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Recognizing IC-Planar and NIC-Planar Graphs
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Abstract

We prove that triangulated IC-planar graphs and triangulated K5-free
or X4W -free NIC-planar graphs can be recognized in cubic time. A graph
is 1-planar if it can be drawn in the plane with at most one crossing per
edge. A drawing is IC-planar if, in addition, each vertex is incident to
at most one crossing edge and NIC-planar if two pairs of crossing edges
share at most one vertex. In a triangulated drawing each face is a triangle.
A graph is K5-free (X4W -free) if it does not contain simple K5 with a
separating 3-cycle (extended 4-wheel graphs). In consequence, planar-
maximal and maximal IC-planar graphs can be recognized in O(n5) time
and maximum and optimal ones in O(n3) time.
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1 Introduction

Graphs are commonly drawn in the plane so that the vertices are mapped to
distinct points and the edges to Jordan curves connecting the endpoints. A
drawing is used to visualize structural relationships that are modeled by ver-
tices and edges and thereby make them easier comprehensible to a human user.
Specifications of nice drawings of graphs and algorithms for their construction
are the topic of Graph Drawing [18, 26, 33].

There are several classes of graphs that are defined by specific restrictions
of edge crossings in graph drawings. Edge crossings are negatively correlated to
nice, and therefore, they should be avoided or controlled in some way. The pla-
nar graphs are the best known and most prominent example. Planarity excludes
crossings and is one of the most basic and influential concepts in Graph The-
ory. Many properties of planar graphs have been explored, including duality,
minors, and drawings [20], as well as linear-time algorithms for the recogni-
tion and the construction of straight-line grid drawings [33]. However, graphs
from applications in engineering, social science, and life science are generally
not planar. This observation has motivated approaches towards beyond-planar
graphs, which allow crossings of edges with restrictions. A prominent exam-
ple is 1-planar graphs, which were introduced by Ringel [31] in an approach
to color a planar graph and its dual simultaneously. A graph is 1-planar if it
can be drawn in the plane so that each edge is crossed at most once. 1-planar
graphs have found recent interest [27]. A 1-planar graph of size n has at most
4n − 8 edges [31] and K6 is the maximum complete 1-planar graph. Not all
1-planar graphs admit straight-line drawings [19, 34], whereas 3-connected 1-
planar graphs can be drawn straight-line on a grid of quadratic size with the
exception of a single edge in the outer face [1]. Moreover, not all 1-planar graphs
admit right angle crossing drawings [21], and conversely, there are right angle
crossing (RAC) graphs that are not 1-planar. In other words, the classes of 1-
planar and RAC graphs are incomparable. The recognition problem of 1-planar
graphs is NP-complete [24, 28]. It remains NP-complete, even for graphs of
bounded bandwidth, pathwidth, or treewidth [6], if an edge is added to a pla-
nar graph [13], and if the graphs are 3-connected and are given with a rotation
system which describes the cyclic ordering of the neighbors at each vertex [4].
On the other hand, 1-planar graphs can be recognized in cubic time if they are
triangulated and admit a drawing with triangular faces [16] and even in linear
time if they are optimal, i.e., if they have 4n− 8 edges [10].

1-planar graphs can also be defined in terms of maps [14, 15, 16, 35]. Maps
generalize the concept of planar duality. A map M is a partition of the sphere
into finitely many regions. Each region is homeomorphic to a closed disk and
the interior of two regions is disjoint. Some regions are labeled as countries and
the remaining regions are lakes or holes. In the plane, we use the region of one
country as the outer face, which is unbounded and encloses all other regions.
An adjacency is defined by a touching of countries. There is a strong adjacency
between two countries if their boundaries intersect in a segment and a weak
adjacency if the boundaries intersect only in a point. There is a k-point if k
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countries meet at a point. A map M defines a graph G so that the countries
of M are in one-to-one correspondence with the vertices of G and there is an
edge {u, v} if and only if the countries of u and v are adjacent. Then G is called
a map graph and M is the map of G. Note that holes are discarded for the
definition of map graphs. Obviously, a k-point induces Kk as a subgraph. If no
more than k countries meet at a point, then M is a k-map and G is a k-map
graph. If there are no holes then M is hole-free. A graph is a hole-free 4-map
graph if it is the map graph of a hole-free 4-map [14, 15, 16].

Chen et al. [15] observed that 4-map graphs are 1-planar and stated [16]
that the triangulated 1-planar graphs are exactly the 3-connected hole-free 4-
map graphs. Their main result in [16] is a cubic-time recognition algorithm
for 3-connected hole-free 4-map graphs. They claimed a cubic time recognition
algorithm for 4-map graphs [14] and refer to a draft for a proof. Recently,
the author characterized hole-free 4-maps graphs as kite-augmented 1-planar
graphs and established a cubic time recognition algorithm [9]. 1-planar graphs
are kite-augmented if they admit a 1-planar drawing with a K4 induced by the
endvertices of each pair of crossing edges. In this work, we extend the algorithm
by Chen et al. [16] to triangulated 1-planar graphs with (near) independent
crossings.

A graph is IC-planar (independent crossing planar) [2, 11, 29, 37] if it has
a 1-planar drawing in which each vertex is incident to at most one crossing
edge and is NIC-planar (near independent crossing planar) [5, 36] if two pairs
of crossing edges share at most one vertex. If each pair of crossing edges is
augmented to the complete graph K4, which can be drawn as a kite [31] as in
Fig. 1(b), then a 1-planar drawing is IC-planar if each vertex is part of at most
one kite and it is NIC-planar if each edge is part of at most one kite.

It is known that IC-planar graphs have at most 13/4n − 6 edges [29] and
are 5-colorable [37]. The recognition problem is NP-hard, even for 3-connected
graphs with a given rotation system [11]. IC-planar graphs admit straight-line
drawings on a grid of quadratic size and right angle crossing drawings, which,
however, may need exponential area [11]. Hence, every IC-planar graph is a
RAC graph. NIC-planar graphs have at most 18/5 (n − 2) edges [36] and this
bound is tight for all n = 5k + 2 and k ≥ 2 [5]. The recognition problem
is NP-complete, whereas optimal NIC-planar graphs with exactly 18/5 (n − 2)
edges can be recognized in linear time [5]. NIC-planar graphs admit straight-line
drawings, but not necessarily with right angle crossings. In fact, there are NIC-
planar graphs that are not RAC graphs, and vice-versa [5]. Hence, the classes
of NIC-planar and RAC graphs are incomparable. Outer 1-planar graphs are
another important subclass of 1-planar graphs that admit 1-planar drawings
with all vertices in the outer face [22]. Outer 1-planar graphs are planar [3] and
can be recognized in linear time [3, 25].

In this work we extend the cubic-time algorithm of Chen et al. [16] for the
recognition of triangulated 1-planar graphs first by an edge coloring and then
to triangulated IC-planar and NIC-planar graphs. We call the algorithms A,
B,BIC and BNIC , respectively. Our algorithms are presented as programs.
They compute an edge coloring, that classifies edges as non-crossed, crossed
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(a) (b)

Figure 1: Drawings of K4 (a) planar as a tetrahedron and (b) with a crossing
as a kite.

or possibly crossed and a boolean formula, which is used to test for IC- and
NIC-planarity. An edge is possibly crossed if it is crossed in one embedding and
non-crossed in another. Such edges occur in a K5 (Fig. 3), which admits six
embeddings if the outer triangle is fixed, in 4+-wheel graphs (Fig. 5), and at
separating edges (Fig. 4). IC-planarity can be tested efficiently, whereas in the
NIC-planar case we need further restrictions, namely no K5 or no X4W-graphs,
which are defined in Section 6.

The paper is organized as follows. Section 2 describes basic definitions. In
Section 3 we recall the algorithm by Chen et al. [16] and present our extension
in Section 4. In Section 5 we specialize the algorithm to IC- and NIC-planar
graphs and analyse their running time in Section 6. We conclude in Section 7
with some open problems.

2 Preliminaries

We consider undirected graphs G = (V,E) and assume that the graphs are
simple and 2-connected, unless otherwise stated. The subgraph induced by
a subset U of vertices is denoted by G[U ]. For convenience, we omit braces
and write G[u1, . . . , ur] if U = {u1, . . . , ur}. The subgraph of G induced by
the vertices of subgraphs H and K of G is denoted by H + K. Similarly, let
G −H denote the subgraph induced by the vertices of G without the vertices
of H, except if H is a set of edges, which are removed from G, whereas their
endvertices remain.

A drawing of G maps the vertices to distinct points in the plane and each
edge {u, v} to a Jordan curve that connects the points of u and v and does not
pass through other endpoints. Two edges cross if their Jordan curves intersect
in a point other than an endpoint. A planar drawing excludes edge crossings
and a 1-planar drawing admits at most one crossing per edge. A single crossing
subdivides an edge into two half-edges. An embedding E(G) is an equivalence
class of drawings and specifies edge crossings and faces. The boundary of each
face in a 1-planar embedding consists of edges between two vertices and of half-
edges between a vertex and a crossing point. It can be described by the vertices
and crossing points of the boundary. The planarization of an embedding E(G) is
an embedded planar graph which is obtained by taking each crossing point as a
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Figure 2: All non-isomorphic embeddings of K5
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Figure 3: Six embeddings of K5 with a fixed outer face, where x and y can be
exchanged. Each kite includes the edge {x, y} and one of the outer edges.

new vertex and half-edges as new edges. It is used for an algorithmic treatment
of embeddings. Now all faces are triangles if E(G) is triangulated.

