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Abstract

Given a graph G = (V,E) with two distinguished vertices s, t ∈ V
and an integer parameter L > 0, an L-bounded cut is a subset F of edges
(vertices) such that the every path between s and t inG\F has length more
than L. The task is to find an L-bounded cut of minimum cardinality.

Though the problem is very simple to state and has been studied since
the beginning of the 70’s, it is not much understood yet. The problem
is known to be NP-hard to approximate within a small constant factor
even for L ≥ 4 (for L ≥ 5 for the vertex–deletion version). On the other
hand, the best known approximation algorithm for general graphs has
approximation ratio only O(n2/3) in the edge case, and O(

√
n) in the

vertex case, where n denotes the number of vertices.
We show that for planar graphs, it is possible to solve both the edge–

and the vertex–deletion version of the problem optimally in O((L+2)3Ln)
time. That is, the problem is fixed-parameter tractable (FPT) with re-
spect to L on planar graphs. Furthermore, we show that the problem re-
mains FPT even for bounded genus graphs, a super class of planar graphs.

Our second contribution deals with approximations of the vertex–
deletion version of the problem. We describe an algorithm that for a given
graph G, its tree decomposition of width τ and vertices s and t computes
a τ -approximation of the minimum L-bounded s− t vertex cut; if the de-
composition is not given, then the approximation ratio is O(τ

√
log τ). For

graphs with treewidth bounded by O(n1/2−ε) for any ε > 0, but not by a
constant, this is the best approximation in terms of n that we are aware of.
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1 Introduction

The subject of this paper is a variation of the classical s−t cut problem, namely
the minimum L-bounded edge (vertex) cut problem: given a graph G = (V,E)
with two distinguished vertices s, t ∈ V and an integer parameter L > 0, find
a subset F of edges (vertices) of minimum cardinality such that every path
between s and t in G \ F has length more than L. The problem has been
studied in various contexts since the beginning of the 70’s (e.g., [1, 26, 2])
and occasionally it appears also under the name the short paths interdiction
problem [19].

Closely related is the shortest path most vital edges and vertices problem (e.g.
[3, 4, 5]): given a graph G, two distinguished vertices s and t and an integer
k, the task is to find a subset F of k edges (vertices) whose removal maximizes
the increase in the length of the shortest path between s and t. If we introduce
an additional parameter – the desired minimum distance of s and t – we obtain
a parameterized version of the L-bounded cut problem: given a graph G, two
distinguished vertices s and t and integers k and L, does there exist a subset
F of at most k edges (vertices) such that every path between s and t in G \ F
has length more than L? We also note that NP-hardness of the shortest path
most vital edges (vertices) problem immediately implies NP-hardness of the
L-bounded edge (vertex) cut problem, and vice versa.

In contrast to many other cut problems on graphs (e.g., multiway cut, mul-
ticut, sparsest cut, balanced cut, maximum cut, multiroute cut), the known ap-
proximations of the minimum L-bounded cut problem are substantially weaker.
In this work we focus on algorithms for restricted graph classes, namely pla-
nar graphs, bounded genus graphs and graphs with bounded, yet not constant,
treewidth, and provide new results for the L-bounded cut problem on them; the
results for planar graphs solve one of the open problems suggested by Bazgan
et al. [5]. We also remark that the L-bounded cut problem does not fit into the
framework of Czumaj et al. [9] that is applicable for some NP-hard problems
in graphs with superlogarithmic treewidth.

Related Results. NP-hardness of the shortest path most vital edges prob-
lem (and, thus, as noted above, also of the L-bounded cut problem) was proved
by Bar-Noy et al. [4]. The best known approximation algorithm for the mini-
mum L-bounded cut problem on general graphs has approximation ratio only
O(min{L, n/L}) ⊆ O(

