,
p. 231] asking whether every planar graph has obstacle number at most 1. Part
(2) of that proposition also answers a related question of Alpert, Koch, & Laison
asking for the obstacle number of the icosahedron.
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(b) X6

Figure 4: Two-obstacle embeddings of gyroelongated n-bipyramids; n = 4, 6.

n-1

4

5

n

3

1

2
1

2

n

3

4
5

n-1

Figure 5: A two-obstacle embedding of a gyroelogated n-bipyramid.

Note also that the graph X4, mentioned in part (1) of Proposition 3, has
order 10. This is thus the second known example of a graph of order 10 with
obstacle number 2 (the first being K∗5,5, shown to have obstacle number 2 by
Pach & Sarıöz [14, Thm. 2.1]). But unlike the Pach-Sarıöz example, graph X4

is planar. We do not know whether there is any planar graph—or, indeed, any
graph at all—of smaller order that has obstacle number 2. The gyroelongated
3-bipyramid can be drawn with a single outside obstacle; see Figure 6.

As for the gyroelongated n-bipyramid for n ≥ 6, we conjecture that they all
have obstacle number 2.

Conjecture 4 If n ≥ 4, then obs(Xn) = obsout(Xn) = 2.

If we are interested in bounding only the outside obstacle number, we can
replace Lemma 3 with the following:

Lemma 4 Suppose we are given an obstacle representation of a graph G using
no interior obstacles. Let ab be a non-edge of G. Then there exists a half-plane

H determined by the line
←→
ab such that, for each ab-path P in G, some internal

vertex of P lies in H.
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(a) The gyroelongated 3-bipyramid X3 (b) A one-obstacle embedding of X3.

Figure 6: obs(X3) = 1.

We can develop SAT clauses based on the above lemma as before. Specif-
ically, Lemma 4 implies that, for each pair of nonadjacent vertices a, b of G,
one of the two half-planes determined by segment ab is “special”: this half-
plane contains at least one internal vertex from each ab-path in G. We create a
Boolean new variable sab representing the statement that the special half-plane
is that containing points p such that abp is a clockwise triple.

Let a, s, t, . . . , u, b be the sequence of vertices in some ab-path P . Then the
following clauses represent the statement of Lemma 4 for P :

¬sab ∨ xabs ∨ xabt ∨ · · · ∨ xabu (8)

sab ∨ ¬xabs ∨ ¬xabt ∨ · · · ∨ ¬xabu (9)

As with the x variables, we choose one of sab and sba to be the canonical variable,
and we represent the other by its negation.

Observation 5 Let G be a graph. If obsout(G) ≤ 1, then the SAT instance
consisting of all clauses of the forms (1)–(3), (8), and (9)—using canonical
variables, as discussed—is satisfiable.

Compare the earlier SAT instance of Observation 2 with that of Obser-
vataion 5. Clauses (4)–(7), which are generated for each ordered pair of distinct
non-edges, are replaced by clauses (8) and (9), generated only for each non-
edge. This smaller SAT instance may allow for computations involving larger
graphs. However, we have not (yet) obtained any additional results from this
SAT instance.

Alpert, Koch, & Laison [2, p. 229] asked (using different terminology) whether
every graph G with obs(G) = 1 also has obsout(G) = 1. We ask a more general
question.

Question 6 Is it true that obs(G) = obsout(G) for every graph G?

We conjecture that the answer is yes.
Alpert, Koch, & Laison [2, p. 231] asked for the obstacle number of the

dodecahedron. We answer this question as follows.
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Proposition 7 Let D be the dodecahedron. Then obs(D) = obsout(D) = 1.

Proof: Figure 7 shows an obstacle representation of the dodecahedron, using a
single outside obstacle. �

HI

D
A

NO

J

B

R

P

E

F

T

S

K L

Q
M

G

C

(a) A drawing of the dodecahedron

L

Q

T

S

K

F

M

R

P

E

G

B

J

O
N

C

A

D

I

H

(b) An obstacle representation using a single
outside obstacle.

Figure 7: A drawing of the dodecahedron, with useful edge-colorings, and an
obstacle representation of the dodecahedron using a single outside obstacle (with
corresponding edges and vertices).

3 Open questions

There are several interesting open questions related to obstacle numbers of
graphs with small numbers of vertices.

In general, little is known about the least order of a graph with any particular
obstacle number or outside obstacle number.

Question 8 What is the minimum order of a graph G with obsout(G) = 2?
With obs(G) = 2? With obsout(G) or obs(G) > 2?
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It is not difficult to show that all graphs G with order at most 5 have
obsout(G) ≤ 1, so for each of the above questions the answer must be at least
6. The drawing of K∗5,5 by Pach & Sarıöz [14] and the drawing of the gyroelon-
gated square bipyramid in Figure 4 show that both of these graphs have outside
obstacle number 2, so the answer to the first two questions must lie between 6
and 10 inclusive.

Question 9 What is the minimum order of a planar graph with obstacle number
2?

The gyroelongated square bipyramid is a planar graph with order 10, so the
minimum order is between 6 and 10. It is natural to ask whether there exists
an upper bound on the obstacle numbers of planar graphs, and, if so, what it is.
It seems likely that either there is no such upper bound, or else the maximum
obstacle number of a planar graph is 2. We conjecture that the latter option
holds.

Conjecture 10 If G is a planar graph, then obs(G) ≤ 2.

We have found the above questions quite resistant to solution. Perhaps this
is unsurprising since Johnson & Sarıöz [7] showed that computing the obstacle
number of a plane graph is NP-hard. Two examples of graphs of order 10 with
obstacle number 2 have been found, namely K∗5,5 and X4; none of smaller order
are known. If we knew of a single graph of order 9 or less for which one of the
SAT instances we construct is not satisfiable, then we could reduce our current
bound of 10; however we have found no such graph.

It seems plausible that an approach to answering the above questions would
be a brute-force application of SAT instances to all graphs with order strictly
less than 10. However, this naive approach has two flaws. First, there are
a large number of graphs of order at most 9 (for example, there are 11117
connected graphs of order 8 and 261080 connected graphs of order 9 [1, Se-
quence A001349]), and there are significant time and computational issues in-
volved in processing the SAT instances for all these graphs.

Second, while non-satisfiability of the SAT instance for one of these graphs
would imply that the corresponding (outside) obstacle number was strictly
greater than 1, satisfiability of an instance does not imply any bound on the
corresponding obstacle number. The solution of one of our SAT instances gives
only a specification of clockwise/counter-clockwise orientation for each triple of
points. This might not correspond to any actual point placement in the plane.
Or it may correspond to many point placements. And even if one of these gives
the desired obstacle representation, others may not; or none of them may. Fur-
thermore, a single SAT instance can have exponentially many solutions, each of
which may need to be checked, in order to find an obstacle representation. In
any case, satisfiability provides us only with a starting point in the search for an
obstacle representation; we know of no efficient, reliable technique for actually
finding such a representation without human intervention and invention.
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