The complete graph on four vertices K4 plays a crucial role in 1-planar, IC-
planar and NIC-planar graphs, respectively. It admits two embeddings up to
isomorphism [30], as a tetrahedron or as a kite with a pair of crossing edges, see
Fig. 1. The embedding as a tetrahedron T is not necessarily planar. An edge
e of T can be crossed and due to the triangulation it is covered by a kite so
that e is a crossing edge of the kite, see Figs. 6(a) and 6(b). The cubic-time
recognition algorithm for hole-free 4-map graphs of Chen et al. [16] searches all
K4 subgraphs κ of the given graph and checks whether κ must be embedded as
a kite or as a tetrahedron. This can be determined to a large extend, but it is
not unique, as K5 illustrates. The complete graph K5 has five embeddings up
to isomorphism [30], as displayed in Fig. 2, but only one of them is 1-planar. If
the outer face is fixed, then there are six 1-planar embeddings with one of the
outer edges in a kite and an interchange of the two interior vertices x and y,
see Fig. 3. Such embeddings of K5 are called simple and they are non-simple
if further edges are crossed. We call a graph K5-free if it admits an embedding
without simple K5. Simple K5 play a special role and are exempted e.g., from
the coloring scheme.
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3 Recognizing Triangulated 1-planar Graphs

For the recognition of triangulated IC-planar and NIC-planar graphs, we extend
algorithm A by Chen et al. [16]. Recall that the 3-connected hole-free 4-map
graphs are exactly the triangulated 1-planar graphs. Our algorithm B extends
A by an edge coloring and a boolean formula. Algorithm A marks an edge
if it is non-crossed at the actual stage of the algorithm. It could have been
crossed at an earlier stage, in which case it is crossed in the computed 1-planar
embedding. This divergence is due to the fact that A removes one crossing
edge if it detects a pair of crossing edges and marks the remaining one as non-
crossed. Our edge coloring records each decision and tells whether an edge is
crossed or non-crossed in every triangulated 1-planar embedding, or whether
this is uncertain and depends on the particular embedding. The uncertainty is
expressed by a boolean formula, such that there is a one-to-one correspondence
between feasible embeddings and truth assignments if small graphs are restricted
to their outer face. An embedding is feasible if it is triangulated and IC- or NIC-
planar, respectively. The IC-extension (NIC-extension) describes IC-planarity
(NIC-planarity), i.e., that each vertex (edge) is incident to at most one crossing
edge. We prove the following:

Theorem 1 There is a cubic-time algorithm that checks whether a graph G is a
triangulated 1-planar graph. It returns an edge coloring of G, which tells whether
an edge is crossed (non-crossed) in every 1-planar embedding or whether this is
unclear and depends on the embedding, and a boolean formula η such that the
IC-extension (NIC-extension) η+ of η is satisfiable if and only if G is IC-planar
(NIC-planar). Otherwise, the algorithm returns false and stops with a failure.

Algorithm B is the program of algorithm A of [16] with some minor modi-
fications. Algorithms BIC and BNIC specialize B to IC-planar and NIC-planar
graphs, respectively. These algorithms operate on 3-connected edge-colored
graphs, whereas algorithm A does not distinguish black, grey, brown, blue, and
cyan edges and just marks them. The edge coloring is defined in Section 4.
In addition, algorithms B, BIC and BNIC construct a boolean formula. Next,
we describe the steps of the algorithms, the edge coloring, and the boolean
formulas.

Algorithm A “makes progress” (i) by a separation into 4- and 5-connected
components and (ii) by a crossing removal. It systematically checks all K4

subgraphs κ of the given graph G and tries to determine whether κ must be
embedded as a kite or as a tetrahedron, and so do algorithms B, BIC and BNIC .
In most cases there is an unambiguous decision. Ambiguities are expressed by
the edge coloring and the boolean formula. For example, the complete graph
K5 with a fixed outer face has three embeddings up to isomorphism with kites
κ1, κ2, and κ3, as illustrated in Fig. 3, and the clause (e1κ1

∨ e2κ2
∨ e3κ3

) expresses
the three options, where ei corresponds to a pair of vertices (edge) in the outer
face.
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Figure 4: A separating edge {a, b}; the shaded areas represent 4-connected
subgraphs. The orange edge {a, b} must cross one of the cyan ones, which are
separating crossable edges {xi, yi} for i = 1, . . . , k and k ≥ 2.

Definition 1 Let G be a 3-connected graph with some colored edges. For an
uncolored edge {a, b} let C[a, b] be the set of uncolored edges {x, y} so that
the induced subgraph G[a, b, x, y] is K4 and is not included in a K5 subgraph
G[a, b, x, y, z]. Such edges are called crossable edges in [16].

If there are edges {a, b} and {x, y} with {x, y} ∈ C[a, b], then both edges
are candidates for a crossing. They are uncolored and their endvertices induce
K4, which is maximal and is not part of a K5. Edges of K5 subgraphs κ are
discarded, except if they are part of another maximal K4 with vertices not in
κ.

The algorithms use the following separators:

Definition 2 Let G be a 3-connected graph.

1. A separating 3-cycle C = (a, b, c) is a 3-cycle such that G − C is discon-
nected and partitions into Gin and Gout.

2. A separating edge is an uncolored edge {a, b} such that G−{a, b}−C[a, b]
is disconnected, see Fig. 4. An edge {x, y} ∈ C[a, b] is called a separating
crossable edge if x and y are in different components of G−{a, b}−C[a, b].

3. A separating triple is a 3-cycle C = (a, b, c) such that G − C − C[a, b] is
disconnected, see Fig. 6(a).

4. A separating 4-cycle C = (a, b, c, d) is a 4-cycle such that G − C is dis-
connected and partitions into Gin and Gout.

5. A separating triangle is a 3-cycle C = (a, b, c) such that G−C −C[a, b]−
C[b, c] is disconnected, see Fig. 6(b).

6. A separating quadruple C = (a, b, c, d) is a 4-cycle such that G−C−C[a, b]
is disconnected.

Algorithms B, BIC , and BNIC use these separators in the prescribed order.
Hence, there is no separating 3-cycle if a separating edge (or any other separa-
tor) is searched. Then 3-connected triangulated 1-planar graphs are 4-connected
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Figure 5: An extended 4+-wheel graph is the planar K5 − e and is embedded
with an outer 4-cycle and an edge {a, c} that crosses one of two possible edges.
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Figure 6: (a) A separating triple with a kite-covered edge {a, b} and (b) a
separating triangle with two kite-covered edges.

as proved in [16]. Similarly, the graphs are 5-connected if there are no separat-
ing 4-cycles and separating triangles or quadrangles are searched. The set of
separating crossable edges C[a, b] consists of a single edge in a separating triple,
triangle or quadruple.

Chen et al. [16] propose to use separating 4-cycles before separating triples
and separating quadruples before separating triangles. However, this is useless,
since a separating triangle implies a separating 4-cycle and a separating triangle
implies a separating quadruple. In their correctness proof, Chen et al. do not
rely on the order and use only the 4-connectivity of graphs.

If none of the separators applies, and the graph has size at least nine and
contains a K4, then algorithm A shall first search for K5 subgraphs, called
MC5, and if there are no K5, it considers (the remaining) K4 subgraphs and
determines whether they must be embedded as a tetrahedron or as a kite, called
MC4. However, at this stage, the graphs are 5-connected and the absence of
the above separators implies that there are no K5 subgraphs or the graphs are
small [9]. In consequence, the MC5 step described in [16] can be skipped and
we must consider embeddings of K5 only as part of small subgraphs of size at
most eight that are obtained by separating 3- or 4-cycles.

Finally, in the MC4 step, a detected K4 must be embedded as a tetrahedron
if all its edges are crossed and the endvertices of the crossing edges are distinct
such that there is a completely kite-covered tetrahedron, as shown in Fig. 7(a),
or there is an SC-graph, as shown in Fig. 7(b), in which the edges of the outer
cycle of the tetrahedron are crossed by edges incident to its forth (inner) vertex.
Otherwise, the detected K4 subgraph must be embedded as a kite. Recall that a
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Figure 7: A (a) completely kite-covered tetrahedron and (b) an SC-graph

planar tetrahedron is detected in the first step, since there is a separating 3-cycle.
If some endvertices of crossing edges in completely kite-covered tetrahedrons
coincide, then there are separating triples, triangles, or quadrangles.