√
n) for the vertex case and O(min{L, n2/L2,

√
m}) ⊆

O(n2/3) for the edge case, where m denotes the number of edges and n the
number of vertices [2]. On the lower bound side, the edge–deletion version of
the problem is known to be NP-hard to approximate within a factor of 1.1377
for L ≥ 4, and the vertex–deletion version for L ≥ 5 [2]; for smaller values of L
the problem is solvable in polynomial time [26, 27]. Independently, Khachiyan
et al. [19] proved that a version of the problem with edge lengths is NP-hard to
approximate within a factor smaller than 1.36. Recently, assuming the Unique
Games Conjecture, Lee [23] proved that the problem isNP-hard to approximate
within any constant factor.
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An instance of the L-bounded edge (vertex, resp.) cut problem on a graph
G = (V,E) of treewidth τ can be cast as an instance of constraint satisfaction
problem (CSP) with |V | variables, domain of size L + 2 (L + 3, resp.) and
treewidth τ .1 As CSP instances with n variables, treewidth bounded by τ and
domain by D can be solved in O(Dτn) time [15] (when a tree decomposition
of width τ of the constraint graph is given), the problem is fixed-parameter
tractable with respect τ . Dvořák and Knop [10] provide a direct proof of the
same result with a slightly worse dependance on L and τ ; they also prove that
the problem is W [1]-hard when parameterized by the treewidth only.

From the point of view of parameterized complexity, the problem was also
studied by Golovach and Thilikos [16], Bazgan et al. [5] and by Fluschnik et al. [14].

For planar graphs, the problem is known to be NP-hard [13, 30], too, and
the edge–deletion version of the problem has no polynomial-size kernel when
parameterized by the combination of L and the size of the optimal solution [14].

For more detailed overview of other related results and applications, we refer
to the papers [19, 2, 27]. For more background on parameterized algorithms,
we refer to the textbook by Cygan et al. [8].

Our Contribution. We show that on planar graphs, both the edge– and the
vertex–deletion version of the problem are solvable in O((L+2)3Ln) time. That
is, we show that on planar graphs the minimum L-bounded cut problem is fixed-
parameter tractable (FPT) with respect to L. Furthermore, we show that the
problem remains FPT even for bounded genus graphs, a super class of planar
graphs. This is in contrast with the situation for general graphs – the problem is
NP-hard even for L = 4 and L = 5, for the edge– and vertex–deletion versions,
respectively.

Our second contribution is a τ -approximation algorithm for the vertex–
deletion version of the problem, if a tree decomposition of width τ is given. If the
decomposition is not given, then using the best known algorithm to compute a
tree decomposition of a given graph, we obtain anO(τ

√
log τ)-approximation for

general graphs with treewidth τ , and an O(τ)-approximation for planar graphs,
graphs excluding a fixed minor and graphs with treewidth bounded by O(log n).
For graphs with treewidth bounded by τ = O(n1/2−ε) for any ε > 0, but not by
a constant, in terms of n, this is the best approximation we are aware of.

Our results are based on a combination of observations about the structure
of L-bounded cuts and various known results. The proofs are straightforward
but apparently non-obvious, considering the attention given to the problem in
recent years.

2 Preliminaries

Throughout the paper, given a graph G = (V,E), we use m to denote the
number of edges in G, that is, m = |E|, and for u, v ∈ V , we use d(u, v) to

1For the sake of completeness, in Appendix A we provide details about this reduction.
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denote the shortest path distance between u and v, that is, the number of edges
on a shortest path. For a graph G = (V,E) and a subset of vertices W ⊂ V , a
subgraph of G induced by W is the graph (W,F ) where F is the subset of edges
with both vertices in W , that is, F = {{u, v} ∈ E | u, v ∈ W}. For a graph
G = (V,E) and a subset of edge F ⊂ E, we use G \ F to denote the graph
(V,E \ F ), and for a subset of vertices W ⊂ V , we use G \W to denote the
subgraph of G induced by V \W .

Given a graph G = (V,E) with two distinguished vertices s and t, a subset
of vertices W ⊂ V is an s − t vertex cut if s and t are in different connected
components in G\W . A subset of vertices W ⊂ V is a vertex cut if the removal
of W disconnects the graph, that is, if the graph G \W is not connected.