In the “make progress” steps algorithm A proceeds as follows: If a separating
3-cycle or 4-cycle C partitions G − C into Gin and Gout, then A recursively
proceeds on Gin + C and Gout + C. It merges the computed embeddings and
thereby identifies the edges of C. If C is a 4-cycle, then a chord f must be
added to the subgraphs for a triangulation, and f must be chosen properly,
such that it is new for the remaining subgraph. The chord is removed if the
subgraphs are merged later on. At the other separators A removes edges that
must be crossed and destroys all detected K4 that must be embedded as a kite.
For example, it removes one edge from the pair of crossing edges in a separating
triangle, see 6(b). Which one does not really matter. However, the removed
edge has an impact on the computation process and the edge coloring. For
example, if there is a separating triple so that edges {a, b} and {x, y} cross,
then there is a separating 3-cycle (a, b, c) if {x, y} is removed and there is a
separating 4-cycle (a, b, c, y) if {a, b} is removed and {a, b} is reinserted as a
chord, and thereafter, there is a separating 3-cycle (a, b, x) that splits off vertex
y. Similarly, A destroys all detected kites in the MC4 step and, for example,
removes six edges of a completely kite-covered tetrahedron and three edges from
an SC-graph, see Fig. 7. Plain kites are common in IC- and NIC-planar graphs
and they are surrounded by planar subgraphs, as the study of maximal NIC-
planar graphs shows [5].

We use the following properties of algorithm A, which were proved by Chen
et al. [16] using maps. A simpler proof using embeddings of 1-planar graphs is
given in [9].

Lemma 1 Let G be a 3-connected triangulated 1-planar graph with |G| > 8.

1. The edges of separating 3-cycles and 4-cycles are non-crossed at the time
of their detection and G is partitioned into two components.

2. If {a, b} is a separating edge, then {a, b} and exactly one of its separat-
ing crossable edges are crossed in every 1-planar embedding. The edges
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{a, x}, {a, y}, {b, x} and {b, y} are non-crossed if {x, y} is a separating
crossable edge.

3. Edge {a, b} of a separating triple (quadruple) is crossed in every 1-planar
embedding, and similarly edges {a, b} and {b, c} of a separating triangle.

4. If {x, y} is a crossable edge of {a, b} in a separating triple, then {x, y}
is crossed, whereas {a, x}, {a, y}, {b, x}, {b, y} are non-crossed in every
1-planar embedding, and similarly for separating triples and separating
quadruples.

The search for maximal complete subgraphs of size five and four completes
algorithm A. However, as stated before, K5 subgraphs have a unique 1-planar
embedding up to isomorphism and the used separators exclude K5 subgraphs,
even for 1-planar graphs [9]. For NIC-planar (IC-planar) graphs the arguments
are even simpler.

Lemma 2 If G is a triangulated NIC-planar (IC-planar) graph, then the MC5

step of algorithm A is vacuous.

Proof: A K5 has a unique 1-planar embedding up to isomorphism [30] as shown
in Fig. 2(a). At this stage of algorithm A the graphs are 5-connected. If a, b, c
are the vertices in the outer face and {a, y} crosses {b, x} as in Fig. 3(a), then
{a, c} and {b, c} are crossed by 5-connectivity. Suppose {u, v} crosses {a, c} for
some vertices u, v. Since there are no separating triples or separating triangles,
edge {a, c} must be part of a K5 π so that C[a, c] is undefined. Since π includes
the vertices a, c, u, v and some vertex z we have u = x and z = b or z = y, since
a 1-planar embedding of π is impossible, otherwise. Then {a, x} is incident
to two K4 that are embedded as a kite, i.e., to two pairs of crossing edges, a
contradiction to NIC-planarity (IC-planarity). 2

As proved in Section 9.1 of [16], the remaining K4 subgraphs are embedded
as a tetrahedron if they are completely kite-covered tetrahedrons or SC-graphs.
Otherwise, they are embedded as a kite. The algorithms first search for the
tetrahedrons, and if there are none, they pick any K4 κ and embed it as a kite.
The cyclic order (a, b, c, d) of the vertices of κ can be computed from the local
environment [16]. Note that the cyclic order is determined if a vertex of κ is
incident to two colored edges in κ. Alternatively, κ can be contracted to a single
vertex and the cyclic order is obtained from the final planar embedding [5, 9].

Lemma 3 [16] If MC4 applies to algorithm A, then a detected K4 subgraph
is a completely kite-covered tetrahedron or an SC-graph and if neither of these
cases applies, then it must be embedded as a kite.

Finally, algorithm A checks whether the obtained graph is a triangulated
planar graph or is a small triangulated 1-planar graph. It makes at most O(n)
“make progress” steps. The search and test of each separator takes O(n2) time.
The use of MC4 and the a final check of planarity take linear time, so that the
total running time is O(n3) [16].
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4 Recognizing IC- and NIC-Planar Graphs

In each step algorithm A finds edges that are crossed or are non-crossed in
every triangulated 1-planar embedding and it removes one edge from a pair of
crossing edges to make progress towards planarity. However, the decisions of
A do not uniquely determine a 1-planar embedding. For example, a separating
edge has the choice among several crossable edges. The case resembles a graph
decomposition at a separation pair with an arbitrary order of the components.
Also, K5 has six embeddings, which are isomorphic in pairs if there is a planar
outer 3-cycle. IC- and NIC-planarity need more information on all 1-planar
embeddings of the given graph, which is provided by an edge coloring and a
boolean formula.

Algorithm B is the program of algorithm A [16] with some minor modifica-
tions. Algorithms BIC and BNIC specialize B to IC-planar and NIC-planar
graphs, respectively. They stop immediately if a violation of IC- or NIC-
planarity is detected.

Definition 3 An edge of a 1-planar graph G that is not an inner edge of a
simple K5 subgraph of G is colored black if it is a non-crossed edge of a kite
in every triangulated 1-planar embedding E(G). Other non-crossed edges are
colored grey or brown. Two edges e and f are colored red and blue, respectively,
if e and f cross in every triangulated 1-planar embedding. An edge is colored
orange if it is crossed and the candidates for a crossing are colored cyan.

The edges of a simple K5 are exempted from the coloring scheme, since the
pair of crossing edges is unclear, see Fig. 3. We could color them with a different
color. For convenience, we choose one edge between an outer and an inner vertex
and color it red or orange and apply the coloring scheme otherwise.

Algorithm A and similarly algorithms B,BNIC and BIC determine that an
edge is non-crossed if it is part of a separating 3-cycle or 4-cycle. It is first colored
brown and may later be colored black. A separating edge {a, b} is crossed and
it has the choice to cross any of its separating crossable edges. Note that not all
edges of C[a, b] must be separating crossable edges. Edge {a, b} is colored orange
and its separating crossable edges are colored cyan. The non-crossed edges from
the possible kites are first colored grey. There is a pair of crossing edges in a
separating triple, one of which is colored red and the other is colored blue. For
the check of IC- and NIC-planarity it is preferable to color edge {a, b} red. The
edges from the resulting kite are colored black, even if they were colored brown
or grey before, and the other edges of the triple are colored brown, except if they
were colored in earlier steps. The case of separating triangles and separating
quadruples is similar. In the MC4 step, there are six detected pairs of crossing
edges in a completely kite-covered tetrahedron, three such pairs in an SC-graph
and one pair in a kite. In each case one crossed edge is colored red and the
other is colored blue and the remaining edges of each kite are colored black.
The coloring scheme is also applied to small graphs with an outer 3- or 4-cycle.
Edges that are not part of a K4 or are part of a final planar subgraph are colored
brown.
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The black, grey, brown, red, blue, and orange edges (except in simple K5)
are decided, whereas a cyan edge may be non-crossed in one 1-planar embedding
and crossed in another. Black edges are part of a kite, grey edges of possible
kites and brown edges are not part of kites at all. A partial coloring χ on a
subset of edges of G is extended step by step such that some uncolored edges
are colored, where grey and brown edges may be colored black.

Definition 4 A coloring γ of a set of edges F ⊆ E extends a partial edge
coloring χ of G if colored edges keep their color except if a grey or brown edge
shall be colored black and an uncolored edge e ∈ F takes the color of γ.

The edge coloring extends marked edges by Chen et al. [16] such that black,
grey, brown, blue, and cyan edges are marked. The edge coloring may be use to
detect errors, for example if a black, grey or brown edge shall be colored blue
or red.

In each step, the algorithms B,BNIC and BIC add a term to a formula η
or they combine two formulas. The formulas are a conjunction of terms and
are almost in CNF. The boolean formulas for IC-planar and NIC-planar graphs
have the same structure, however, the boolean variables and the evaluation
are different. For every K4 subgraph κ of the given graph G that may be
embedded as a kite, the clause α(κ) = (aκ∧ bκ∧ cκ∧dκ) expresses this fact and
the boolean variable xκ is assigned the value true if κ is embedded as a kite.
The embedding is not clear if there is a separating edge. Then every possible
candidate G[a, b, x, y] is taken into account, where {a, b} is a separating edge
and {x, y} a separating crossable edge. The K4 subgraph with a pair of crossing
edges is determined if there is a separating triple, triangle, or quadruple and in
the MC4 step, and its edges are colored black, red, and blue, respectively. The
boolean variable xκ is associated with vertex x of κ in the IC-planar case, and
with the black or grey edge of κ in the NIC-planar case. Feasibility is granted
by IC- and NIC-extensions of the form (¬xκ ∨ ¬xκ′) for every vertex (edge) x
and kites κ and κ′ that may include x.

The subroutines tri and quad operate as in the case of a separating triple.
The non-crossed edges of each kite are colored black, the crossed edges {a, b}
and {a, c} are colored red and their crossed edges blue. The further non-crossed
edges are colored brown. They add a clause α(κ) to η for each detected kite κ
and return G− {a, b} (G− {{a, b}, {a, c}}) and η.

The subroutine merge reverts the partition into an inner and an outer sub-
graph and inserts the embedding of Gin+C in the face left by C in E(Gout+C),
identifying the edges of C. It ignores the chord that was added for the triangu-
lation if this was a partition by a separating 4-cycle. It takes the edge coloring
of the subgraphs and colors edges of C black if they are black in one of Gin +C
and Gout + C. Finally, it combines the boolean formulas by a conjunction.

Algorithm final-check determines whether the given graph G is a triangu-
lated planar graphs and returns a planar embedding of G if |G| > 8. For small
graphs G it determines whether G has a 1-planar embedding extending the
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Algorithm 1: Algorithm B
Input: A 3-connected graph G with a partial edge coloring and a

boolean formula η.
Initially, all edges are uncolored and η = true.

Output: An embedding of a planar subgraph of G, an edge coloring, and
(an extension of) η.

1 Color all edges brown that are not part of a K4;
2 while there is a K4 subgraph and |G| ≥ 9 do
3 if there is a separating 3-cycle C = (a, b, c) with

G− C = {Gin, Gout} then
4 extend the coloring by brown edges for {a, b}, {b, c}, {c, a};
5 return merge(B(Gin + C, ηin), B(Gout + C, ηout));

6 else if there is a separating edge {a, b} then
7 extend the coloring by an orange edge {a, b};
8 set ξ = false;
9 foreach separating crossable edge {x, y} ∈ C[a, b] do

10 extend the coloring by grey edges {a, x}, {x, b}, {b, y}, {a, y}
and color {x, y} cyan;

11 set ξ = ξ ∨ α(G[a, b, x, y]);

12 return B(G− {a, b}, η ∧ ξ);
13 else if there is a separating triple C = (a, b, c) with C[a, b] = {{x, y}}

then
14 color {a, b} red, {x, y} blue and {a, u}, {a, v}, {b, u}, {b, v} black;
15 color {b, c}, {c, a} brown;
16 return B(G− {a, b}, η ∧ α(G[a, b, x, y]));

17 else if there is a separating 4-cycle C = (a, b, c, d) with
G− C = {Gin, Gout} then

18 extend the coloring by brown edges {a, b}, {b, c}, {c, d}, {d, a};
19 if {a, c} ∈ Gin then e = {b, d} else e = {a, c};
20 if {a, c} ∈ Gout then f = {b, d} else f = {a, c};
21 return merge(B(Gin + C + e, ηin),B(Gout + C + f, ηout));

22 else if there is a separating triangle C = (a, b, c) then
23 return B(tri(G,C, η));

24 else if there is a separating quadruple C = (a, b, c, d) then
25 return B(quad(G,C, η));

26 else if there is a K5 then return (G, false) and stop ;
27 else MC4(G, η) ;

28 Final-Check(G, η);
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Algorithm 2: Algorithm MC4

Input: A 5-connected graph G with a partial edge coloring and a
boolean formula η.

Output: A subgraph of G, an edge coloring, and η.

1 if the detected K4 is a completely kite-covered tetrahedron T then
2 foreach edge e of T do
3 color e = {a, c} red and its crossing edge f = {b, d} blue and

extend the coloring by black edges {a, b}, {b, c}, {c, d}, {d, a};
4 set η = η ∧ α(κ);

5 collect the red edges into a set F ;
6 return (G− F, η);

7 else if the detected K4 subgraph is an SC graph then
8 foreach kite κ of the SC graph with a pair of crossing edges e, f do
9 color e red and f blue and color the remaining edges black;

10 set η = η ∧ α(κ);

11 collect the red edges into a set F ;
12 return (G− F, η);

13 else
14 color the crossing edges of the detected kite κ red and blue

and color the other edges of κ black;
15 set η = η ∧ α(κ);
16 return (G− e, η) where e is the red edge;

given edge coloring and it returns an embedding of a planar subgraph. Other-
wise it fails. A description is given in Algorithm 3, which also computes an edge
coloring and a boolean formula.

The correctness of algorithm B uses the following properties of Algorithm
A, as proved in [16].

Lemma 4 Let E(G) be any triangulated 1-planar embedding of G. Then al-
gorithm B succeeds on G and returns an embedding of a triangulated planar
spanning subgraph inherited from E(G), an edge coloring, and a boolean formula
η such that black, grey and brown edges are non-crossed in E(G), red, blue, and
orange edges are crossed in E(G), there are pairs of red and blue edges that cross,
and each orange edge crosses a cyan one, except in subgraphs that are simple
K5. Moreover, one edge from each pair of crossing edges is red, or orange. Each
black edge is part of a kite, each grey edge is part of a possible kite, and each
brown edge is not related to a kite at all.

Proof: By the assumptions, G is a triangulated 1-planar graph and algorithm
A succeeds on G. Since B extends A, it also succeeds, since MC5 does not apply,
as shown in [9]. Then B provides the edge coloring as stated. All K4 subgraphs
are scanned and their embedding is classified as a kite, as a possible kite at a
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separating edge or a small graph, as a planar tetrahedron (after a separating
3-cycle), or as a tetrahedron with crossed edges in a kite-covered tetrahedron
or an SC graph. One edge of each detected kite is colored red or orange, and
the non-crossed edges are colored black, grey or brown according to the coloring
scheme. There is an exception for simple K5 subgraphs since the pair of crossing
edges is unclear. 2

5 Specialization to IC- and NIC-Planarity

For the test of IC- and NIC-planarity we can specialize MC4 and final-check.
For example, a completely kite-covered K4 is not IC-planar and the SC-graph
is neither IC- nor NIC-planar. If such a subgraph is encountered, then the
recognition algorithm for IC-planarity (NIC-planarity) fails and returns false
and stops.

It remains to test whether the 1-planar embedding computed by algorithm
B is IC-planar (NIC-planar) or can be transformed into such an embedding.
The main steps of algorithm B uniquely determine whether an edge is crossed
or non-crossed and express this property by the edge coloring. There is an
ambiguity at separating edges and small graphs, for which it suffices to consider
only embeddings in which vertices or edges of the outer face must be a part of
a kite. These cases are expressed by a disjunction in the boolean formula.

Simple K5 are a particular case. They result from separating 3-cycles. Let
the 3-cycle describe the outer face and consist of vertices a, b, c and edges e, f, g
and let x and y be the inner vertices, see Fig. 3. It admits three 1-planar
embeddings up to isomorphism with x and y interchanged, such that each edge
of the outer face is part of a kite, as illustrated in Fig. 3. The inner edge
{x, y} is part of each of the three possible kites and each edge {u, v} between
an outer and an inner vertex can be crossed. The ambiguity in the embeddings
is due to six separating edges between each outer and each inner vertex. For
example, {a, y} may cross {b, x} or {c, x}. Hence, separating edges are the
deeper reason for an ambiguity in 1-planar (IC-planar, NIC-planar) embeddings
of triangulated 1-planar graphs. They are specialized to extended 4+-wheel
graphs X4W , which are embeddings of K5−e with an outer 4-cycle, as shown in
Fig. 5. The coloring scheme is exempted for the edges of simple K5. Fortunately,
this deficit is captured by the boolean formulas. The set of embeddings is
expressed by α = (aκ1

∧ bκ1
)∨ (aκ2

∧ cκ2
)∨ (bκ3

∧ cκ3
) in the IC-planar case and

by α = (eκ1
∨ fκ2

∨ gκ3
) in the NIC-planar case.

If two simple K5 are adjacent, as shown in Fig. 15(b), with vertices a, b, c and
b, c, d in the outer face, then there are two IC-planar embeddings represented
by the formula (aκ1 ∧ bκ1 ∧ cκ2 ∧ dκ2)∨ (aκ3 ∧ cκ3 ∧ bκ4 ∧ dκ4), where κ1, . . . , κ4
are the possible kites of the two K5. These formulas simplify to (a ∧ b ∧ c ∧ d),
since each outer vertex is in a kite. A NIC-planar embedding that uses the
diagonal {b, c} for one kite and one outer edge for the second kite leads to the
formula (eκ1

∨ fκ2
∨ gκ3

∨ hκ4
), where e, f, g, h are the edges of the outer face

and κ1, . . . , κ4 are possible kites.
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Algorithm 3: Algorithm Final-Check

Input: A 3-connected graph G with a partial edge coloring and a
boolean formula η.