For notions related to the treewidth of a graph and tree decomposition we
stick to the standard terminology as given in the book by Kloks [21]. A tree
decomposition of a graph G = (V,E) is a tree T with a node set V (T ) in which
each node a ∈ V (T ) has an assigned set of vertices B(a) ⊆ V , called a bag, such
that

⋃
a∈T B(a) = V with the following properties:

• for any {u, v} ∈ E, there exists a node a ∈ V (T ) such that u, v ∈ B(a),

• if v ∈ B(a) and v ∈ B(b), then v ∈ B(c) for all nodes c on the path
between a and b in T .

The tree decomposition is rooted if one of the nodes in the tree T is specified
as the root. The treewidth of a tree decomposition T is the size of the largest
bag of T minus one. The treewidth of a graph G is the minimum treewidth over
all possible tree decompositions of G. To distinguish vertices of a graph G and
of a tree decomposition T of G, we call the vertices of the tree decomposition
nodes. A tree decomposition satisfies the non-containment condition if no bag
is contained in any other bag.

A simple yet important property of tree decompositions is stated in the
following lemma.

Lemma 1 (Folklore) Let G be a graph and T a tree decomposition of G sat-
isfying the non-containment condition. Then

• For any node a ∈ V (T ) that is not a leaf, B(a) is a vertex cut in G.

• For any two adjacent nodes a, b ∈ V (T ) such that none of the two bags
B(a) and B(b) is contained in the other, B(a)∩B(b) is a vertex cut in G.

Note that the size of the cut B(a) ∩ B(b) in Lemma 1 is at most the width of
the tree decomposition T .

In a rooted tree, the parent of a node is the node connected to it on the path
to the root; every node except the root has a unique parent. A child of a node
v is a node of which v is the parent. A descendant of any node v is any node
which is either the child of v or is (recursively) the descendant of any of the
children of v. A leaf is a vertex having no child.
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3 Fixed-parameter Tractability on Planar and
Bounded Genus Graphs

Our main tools are the following two well-known results.

Theorem 1 (Robertson and Seymour [28], Bodlaender [6]) The treewidth
of a planar graph with radius d is at most 3d.

Theorem 2 (Freuder [15]) CSP instances with n variables, treewidth bounded
by τ and domain by D are solvable in O(Dτn) time.

Since the minimum L-bounded edge (vertex, resp.) cut problem on a graph G =
(V,E) of treewidth τ can be cast as a CSP instance with |V | variables, treewidth
τ and domain of size L + 2 (L + 3, resp.), the problem is solvable in O((L +
2)τn) time (O((L+3)τn) time, resp.), as already stated in the introduction and
explained in Appendix A.

The main result of this section says that the L-bounded cut problem on
planar graphs is fixed-parameter tractable, with respect to the parameter L.

Theorem 3 The minimum L-bounded edge (vertex, resp.) cut problem on pla-
nar graphs is solvable in O((L+ 2)3Ln) time (O((L+ 3)3Ln) time, resp.).

Proof: We prove the theorem for the edge–deletion version; the proof for the
vertex–deletion version is analogous.

Given a graph G = (V,E), s, t ∈ V and an integer L, let V ′ = {v ∈
V | d(s, v) + d(t, v) ≤ L}. In words, V ′ is the subset of vertices lying on paths
of length at most L between s and t. Without loss of generality we assume
that d(s, t) ≤ L – otherwise the problem is trivial. Let G′ be the subgraph of
G induced by V ′. Note that the radius of G′ is at most L as, by definition,
d(s, v) ≤ L for every v ∈ V ′.

The set V ′ (and, thus, the subgraph G′) can be computed using the O(n)-
time algorithm for single-source shortest paths on planar graphs by Klein et
al. [20] that we run twice, once for s and once for t. Note that both s and t
belong to V ′.

Obviously, G′ is a planar graph, and by Theorem 1, its treewidth is at most
3L. We solve the L-bounded problem for G′ and s and t by Theorem 2 in
O((L+ 2)3Ln) time. Let F be the optimal solution for G′. We claim that F is
an optimal solution for the original instance of the problem on G as well. To
prove feasibility of F , assume, for contradiction, that there exists an s− t-path
p of length at most L in (V,E \ F ). As there is no such path in G′ \ F , p has
to use at least one vertex v from V \ V ′. However, this yields a contradiction:
on the one hand, d(s, v) + d(v, t) ≤ L as v is on an s− t-path of length at most
L, on the other hand, d(s, v) + d(v, t) > L as v is not in V ′. Concerning the
optimality of F , it is sufficient to note that the size of an optimal solution for
the subgraph G′ is a lower bound on the size of an optimal solution for G. �

Theorem 1 was generalized by Eppstein [11] to graphs of bounded genus and
this result makes it possible to generalize Theorem 3 also to graphs of bounded
genus.
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Theorem 4 (Eppstein [11]) There exists a constant ĉ such that the treewidth
of every graph with radius d and genus g is at most ĉdg.

In the same way as we used Theorem 1 to prove fixed-parameter tractability
for the L-bounded cut problem on planar graphs (Theorem 3), we can use
Theorem 4 to prove fixed-parameter tractability of the L-bounded cut problem
on graphs of bounded genus. The only other change is that instead of the O(n)-
time single-source shortest path algorithm for planar graphs [20] we use the
O(n + m)-time single-source shortest path algorithm for general graphs [29].
Considering the fact that by Euler’s formula, genus g graphs have O(n + g)
edges [17], we obtain the following theorem.

Theorem 5 The minimum L-bounded edge (vertex, resp.) cut problem on
graphs with genus g is solvable in O((L + 2)ĉgLn) time (O((L + 3)ĉgLn) time,
resp.).

4 τ-Approximation for L-bounded Vertex Cuts

In this section we describe an algorithm for the L-bounded s − t vertex cut
problem whose approximation ratio is parameterized by the width τ of a tree
decomposition T of the input graph G. Throughout this section we assume that
the vertices s and t are not connected by an edge – in such a case there is no
L-bounded s− t vertex cut in G. Without loss of generality we also assume that
tree decompositions in this section satisfy the non-containment condition.

Consider a graph G and a rooted tree decomposition T of G of width τ . By
d(G, s, t) we denote the distance between s and t in G. Given a subset R ⊆ V (T )
of nodes inducing a connected subtree of T , a deepest node in R is a node in
R with no child in R. Given a node b of the rooted tree decomposition T , we
denote by Tb the subtree of T consisting of b and of all its descendants, and by
Gb the subgraph of G induced by vertices in bags of Tb; similarly, we denote by
T̄b the subtree of T consisting of all nodes in T including b and excluding the
descendants of b and by Ḡb the subgraph of G induced by vertices in bags of
T̄b. Note that b is the only node of the tree T that appears in both subtrees Tb
and T̄b.

The following simple observation captures the main properties of G and T
that make the algorithm of this section work. For notational simplicity, in the
rest of the section we use the term L-bounded path for an s − t path of length
at most L.

Claim 2 If b is a deepest node in the set R = {a ∈ V (T ) | d(Ga, s, t) ≤ L} and
G′ = Ḡb \ (B(b) \ {s, t}), then the following holds:

1. There is at least one L-bounded path in Gb.

2. There is no L-bounded path in Gb \ (B(b) \ {s, t}).

3. The L-bounded paths in Gb are internally vertex disjoint with the L-
bounded paths in G′.
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Proof: The first point follows from the membership of b in the set R.
The second point is obvious if b has none or exactly one child. Assume that

b is a node with two or more children and that there is an L-bounded path p
between s and t in Gb \ (B(b) \ {s, t}). Then, by the choice of b (i.e., a deepest
node in R), there exist children c and c′ of b and vertices x, x′ on the path p
such that x ∈ V (Gc) \ V (Gc′) and x′ ∈ V (Gc′) \ V (Gc). Consider the vertex
cut B(b) (cf. Lemma 1) and note that x and x′ belong to different components
of connectivity of Gb \ B(b). Thus, the sub-path of p between x and x′ has
to contain as an inner vertex a vertex from B(b) \ {s, t}, a contradiction. We
conclude that there is no L-bounded path in Gb \ (B(b) \ {s, t}).