Output: An embedded planar subgraph of G, an edge coloring and η.

1 if G is a triangulated planar graph then
2 extend the coloring by brown edges;
3 return (E(G), η);

4 else
5 if |G| ≤ 8 then
6 if G has an IC-planar (NIC-planar) embedding extending the

partial edge coloring γ then
7 if there is E(G) without vertices (edges) in the outer face in a

kite then
8 set β = true

9 else
10 set β = false;
11 foreach IC-planar (NIC-planar) embedding E(G)

extending γ do
12 express E(G) by a boolean formula α using only

variables for the vertices (edges) in the outer face of
E(G) (with the added chord ignored);

13 set β = β ∨ α;

14 set η = η ∧ β;
15 color the edges of G according to the coloring scheme;
16 choose any IC-planar (NIC-planar) embedding E(G) with a set

F of red or orange edges that are crossed in E(G);
17 return (E(G− F ), η);

18 return (G, false) and stop

The extended version of algorithm final-check in BIC (BNIC) computes all
IC-planar (NIC-planar) embeddings of the small graph G of size at most eight,
that extend the given partial coloring and that inevitably use a vertex (edge)
of the outer face as part of a kite. Each embedding is expressed by a boolean
formula using only variables for the vertices (edges) in the outer face. These
formulas are combined by a disjunction to express the set of all IC-planar (NIC-
planar) embeddings.

The boolean formula η collects the clause α(κ) of all possible kites κ, but
it does not express IC- and NIC-planarity and a mutual exclusion of two kites
with a common vertex and edge, respectively. Therefore, we extend η to η+,
and transform η+ into η∗ for an efficient evaluation.

Definition 5 The IC-extension ( NIC-extension) η+ of a boolean formula η is
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obtained by adding a clause (¬xκ ∨ ¬xκ′) if there is a vertex (edge) x with two
variables xκ and xκ′ and κ 6= κ′ in clauses of η.

Let BIC and BNIC be the algorithms obtained from algorithm B by the
versions for IC-planar and NIC-planar graphs, respectively. BIC returns false
and stops if B encounters a separating triangle, if MC4 encounters a completely
kite-covered K4 or an SC-graph or two kites that share a vertex, and it uses
algorithm Final-Check for the final test. Accordingly, BNIC returns false and
stops if MC4 encounters an SC-graph or if MC4 detects two kites that share
an edge, and it uses algorithm Final-Check for the final test.

Theorem 2 A graph G is triangulated IC-planar (NIC-planar) if and only if
Algorithm BIC (BNIC) succeeds and returns a boolean formula η whose IC-
extension (NIC-extension) η+ is satisfiable.

Proof: If algorithm BIC (BNIC) succeeds, then G is triangulated 1-planar by
Lemma 4, since BIC (BNIC) specializes algorithm B, and an embedding E(S)
of the planar subgraph S of G without the removed red and orange edges is
returned. Construct an embedding E(G) from E(S) by re-inserting the removed
edges and taking a satisfying truth assignment of η+ into account.

First, suppose that G is not small, i.e., G is not a subgraph of size at most
eight that is a component with a separating 3- or 4-cycle. Each red edge has a
unique blue one for a crossing and the subgraph induced by the endvertices of
the crossing edges is embedded as a kite κ, whose further edges are uncrossed
and are colored black. Then α(κ) is a clause of η and of η+, and each variable xκ
in α(κ) is assigned the value true. If e is an orange edge, then it is a separating
edge e and has the choice among its separating crossable edges f1, . . . , fk for
some k ≥ 2 for a crossing. All possible kites κi with a crossing of e and some fi
are described by α(κ1) ∨ . . . ∨ α(κk) in η and η+. If η+ is satisfied, then α(κi)
is satisfied for at least one i with i = 1, . . . , k, and any such i is chosen so that
e crosses fi in E(G).

Next, consider small subgraphs H whose outer face is a 3-cycle or 4-cycle.
Then H has an IC-planar (NIC-planar) embedding that extends the edge col-
oring, since otherwise the algorithms would fail. The coloring of the edges of H
may not agree with the coloring scheme, e.g., if H is a simple K5, but this does
not matter. Again, consider an IC-planar (NIC-planar) embedding of H such
that a vertex (edge) x in the outer face of H is part of a kite if the associate
variable xκ is assigned the value true.

By construction and Lemma 4, E(G) is a 1-planar embedding and it is IC-
planar (NIC-planar), since the truth assignment guarantees that each variable
xκ of a kite κ of E(G) is assigned the value true by a truth assignment that
satisfies η+ and the IC-extension (NIC-extension) excludes a use of the corre-
sponding vertex (edge) in another kite. Hence, E(G) is IC-planar (NIC-planar).

Conversely, if G is a triangulated IC-planar (NIC-planar) graph, then al-
gorithm BIC (BNIC) succeeds and returns a boolean formula η describing all
1-planar embeddings of G, except for small graphs for which only the use of
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vertices (edges) of the outer face is described. The algorithms check all K4 sub-
graphs. For every possible kite κ there is a subformula α(κ) in η that describes
κ. Consider an IC-planar (NIC-planar) embedding E(G). If a vertex (edge) x is
part of a kite κ in E(G), then assign xκ the value true and assign false, otherwise.
Then η is satisfiable, since κ and the variables xκ were taken into account by
the algorithms. By IC-planarity (NIC-planarity) each vertex (edge) is part of
at most one kite so that also the IC-extension (NIC-extension) η+ is satisfied.

2

Algorithm A runs in cubic time [16], and so do B,BIC and BNIC . It thus
remains to solve the satisfiability problem of η+, which is investigated in the
next section and takes O(n2) time if the given graph is IC-planar or NIC-planar
and K5-free or X4W -free. Thus NIC-planar graphs shall not contain either
simple K5 or extended wheel graphs, X4W for short, which are made precise
in Definition 7. X4W -graphs comprise separating edges and 4+-wheel graphs
so that pairs of edges may be in a kite. These subgraphs can be recognized by
BIC and BNIC in triangulated 1-planar graphs.

Triangulated 1-planar embeddings are maximized in the sense that no non-
crossed edge can be added without violating 1-planarity. However, K5−e admits
a 1-planar embedding with a pair of crossing edges so that edge e can be added
non-crossed. We call a graph maximal (planar-maximal) 1-planar if no edge e
can be added to G so that G+ e admits a 1-planar drawing (in which e is non-
crossed). If G+ e violates the upper bound of the number of edges of 1-planar
graphs, then G is maximum or densest and G is called optimal if the number
of edges exactly meets the upper bound of 4n − 8. Similar notions apply to
planar, IC-planar, and NIC-planar graphs. Clearly, every triangulated planar
graph is optimal, and there are (planar) maximal IC-planar, NIC-planar [5] and
1-planar graphs [12] that are not optimal.

We can test maximality by exhaustive search on all possible edges e, such
that graph G is 1-planar (IC-planar, NIC-planar) and G + e is not. In the
planar-maximal case, edge e is colored brown, and therefore is embedded non-
crossed.

Corollary 1 For a graph G it takes O(n5) time to test whether G is planar-
maximal or maximal 1-planar IC-planar (K5-free or X4W -free NIC-planar).

There are special linear time algorithms for optimal 1-planar graphs [10] and
optimal NIC-planar graphs [5], which use the particular structure of optimal
graphs. Note that there are optimal IC-planar (NIC-planar) graphs only for
values n = 4k (n = 5k + 2) and k ≥ 2.

Corollary 2 For a graph G it takes O(n3) time to test whether G is maximum
(optimal) IC-planar.

Proof: Clearly, a maximum (or densest) graph is triangulated. It has b13/4n−
6c edges if it IC-planar. 2
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Figure 8: A C-unambiguous IC-planar (NIC-planar) graph

6 IC- and NIC-planarity of 1-planar Embeddings

The algorithms B and similarly BIC and BNIC compute the “planar skeleton”
of a given triangulated 1-planar graph consisting of the black, brown and grey
edges that are embedded non-crossed. Moreover, they determine edges that
cross inevitably and color them red, blue and orange, respectively. There is an
ambiguity in the embeddings if there is a separating edge, which may choose
among its separating crossing edges for a crossing, and at small graphs that
result from separating 3- or 4-cycles. The ambiguity is expressed by a disjunction
in the computed boolean formula η.

Definition 6 An IC-planar (NIC-planar) embedding E(H) of a graph H with
cycle C is C-minimal IC-planar ( NIC-planar) if C describes the outer face of
E(H) and the set S of vertices (edges) of C that is part of a kite is minimal
w.r.t such embeddings.

A (small) graph H of size at most eight with a 3- or 4-cycle C is called IC-
ambiguous ( NIC-ambiguous) if it has at least two C-minimal IC-planar (NIC-
planar) embeddings.