For the third point, note that any L-bounded path in G either intersects the
set B(b) \ {s, t} or appears in G \ (B(b) \ {s, t}). As every L-bounded path in
Gb intersects, by the second part of this claim, the set B(b) \ {s, t}, and as G′

is a subgraph of G \ (B(b) \ {s, t}), the third part of the Claim follows. �

The L-bounded cut is computed using the recursive procedure L-
bounded cut(G,T, s, t, L) described in Algorithm 1. In step 12, prune(G,T,C)
is a procedure that for a graph G = (V,E), a tree decomposition T and a
vertex set C ⊂ V , deletes from G the vertices in C and all adjacent edges, and
modifies the tree decomposition T by deleting the vertices in C from all bags.

Algorithm 1 L-bounded cut(G,T, s, t, L)

1: if d(G, s, t) > L then # no need to remove anything

2: return ∅
3: else R← {a ∈ V (T ) | d(Ga, s, t) ≤ L} # set up

4: b← a deepest node in R
5: if |B(b) ∩ {s, t}| ≤ 1 then # simple cases - no need for

recursion

6: if |B(b) ∩ {s, t}| = 1 then # s ∈ B(b), t 6∈ B(b), or vice versa

7: return B(b) \ {s, t}
8: else # s, t 6∈ B(b)
9: c← child of b s.t. s ∈ Gc

10: return B(b) ∩B(c)

11: else # recursion, s, t ∈ B(b)
12: (G′, T ′)← prune(Ḡb, T̄b, B(b) \ {s, t})
13: S′ ← L-bounded cut(G′, T ′, s, t, L)
14: return S′ ∪B(b) \ {s, t}

The main result of this section is obtained from Lemmas 3 and 4.

Lemma 3 Given a graph G = (V,E), two vertices s, t ∈ V and a tree decom-
position T of G of width τ , Algorithm 1 finds in polynomial time an L-bounded
s− t vertex cut.

Proof: To prove the correctness of Algorithm 1, we proceed by induction on
the recursion depth. We start by showing the correctness of the final recursive
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calls. To this end we distinguish the following three cases dealt with in the
algorithm:

Case 1. d(G, s, t) > L. As there is no need to remove anything in this case,
the correctness is obvious from the description of the algorithm.

Case 2. |B(b)∩ {s, t}| = 1 (where b is the node selected in step 4). As there
exists at least one L-bounded path in Gb, both vertices s and t appear in Gb,
and as |B(b) ∩ {s, t}| = 1, one of the vertices s and t appears in Gb \ B(b). By
the second point of Claim 2, B(b) \ {s, t} is an L-bounded cut in Gb, and every
L-bounded path in G disjoint with B(b)\{s, t} has to use a vertex that does not
appear in Gb. However, as B(b) is a vertex cut in G separating Gb \B(b) from
the rest of the graph, there is no L-bounded path in G disjoint with B(b)\{s, t}.
We conclude that G \ (B(b) \ {s, t}) is an L-bounded s− t vertex cut in G.

Case 3. B(b) ∩ {s, t} = ∅ (where b is the node selected in step 4). The
argument is similar as in the previous case. On one hand, as there exists at
least one L-bounded path in Gb, both vertices s and t appear in Gb, and as
none of them belongs to the set B(b), there must be a child c of b such that
s ∈ Gc. On the other hand, the second point of Claim 2 implies that every L-
bounded path in G disjoint with B(b) \ {s, t} has to use a vertex that does not
appear in Gb. As B(b) ∩ B(c) is a vertex cut in G separating Gc from the rest
of the graph, we conclude that there is no L-bounded path in G \ (B(b)∩B(c)).

Inductive step. Consider a run of the procedure with a graph G and its tree
decomposition T , and let R and b be the objects defined by the procedure in
steps 3 and 4. Note that the set R induces a connected subgraph of T .

The inductive assumption (i.e., S′ is an L-bounded cut in G′) combined with
the second point of Claim 2 implies that the set S′∪B(b)\{s, t} is an L-bounded
s− t cut in G, completing the inductive step in the proof of the correctness.

Concerning the running time, the second point of Claim 2 implies that the
vertex b selected as a deepest node from R in some iteration will not belong
to the set R in any of the future recursive calls. Thus, the size of the set R
decreases by at least one with each new recursive call, yielding an upper bound
V (T ) on the number of recursive calls. Apart from the recursive call, each level
of recursion can be implemented in time O(τ · |V (T )|), yielding an upper bound
O(τ · |V (T )|2) on the total running time. �

Let cost(G,T ) be the size of the solution computed by Algorithm 1 for a
graph G and a tree decomposition T of G, and let opt(G) be the size of an
optimal solution for the graph G.

Lemma 4 Given a graph G = (V,E), two vertices s, t ∈ V and a tree decom-
position T of G of width τ , then

cost(G,T ) ≤ τ · opt(G) .

Proof: Similarly as in the proof of Lemma 3, we proceed by induction on the
recursion depth. We start by showing the correctness of the bound for the final
recursive calls and, as before, we distinguish the following three cases:

Case 1. d(G, s, t) > L. For graphs with no L-bounded s− t path, the claim
is obvious as cost(G,T ) = 0 in this case.
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Case 2. |B(b) ∩ {s, t}| = 1. It suffices to note that |B(b) \ {s, t}| ≤ τ and
that opt(G) ≥ 1.

Case 3. B(b) ∩ {s, t} = ∅. As in the previous case, it suffices to note, using
the non-containment condition, that |B(b) ∩B(c)| ≤ τ and that opt(G) ≥ 1.

Inductive step. From the description of the algorithm we know
that cost(G,T ) ≤ τ + cost(G′, T ′). Points 1 and 3 of Claim 2 imply
opt(G) ≥ 1 + opt(G′). Combining these observations with the inductive
assumption cost(G′, T ′) ≤ τ · opt(G′), we obtain cost(G,T ) ≤ τ · opt(G). �

Putting Lemmas 3 and 4 together, we get the main result of this section.

Theorem 6 Given a graph G, a rooted tree decomposition T of G of width
τ , vertices s and t and an integer L, Algorithm 1 finds in polynomial time a
τ -approximation of the minimum L-bounded s− t vertex cut.

Remark. At the cost of increasing the approximation ratio to τ + 1, the steps
5-10 of the algorithm can be simplified as follows:

if |B(b) ∩ {s, t}| ≤ 1 then return B(b) \ {s, t}

By this change, if |B(b) ∩ {s, t}| = 1, the output of the algorithm will not
change. If B(b)∩{s, t} = ∅, the modified algorithm outputs B(b) = B(b)\{s, t}
instead of the original output B(b) ∩ B(c); obviously, this will not break
the correctness of the algorithm but the bound in Lemma 4 will change to
cost(G,T ) ≤ (τ + 1) · opt(G) as B(b) may be of size τ + 1.

In the case that we are not given a tree decomposition on input, we start by
constructing it using one of the known algorithms: Feige et al. [12] describe a
polynomial time algorithm that yields, for a given graph of treewidth τ , a tree
decomposition of width O(τ

√
log τ); for planar graphs and for graphs excluding

a fixed minor, the width is inO(τ). Similarly, for graphs with treewidth bounded
by O(log n), Bodlaender et al. [7] describe how to find in polynomial time a tree
decomposition of width O(τ). Depending on the input graph, one of these
algorithms is used to obtain a desired tree decomposition. Thus, we obtain the
following corollary.

Corollary 7 There exists an O(τ
√

log τ)-approximation algorithm for the min-
imum L-bounded vertex cut on graphs with treewidth τ ; for planar graphs, graphs
excluding a fixed minor and graphs with treewidth bounded by O(log n), there ex-
ists an O(τ)-approximation algorithm.