For example, a simple K5 with a fixed outer face with vertices a, b, c and
edges e, f, g is IC-ambiguous (NIC-ambiguous). There are three C-minimal em-
beddings with a pair of vertices (edge) of C. The set of embeddings is expressed
by η = (a∧b)∨(a∧c)∨(b∧c) for IC-planar graphs and by η = (e∨f∨g) for NIC-
planar graphs. Also, the 4+-wheel graph is IC-ambiguous (NIC-ambiguous).

A small graph is unambiguous if it admits an embedding so that some ver-
tices (edges) of the outer face are not needed for a kite, as shown in Fig. 8. If
no vertex (edge) of C is part of a kite, then H is treated as planar and η = true
is returned by BIC (BNIC).

6.1 Evaluate IC-planar Formulas

In the IC-planar case, the computed boolean formula is in 2CNF, except if there
is an IC-ambiguous graph or a separating edge. For IC-ambiguous graphs there
is a transformation into 2CNF and separating edges are treated by a series of
2SAT problems.
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Lemma 5 If G is an IC-planar graph without separating edges, then the IC-
extension η+ of the formula η computed by algorithm BIC is equivalent to a
2SAT formula η∗.

Proof: The boolean formula α(κ) = (aκ∧bκ∧cκ∧dκ) of a kite κ = G[a, b, c, d] is
added to η at a separating triple, a separating quadruple, and a kite in MC4. If
a small graph H is IC-unambiguous, then a conjunction of variables or even true
is added to η. Two subexpressions are combined by a conjunction at separating
3- and 4-cycles. Also the IC-extensions are 2SAT formulas.

It thus remains to show that the IC-extension of a formula η for an IC-
ambiguous graph H with outer face C is equivalent to a 2SAT formula, and
is replaced by the 2SAT formula for further computations. Every IC-planar
embedding contains at most one kite if |H| ≤ 7. Also, we can assume that edges
in H − C are uncolored; otherwise the set of possible IC-planar embeddings is
further restricted.

First, suppose that C = (a, b, c) is a 3-cycle. If |H| = 5, then H is a K5 so
that η = (aκ1

∧ bκ1
)∨ (aκ2

∧ cκ2
)∨ (bκ3

∧ cκ3
). Together with the IC-extension,

the expression is equivalent to the 2SAT formula (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c) and
is replaced by this formula. If H has 6, 7 or 8 vertices and every C-minimal
IC-planar embedding has one kite that includes a, b or c, then by IC-ambiguity,
H contains a K5 with two or three vertices from a, b, c, where a third vertex
occurs in every possible kite. Then (x ∨ y) ∧ z or x ∨ y describe the IC-planar
embeddings with variables x, y, z for vertices of C. If there are two kites κ
and κ′, then H has eight vertices and each vertex must be in a kite, so that
η = (a ∧ b ∧ c) describes the embeddings. An IC-ambiguous graph is shown in
Fig. 9(b).

Accordingly, if C = (a, b, c, d) is a 4-cycle, then H is a 4+-wheel graph if
|H| = 5 so that η = (aκ ∧ bκ ∧ cκ) ∨ (aκ′ ∧ dκ′ ∧ cκ′), which after the IC-
expansion is equivalent to the 2SAT formula a∧c∧ (b∨d). The same expression
occurs if {a, c} is a separating edge with crossable edges {b, u} and {d, v} for
some inner vertices u and v and H has 7 or 8 vertices, see Fig. 12(a). If every
embedding of H has two kites, as shown in Fig. 10, then |H| = 8 and each
vertex of H is in a kite. After the IC-extension the formulas are equivalent to
η = (a∧ b∧ c∧ d). Otherwise, if every C-minimal IC-planar embedding has one
kite κ with vertices of C, then H contains a K5 or a 4+-wheel graph with two or
three vertices of C so that (x∨y)∧ (x∨z)∧ (y∨z), (x∨y) or x∧ (y∨z) describe
the embeddings after the IC-extension with variables x, y, z for the vertices of
C that may be in a kite, as shown in Figs. 11 and 12(b) 2

The satisfiability problem for η+ can be reduced to a series of 2SAT satisfi-
ability problems, which altogether can be solved in linear time in the length of
η+. This technique was used in [11].

Lemma 6 There is a linear time algorithm to test the satisfiability of the IC-
extension η+ of a triangulated IC-planar graph.
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Figure 9: IC-planar embeddings of small graphs with a 3-cycle. (a) is a unique
IC-planar embedding and is IC-unambiguous and (b) is IC-ambiguous.
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Figure 10: IC-ambiguous graphs with a 4-cycle and two K5
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Figure 11: IC-ambiguous graphs with 6 vertices
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Figure 12: IC-ambiguous graphs with 7 vertices
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Proof: Consider the recursive construction of the boolean formula η by algo-
rithm BIC . All subexpressions are in 2SAT form or are replaced by an equivalent
2SAT formula as shown in Lemma 5, except if there is a separating edge.

Let {a, b} be a separating edge with k ≥ 2 separating crossable edges fi =
{xi, yi} such that G − {a, b} − {fi | i = 1, . . . , k} partitions into k components
Gi with yi in Gi for i = 1, . . . , k, see Fig. 4. Let (x1, y1, . . . , xk, yk) be the
cyclic ordering at a according to the rotation system, which is obtained from
the embedding returned by BIC . Then xi+1 ∈ Gi for i = 1, . . . , k − 1 and x1 in
Gk. There is a separating 4-cycle Ci = (a, yi, b, xi+1) with xk+1 = x1 separating
Gi from the other components. We call Gk the outer component and Gi with
i = 1, . . . , k − 1 inner components. In fact, any component can take the role of
the outer component.

We proceed by induction on the depth of nesting of separating edges. Con-
sider a separating edge {a, b} on the least level such that there are no separating
edges in inner components. The inner components are not necessarily subgraphs
of G but may have been modified as described below.

The boolean formula σ(a, b, C[a, b]) describing a separating edge can be trans-
formed into (a∧b)∧((x1∧y1)∨ . . . ,∨(xk∧yk)) with boolean variables a, b, xi, yi
for i = 1, . . . , k associated with the vertices and possible kites κi. We wish to
use a pair of vertices (xi, yi) for i = 2, . . . , k− 1 between two inner components
together with a and b for the kite so that the vertices x1 and yk of the outer
component Gk are “free” for a kite in the outer component Gk.

For i = 2, . . . , k − 1, edges {a, b} and fi can cross according to IC-planarity
if and only if the subgraph Hi consisting of Gi−1, a kite κi with vertices
a, yi, b, xi+1, and Gi admits an IC-planar embedding, where we assume that
subgraphs Gi also include the vertices a and b and the incident edges to the
components. Consider the boolean formula ηi for Hi, which is obtained from
the boolean formula η for G by the restriction to (variables for) vertices in Hi

and the substitution of separating edges and the corresponding formulas in the
inner components Hi. By induction, Hi has no separating edges, such that the
IC- extension of ηi is equivalent to a 2SAT formula ξ+i . The existence of kite κi
in Hi is expressed by α(κi) = (aκi

∧ bκi
∧ yi,κi

∧ xi+1,κi
).

The satisfiability of ξ+i can be checked in linear time in the length of ξ+i . If
ξ+i is satisfiable, then we replace the subexpression σ(a, b, C[a, b]) of η+ by (a∧b).
Thereby all variables corresponding to vertices from the inner components are
removed. This means a replacement of the inner components G1, . . . , Gk−1 by
a subgraph as shown in Fig. 8.

If neither of the ξ+i for i = 2, . . . , k − 1 is satisfiable, in particular if k = 2
and there is just one inner component, then either of the extreme separating
crossable edges f1 or fk must be used in a kite and either x1 or yk is part of
a kite. Then we replace σ(a, b, C[a, b]) by (a ∧ b) ∧ (x1 ∨ yk) which corresponds
to a replacement of the inner components by a 4+-wheel graph. Thereby the
separating edge is removed, and we proceed with the modified outer component
in which the inner components have been replaced by the 4+-wheel graph.

The subexpression of each inner component Gi is evaluated at most twice,
for Hi−1 and for Hi, and subexpressions for distinct components are distinct.
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Figure 13: A graph with many K5 subgraphs inducing many IC-extensions

Each subexpression can be evaluated in linear time so that the satisfiability test
of η+ takes linear time in its length. 2

A 1-planar graph of size n has at most n−2 kites, and the bound is achieved
by optimal 1-planar graphs with 4n − 8 edges [7, 32]. Hence, the boolean
formula η has length O(n). However, the IC-extension may add up to O(n2)
subexpressions of the form (¬xκ∨¬xκ′), for example, if x is the center of a star
of K5, as illustrated in Fig. 13.

In consequence, the satisfiability check of η+ takes linear time in the length
of the formula and at most quadratic time in the size of the input graph. This
is less than the cubic running time of algorithm BIC .

In summary, we obtain:

Theorem 3 Triangulated IC-planar graphs can be recognized in cubic time.