5 Open problems

Having shown fixed-parameter tractability of the L-bounded cut problem on
planar and bounded genus graphs by giving LO(L)n time algorithms, the ques-
tion arises whether the presented bounds are optimal. Could the dependence
on the parameter L be improved to 2O(L)? As our proofs of fixed-parameter
tractability rely on the existence of the algorithm for CSP, a much more general
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class of problems, on graphs of bounded treewidth, it is conceivable that a bet-
ter bound is possible; on the other hand, under the Strong Exponential Time
Hypothesis [18], matching lower bounds for some problems expressible as CSP
(e.g., q-coloring) do exist [25].

A natural open problem for planar graphs is whether the shortest path most
vital edges (vertices) problem is fixed-parameter tractable on them, with respect
to the number k of deleted edges (vertices). Despite the close relation of the L-
bounded cut problem and the shortest path most vital edges (vertices) problem,
fixed-parameter tractability of one of them does not seem to easily imply fixed-
parameter tractability of the other problem.

The τ -approximation for L-bounded vertex cuts is based on the fact that
bags in a tree decomposition yield vertex cuts of size at most equal the width of
the decomposition. Unfortunately, this is not the case for edge cuts – one can
easily construct bounded treewidth graphs with no small balanced edge cuts.
Thus, another open problem is to look for better approximation algorithms for
minimum L-bounded edge cuts, for graphs with treewidth bounded by τ .

Yet another challenging and more general open problem is to narrow the gap
between the upper and lower bounds on the approximation ratio of algorithms
for the L-bounded cut for general graphs: the best upper bound for the edge–
and vertex–deletion version of the problem is O(n2/3) and O(

√
n), resp., while

the best lower bound is constant.
Finally, we note that the edge–deletion version of the L-bounded cut problem

in a graph G = (V,E) is a kind of a vertex ordering problem. We are looking
for a mapping ` from the vertex set V to the set {0, 1, . . . , L, L + 1} such that
`(s) = 0, `(t) = L + 1 and the objective is to minimize the number of edges
{u, v} ∈ E for which |`(u) − `(v)| > 1; given a solution F ⊆ E, the lengths of
the shortest paths from s to all other vertices in G \ F yield such a mapping
of cost |F |. There are plenty of results dealing with linear vertex ordering
problems where one is looking for a bijective mapping from the vertex set V
to the set {1, 2, . . . , n} minimizing some objective function (e.g., the minimum
cut linear arrangement problem, the minimum feedback arc set problem [24]).
However, the requirement that the mapping is a bijection to a set of size n
seems crucial in the design and analysis of approximation algorithms for these
problems. The question is whether it is possible to obtain good approximations
for some nontrivial non-linear vertex ordering problems.
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We thank Martin Koutecký and Hans Raj Tiwary for stimulating discussions
and anonymous referees for numerous helpful comments and for a suggestion
yielding an improvement by a factor log n in the approximation ratio in Theo-
rem 6.



JGAA, 22(2) 177–191 (2018) 187

References
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A Appendix L-bounded Cut as a CSP Instance

An instance Q = (V,D,H, C) of CSP [22] consists of

• a set of variables zv, one for each v ∈ V ; without loss of generality we
assume that V = {1, . . . , n},

• a set D of finite domains Dv (also denoted D(v)), one for each v ∈ V ,

• a set of hard constraints H ⊆ {CU | U ⊆ V } and a set of soft con-
straints C ⊆ {CU | U ⊆ V } where each constraint CU ∈ C ∪ H with
U = {i1, i2, . . . , ik} and i1 < i2 < · · · < ik, is a |U |-ary relation CU ⊆
Di1 ×Di2 × · · · ×Dik .

For a vector z = (z1, z2, . . . , zn) and U = {i1, i2, . . . , ik} ⊆ V with i1 < i2 <
· · · < ik, we define the projection of z on U as z |U = (zi1 , zi2 , . . . , zik). A
vector z = (z1, z2, . . . , zn) satisfies the constraint CU ∈ C ∪ H if and only if
z|U ∈ CU . We say that a vector z? = (z?1 , . . . , z

?
n) is a feasible solution for Q if

z? ∈ D1 ×D2 × . . . ×Dn and z? satisfies every hard constraint C ∈ H. In the
maximization (minimization, resp.) version of CSP, the task is to find a feasible
solution that maximizes (minimizes, resp.) the number of satisfied (unsatisfied,
resp.) soft constraints; the cost of a feasible solution is the number of satisfied
(unsatisfied, resp.) soft constraints.

The constraint graph of Q is defined as H = (V,E) where E =
{{u, v} | ∃CU ∈ C ∪ H s.t. {u, v} ⊆ U}. We say that a CSP instance Q
has bounded treewidth if the constraint graph of Q has bounded treewidth.

Given an edge–deletion version of the L-bounded cut instance G = (V,E)
with s, t ∈ V and an integer L, we construct the corresponding minimization
CSP instance Q = (V,D,H, C) as follows. The set of variables of Q coincides
with the set V of vertices of G and for each v ∈ V , the corresponding domain Dv

is {0, 1, . . . , L, L+ 1}. The set of hard constraints H consists of two constraints,
C{s} = {0} and C{t} = {L + 1}. The set of soft constraints C contains a
constraint

C{i,j} = {(`, `′) | 0 ≤ `, `′ ≤ L+ 1, |`− `′| ≤ 1}

for each edge {i, j} ∈ E of the graph G.
To see that a feasible solution for the constructed instance Q of CSP corre-

sponds to a feasible solution of the L-bounded cut problem of the same cost,
and vice versa, we observe the following.

Given an optimal solution F ⊂ E of the edge–deletion version of the L-
bounded cut problem, we distinguish two cases. If s and t belong to the same
component of connectivity in (V,E \ F ), then the vector of shortest path dis-
tances from s to all other vertices in (V,E \F ) yields a feasible solution for the
CSP instance Q (to be more precise, if some of the distances are larger than
L + 1, we replace in the vector every such value by L + 1); if s and t do not
belong to the same component of connectivity in (V,E \F ), we obtain a feasible
solution for Q by assigning the value 0 to every vertex in the s–component and
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the value L+ 1 to every vertex in the t–component. Note that in both cases the
cost of the L-bounded cut and the cost of the CSP instance Q are the same. We
also note that for every feasible solution (z1, . . . , zn) of the instance Q, the set
F = {{u, v} ∈ E | |zu−zv| > 1} is an L-bounded cut of the same cost. Finally,
we note that the constraint graph of Q coincides with the original graph G.

For the vertex–deletion version of the L-bounded cut problem in G = (V,E),
the corresponding minimization CSP instance Q = (V,D,H, C) is defined sim-
ilarly. For each v ∈ V , we have Dv = {−1, 0, . . . , L, L + 1} – the domain of
every vertex is extended by an extra element −1 representing the fact that v
belongs to the L-bounded cut. The set of hard constraints H contains con-
straints C{s} = {0} and C{t} = {L + 1}, and for each edge {i, j} ∈ E also a
constraint

H{i,j} ={(`, `′) | 0 ≤ `, `′ ≤ L+ 1, |`− `′| ≤ 1}
∪ {(`,−1) | 0 ≤ ` ≤ L+ 1} ∪ {(−1, `) | 0 ≤ ` ≤ L+ 1} .

The set of soft constraints contains for each vertex u other than s and t a
constraint

C{u} = {0, 1 . . . , L, L+ 1} .

Given an optimal solution U ⊂ V of the vertex–deletion version of the L-
bounded cut problem, we distinguish two cases. If s and t belong to the same
component of connectivity of G′ = G \ U , then assigning to every v ∈ U the
value −1 and assigning to every v ∈ V \ U its distance from s in G′ yields a
feasible solution for the CSP instance Q (to be more precise, if some of the
distances are larger than L + 1, we replace in the vector every such value by
L + 1); if s and t do not belong to the same component of connectivity in G′,
we obtain a feasible solution for Q by assigning the value 0 to every vertex in
the s–component, the value L + 1 to every vertex in the t–component and the
value −1 to every v ∈ U . Note that in both cases the size of the L-bounded cut
and the cost of the CSP instance Q are the same. We also note that for every
feasible solution (z1, . . . , zn) of the instance Q, the set U = {v ∈ V | zv = −1}
is an L-bounded cut of size equal the cost of Q.
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