6.2 Evaluate NIC-planar formulas

Also in the NIC-planar case, the boolean formula η has a special form, however,
a fast satisfiability test is not known. The formula is a conjunction of terms of
the form β = (a∧b)∨. . .∨(c∧d) and γ = (a∨b∨c) or subterms thereof. Subterms
β describe the set of NIC-planar embeddings of separating edges and in partic-
ular of small graphs containing a 4+-wheel graph, whereas the 3SAT formula
γ describes the set of NIC-planar embeddings of simple K5. As before we can
solve the case of separating edges by a series of subproblems without separating
edges in inner components. Subformulas β with only two conjunctions can be
transformed into an equivalent 2SAT formula (a∨ c)∧ (a∨ d)∧ (b∨ c)∧ (b∨ d).
However, 3SAT formulas from K5 subgraphs remain. In addition, there are at
most two boolean variables for each edge so that the NIC-extension η+ can be
transformed into a boolean formula η∗ in which each variable and its negation
occur exactly once, so that η+ is satisfiable if and only if η∗ is satisfiable.

Lemma 7 If a graph H is NIC-ambiguous and the outer face is a 3-cycle C,
then H is K5 and the set of NIC-planar embeddings is expressed by a clause
α = (e1 ∨ e2 ∨ e3) or H contains K5 and α = (e1 ∨ e2) or α = ((e1 ∨ e2) ∧ e3).
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Figure 14: Embeddings of NIC-ambiguous graphs with a 3-cycle

Proof: Let Ei(H) be two minimal NIC-planar embeddings of H such that C
consists of edges e1, e2, e3 and ei is in a kite in Ei(H) for i = 1, 2. Let C = (a, b, c)
and suppose that e1 = {a, b} and e2 = {a, c}. All other cases are symmetric.
If H has five vertices, then there is an inner vertex y such that {a, y} is a
separating edge that must cross one of {x, b} or {x, c} for an inner vertex x.
Now H is a K5 so that α = (e1 ∨ e2 ∨ e3).

If there are further inner vertices zj with 1 ≤ j ≤ 3, then they must be
embedded in the cycle (b, c, y), if y is a neighbor of some zj and {a, y} is a
separating edge, see Fig. 14. Then x is not a neighbor of any zj , since {a, y} is a
separating edge. Otherwise, x and y change roles. Since H is NIC-ambiguous,
the edges incident to zj can be embedded non-crossed, for example if |H| = 6, so
that α = (e1 ∨ e2). Otherwise, H[b, c, y, z1, z2] is a K5 which may be embedded
with {b, c} in a kite if |H| = 7, as shown in Fig. 14(a), but there is no need
for it, since instead {b, y} or {c, y} can be used in the second kite. The shown
embedding with {b, c} is not C-minimal. Thus the embeddings are described by
(e1∨e2). If H has eight vertices, then (b, c, y) is a separating 3-cycle of H. Then
there is a fixed kite H[b, c, z1, z2] that includes {b, c}, as displayed in Fig. 14(b),
so that ((e1 ∨ e2) ∧ e3) describes all NIC-planar embeddings of H. Otherwise,
H[b, c, z1, z2, z3] can be drawn planar or contains a 4+-wheel graph or a K5, so
that (e1 ∨ e2) describes the NIC-planar embeddings of H. 2

Similarly, there are four cases if there is a separating 4-cycle.

Lemma 8 If a NIC-ambiguous graph H has an outer 4-cycle C, then H con-
sists of two K5, as shown in Figs. 15(a) and 15(b), if and only if α = (e1 ∨ e2 ∨
e3 ∨ e4) is a 4-clause. Otherwise, α is a single disjunction of terms of the form
(e∧ f) for variables e and f , i.e, α = (e1 ∧ e2)∨ (e3 ∧ e4), or a subterm thereof.

Proof: Suppose that C = (a, b, c, d) and let e1 = {a, b}, e2 = {b, c}, e3 = {c, d}
and e4 = {a, d} represent the edges and their corresponding boolean variables.
All other cases are symmetric. Let u, v, x, y be the remaining inner vertices of
H.
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If G has five vertices, then H is a 4+-wheel graph with chord {b, d}, as shown
in Fig. 5, and the set of embeddings is described by α = (e1 ∧ e2) ∨ (e3 ∧ e4).
If there is a chord {a, c}, then let α = (e1 ∧ e4) ∨ (e2 ∧ e3). Similarly, if H
has 7 or 8 vertices and a separating edge {a, c} as shown in Fig. 12(a), we have
α = (e1 ∧ e2) ∨ (e3 ∧ e4).

If H contains two K5, then is has eight vertices and α = (e1 ∨ e2 ∨ e3 ∨ e4),
see Fig. 15(a), since one K5 is embedded at {b, d}.

Next, we show that there is no other NIC-ambiguous graph H with a 4-
cycle such that α = (e ∨ f ∨ g) or α = e ∨ f ∨ (g ∧ h) describes the set of
NIC-planar embeddings of H, where e, f, g and h are (variables for) edges of C.
For NIC-ambiguity there must be a K5 or a 4+-wheel graph, say H[a, b, d, y, x]
with chord {a, y}. Then C ′ = (b, c, d, y) is a separating 4-cycle. If {b, d} exists,
then either H[b, c, d, u, v] is another K5 so that H contains two K5 and α is
a 4-clause as stated above, or {b, d} is used for the first kite and H is not C-
minimal NIC-planar. Otherwise, if e2 may be in a kite and H has seven vertices,
then H[b, c, d, y, u] is a 4+-wheel graph with chord {y, c}, see Fig. 16(a), and
α = (e1∧e3)∨ (e2∨e4). If H has eight vertices, a term α = (e1∨e4∨β) implies
that edges {b, y} and {d, y} are not part of another kite. Then edges e2 and e3
may be in another kite if H[b, c, d, u, v] is a 4+-wheel graph. Depending on the
chord, either α = ((e1 ∨ e4)∧ f) with f = e3 or f = e4 or α = (e1 ∨ e4) describe
the NIC-planar embeddings, see Fig. 16(b) 2

Note that there are NIC-ambiguous graphs with a 4-cycle so that either two
pairs of adjacent edges or two pairs of opposite edges are part of a kite, i.e.,
α = (e1 ∧ e2) ∨ (e3 ∧ e4) for a 4+-wheel graph, or α = (e1 ∧ e3) ∨ (e2 ∧ e4) from
the double 4+-wheel graph in Fig. 16(a).

The boolean formula η obtained by algorithm BNIC has another special
feature.

Lemma 9 For every edge e with an occurrence of a variable eκ in η there are
at most two variables eκ and eκ′ in η.

Proof: First, observe that each variable eκ occurs once in η, since algorithms
A, B, and BNIC check each K4 exactly once and BNIC introduces a boolean
variable eκ if edge e is a non-crossed edge of a possible kite κ, which is a unique
event.

We claim that there is at most one possible kite on either side of an edge
e in a NIC-planar embedding. For small graphs there are formulas of the form
(e1 ∨ e2 ∨ e3 ∨ e4) or (e1 ∧ e2) ∨ (e3 ∧ e4) or subterms thereof, where e1, . . . , e4
are variables for edges of a separating 3- or 4-cycle. Each major step except
for a separating 3- or 4-cycle introduces exactly one variable eκ for each edge
that may be part of a kite in an embedding of G. Finally, if e is an edge
of a separating 3- or 4-cycle, then it is associated with a variable eκ if it is
colored black or grey and embedded non-crossed. If e is colored blue, then it is
a crossing edge of a kite and there is no variable eκ. Suppose that G[a, b, u, v]
and G[a, b, x, y] are K4 that are possibly embedded as a kite and include edge
e = {a, b} of C, so that u, v, x and y are in the same component of G − C.
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Figure 15: NIC-planar embeddings of a small graph with 8 vertices, a planar
4-cycle and two K5
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Figure 16: NIC-planar embeddings of NIC-ambiguous graphs with 8 vertices

Since G is 3-connected u, v, x, y cannot be distinct. If two vertices coincide, say
v = x, then G[a, b, u, v, y] is (a subgraph of) K5 and there is one variable eκ for
e. Hence, the claim is true. 2

The extreme cases from Lemmas 7 and 8 lead to the following specialization.

Definition 7 A NIC-planar graph G is K5-free if it does not contain a simple
K5 as shown in Fig. 3.

Graph G is X4W -free (extended 4-wheel graph) if it does not have separating
edges and there are no small subgraphs H as follows: there is a separating 4-
cycle G[a, b, c, d], which is the outer face of an embedding of H, and H is a
4+-wheel graph (see Fig. 5=, a double 4+-wheel graph (see Fig. 16(a)), or has
a separating edge {a, c} (see, e.g., Fig. 12(a)).

Note that a K5-free graph may contain K5 as a subgraph. Then K5 is
embedded so that at least three of its edges are crossed. Such embeddings are
recognized by the algorithms using separating triples or separating triangles.
Similarly, 4+-wheel graphs may appear in small subgraphs such that the edges
of the outer face are not needed in pairs for a kite and there is a choice among
the pairs of edges.



JGAA, 22(2) 239–271 (2018) 265

Lemma 10 There is a quadratic time algorithm that checks whether a triangu-
lated NIC-planar graph is K5-free or X4W -free.

Proof: All 3-cycles (4-cycles) of a 1-planar graph can be computed and listed
in linear time using the algorithm by Chiba and Nishizeki [17]. For each cycle
C it takes linear time to test whether it is separating. Now all simple K5, i.e.,
K5 with a separating 3-cycle, can be found in O(n2) time. It takes O(n2) time
to test whether a triangulated 1-planar graph has a separating edge [16] and
linear time whether it contains a 4-cycle together with a forbidden graphs, such
as a (double) 4+-wheel graph. 2

Lemma 11 The satisfiability of η+ can be reduced to the satisfiability of a
boolean formula η∗ that is a conjunction of terms of the form (a∧ b)∨ (c∧ d) or
(a ∨ b ∨ c ∨ d) and subterms thereof, such that each variable x and its negation
¬x occur exactly once in η∗.

Proof: Consider the formula η that is obtained by algorithm BNIC . It consists
of a conjunction of terms of the described form. We simplify η and use its
NIC-extension η+ while preserving satisfiability.

Delete eκ from η if there is a single variable eκ for some edge e. Then there
is no NIC-extension with eκ. Thereafter, for every edge e there are two variables
eκ and eκ′ by Lemma 9. The NIC-planar extension adds the term ¬eκ ∨ ¬eκ′ .
We construct η∗ as follows: For every edge e keep the first occurrence eκ in
η and replace the second occurrence eκ′ by ¬eκ and omit the NIC-extensions.
This transformation preserves the equivalence between η+ and η∗. Now each
variable and its negation occur exactly once in η∗ and it is a conjunction of
terms, which are clauses with 2 to 4 variables or of the form (a∧ b)∨ (c∧ d). 2

We wish to check the satisfiability of formulas with the properties of Lemma
11. However, they do not satisfy any case for which an efficient algorithm is
known. Every variable x or its negation ¬x occur in a clause with a disjunction
or η∗ is unsatisfiable.

Terms of the form (a ∧ b) ∨ (c ∧ d) can be transformed into (a ∨ c) ∧ (a ∨
d)∧ (b∨ c)∧ (b∨ d), which is in 2CNF. However, the variables now occur twice.
Two clauses (x1 ∨ . . . ∨ xp) and (y1 ∨ . . . ∨ yq) with y1 = ¬x1 are equivalent
to (x2 ∨ . . . ∨ xp ∨ y2 ∨ . . . ∨ yq), since x1 and ¬x1 do not occur elsewhere in
η∗. Hence, a variable is removed at the expense of a longer clause. However,
combining two terms of the form (a ∧ b) ∨ (c ∧ d) and (¬a ∨ x1 ∨ . . . ∨ xk) does
not lead to a useful simplification.

As before, there are at most O(n) kites such that the length of η is linear
in the size of the given graph G. By Lemma 9 each edge e induces at most two
variables eκ and eκ′ , which are replaced by e and ¬e in η∗.

Theorem 4 Triangulated NIC-planar graphs can be recognized in cubic time if
they are (i) K5-free or (ii) X4W -free.

Proof: Algorithm BNIC checks whether an input graph G is a triangulated 1-
planar graph and constructs a 1-planar embedding E(G) and a boolean formula η



266 F. J. Brandenburg Recognizing IC-Planar and NIC-Planar Graphs

so that there is a NIC-planar embedding if and only if the NIC-planar extension
η+ is satisfiable according to Theorem. 2. If G is K5-free and there is no
separating edge, then the computed boolean formula can be transformed into
a 2SAT formula, whose satisfiability can be solved in linear time [23]. The
case of separating edges is solved by a series of 2SAT problems as in the proof
of Lemma 6. Let {a, b} be a separating edge with separating crossable edges
fi = {xi, yi} for k ≥ 2 and i = 1, . . . , k with an outer component Gk and
inner components G1, . . . , Gk−1. If there is a NIC-planar embedding so that an
inner edge fi with 2 ≤ i < k can be crossed, then the inner components are
removed and are replaced by a 4-cycle C = (a, x1, b, yk) with chord {a, b}. The
subformula of the inner components is removed from η. Otherwise, if f1 or fk
must be crossed, then the inner components are removed and are replaced by a
4+-wheel graph with vertices a, x1, b, yk and z, where z is in the interior of the
cycle (a, x1, b, yk) and there is a chord {a, b}. The subformula for the separating
edge is replaced by (e1 ∨ e3)∧ (e1 ∨ e4)∧ (e2 ∨ e3)∧ (e2 ∨ e4), where e1, e2, e3, e4
are variables corresponding to the edges {a, x1}, {b, x1}, {a, yk}, {b, yk}. Since
the subformulas for separating edges are evaluated only once, the satisfiability
test takes linear time.

In the second case, the boolean formula η is in CNF, since subterms of the
form (a∧b)∨(c∧d) or (a∧b)∨c are excluded and each variable x and its negation
¬x occur exactly once in η∗. Now a subformula consisting of two clauses (x∨β)
and (¬x∨γ) is equivalent to a single clause (β∨γ). This transformation removes
one variable and leads to a shorter formula in CNF. Each transformation takes
constant time by linking lists. Then η+ and η∗ are satisfiable if and only if the
transformation leads to (x ∨ ¬x) for some variable x.

The running time is dominated by the cubic running time of algorithm BNIC .
2

Note that 4-connected graphs are K5-free so that triangulated 4-connected
NIC-planar graphs can be recognized in cubic time.

Instances of graphs with complex formulas can be obtained as follows: con-
sider a planar graph H whose faces are triangles or quadrangles. Insert two
vertices into each triangle and construct a K5. Augment each quadrangle to
a kite, a 4+-wheel graph or a double 4+-wheel graph. Thereby, we obtain a
1-planar embedding E(G). Now it remains to decide whether there is a NIC-
planar embedding E ′(G) such that the edges of H are non-crossed and form
separating 3- or 4-cycles.

6.3 Components and Embeddings

We can generalize Theorems 3 and 4 to graphs G, whose 3-connected com-
ponents are triangulated IC-planar and NIC-planar, respectively. Consider a
separation pair {u, v} of G and components H1, . . . ,Hr for some r > 1, which
each contain the vertices u and v and the edge e = {u, v}. Then G is IC-planar
if and only if each Hi for i = 1, . . . , r is IC-planar and each of u and v occurs
in at most one kite. This is checked as follows: Let algorithm BIC return the
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(a) (b)

Figure 17: ((a) IC planar graphs and (b) (optimal) NIC-planar graphs with
exponentially many embeddings. Each 5-wheel graph with an open inner vertex
can be flipped, which implies a change of crossed and non-crossed edges in the
adjacent kites. Such flips do not change the picture.

boolean formula ηi on Hi. If ηi has a variable xκ for x ∈ {u, v} and some kite
κ, then set xκ = false. If thereafter the IC-extension η+i is not satisfiable, then
vertex x is needed in Hi. Graph G is not IC-planar if there are at least two such
Hi. Accordingly, if v is an articulation vertex with components J1, . . . , Js for
some s > 1, then check each component Ji + v and check that v is in a kite of
at most one component. Clearly, a graph is IC-planar if so are its disconnected
components.

Similarly, G is NIC-planar if and only if each 3-connected component Hi is
NIC-planar and the edge {u, v} between the vertices of a separation pair u and
v occurs in at most one kite, which is checked as before.

Note that the decomposition of a graph at its separation pairs corresponds
to the introduction of holes in maps [8]. Alternatively, one may apply the
algorithm from [9] and first augment a kite-augmented NIC-planar (IC-planar)
graph to a triangulated graph. We can summarize:

Theorem 5 There is a cubic-time algorithm to test whether a graph is trian-
gulated IC-planar (K5-free or X4W -free triangulated NIC-planar) if so is each
3-connected component.

The algorithms B, BIC and BNIC color the edges of a triangulated 1-planar
graph such that black, brown and grey edges are always embedded non-crossed,
red, blue and orange edges are crossed, and the status of cyan edges is open.
Nevertheless, the algorithms cannot determine an embedding. There are trian-
gulated IC-planar and NIC-planar graphs with exponentially many embeddings,
as shown in Fig. 17. These graphs are maximal in their class. If the algorithms
BIC and BNIC applied to these graphs, they find separating 3-cycles and many
small graphs with a K5, which each have two embeddings.

7 Conclusion

We have shown that triangulated IC-planar and K5-free or X4W -free NIC-
planar graphs can be recognized in cubic-time. On the other hand, the general
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recognition problem for IC-planar and NIC-planar graphs is NP-hard. We claim
that it remains NP-hard if the graphs are 3-connected and are given with a rota-
tion system that describes the cyclic order of the edges incident to each vertex,
as in the case of 1-planar [4] and IC-planar graphs [11]. We also claim that
triangulated NIC-planar graphs can be recognized in polynomial time. Opti-
mal 1-planar [10] and optimal NIC-planar graphs [5] can be recognized in linear
time, whereas a related result is open for optimal IC-planar graphs.
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