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Abstract
Visual comparison of directed acyclic graphs (DAGs) is commonly encoun-

tered in various disciplines (e.g., finance, biology). Still, knowledge about hu-
mans’ perception of their similarity is currently quite limited. By similarity per-
ception, we mean how humans perceive commonalities and differences of DAGs
and herewith come to a similarity judgment. To fill this gap, we strive to identify
factors influencing the DAG similarity perception. Therefore, we conducted a
card sorting study employing a quantitative and qualitative analysis approach
to identify (1) groups of DAGs the participants perceived as similar and (2) the
reasons behind their groupings. We also did an extended analysis of our col-
lected data to (1) reveal specifics of the influencing factors and (2) investigate
which strategies are employed to come to a similarity judgment. Our results
suggest that DAG similarity perception is mainly influenced by the number of
levels, the number of nodes on a level, and the overall shape of the DAG. We
also identified three strategies used by the participants to form groups of similar
DAGs: divide and conquer, respecting the entire dataset and considering the
factors one after the other, and considering a single factor. Factor specifics are,
e.g., that humans on average consider four factors while judging the similarity of
DAGs. Building an understanding of these processes may inform the design of
comparative visualizations and strategies for interacting with them. The inter-
action strategies must allow the user to apply her similarity judgment strategy
to the data. The considered factors bear information on, e.g., which factors are
overlooked by humans and thus need to be highlighted by the visualization.
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1 Introduction

Visual comparison of directed acyclic graphs (DAGs) is a task encountered in
various disciplines, e.g., in finance, biology, or social network analysis. The task
is strongly influenced by the human perception of similarity since comparison
builds upon making similarity judgments. In spite of the numerous occurrences
of this task and recent papers surveying visual graph comparison techniques [4,
17], knowledge about the human perception of graph similarity – especially for
DAGs – is quite limited.

Only a few investigations address the comparison of graphs. Gleicher et
al. [17] identified basic types of techniques for visual comparison (juxtaposition,
superposition, and explicit encoding). Tominski et al. [54] explicitly deal with
the comparison of large node-link diagrams in superposition.
Some interesting insights can be gained from the literature on dynamic graphs
showing the evolution of node-link diagrams over time [4]. Others discuss the
extension of these techniques with highlighting of commonalities and differ-
ences [1, 3, 6, 21]. However, none of these papers deal with the issue of similarity
perception within the context of graph comparison.
Research on graph readability is related since the DAGs need to be well perceiv-
able to compare them. Examples include studies on edge crossings and mental
map preservation (e.g., [28, 44, 46, 47]).
The research investigating the comparison of other visualization types is also
interesting. Pandey et al. [40] conducted an experiment to study the similarity
perception of scatterplots. So, their work inspired our methodology.

To the best of our knowledge, there is no research focusing on how humans
perceive the similarity of DAGs. We are especially interested in the factors
which influence the perception of similarity (possibly, number of nodes/edges,
edge crossings, etc.). We deem the knowledge about the influencing factors
important for the generation of future actionable guidelines for comparative vi-
sualizations. For instance, based on the knowledge about which of the factors
bearing comparison-relevant information are overlooked by humans, we can for-
mulate guidelines on to be visually highlighted factors.
Towards this end, we conducted a study with small, unlabeled synthetic DAGs
and used card sorting as our methodology. Card sorting studies are based on
the comparison of multiple data items to each other. For DAGs this could be
necessary when a financial analyst wants to compare multiple simulation runs of
contagion effects in a network [57]. Biologists have to compare multiple DAGs
when they analyze phylogenetic trees [20] or when they analyze multiple runs
of mutation simulations [32]. We decided for these DAGs to keep the number
of factors to be tested manageable. Especially because of the currently limited
knowledge about graph similarity perception, we consider the manageability as
crucial. However, because of our systematic procedure, the study scope can
be easily extended in the future. The DAGs are represented as node-link di-
agrams. We address two research questions (RQs): (1) Which groups do the
participants form?, and (2) Which factors did the participants consider to judge
the similarity?
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Moreover, we also investigated: (1) the specifics of the factors influencing
human similarity perception and (2) how the participants combine these factors
to come to a final similarity judgment expressed by the grouping, i.e., strategies
they employ to solve the task of judging the similarity. Strategies are defined as
sequences of processes for solving a task [31]. The factors influencing human
similarity perception are elements of such strategies. Identifying such strategies
aids the selection of appropriate interactions for comparative visualization sys-
tems, thus the interaction must allow the user to apply her strategy to the data.
From the analysis of the factors’ specifics, we can learn further details about
the humans’ mental model of similarity, e.g., the limit on similarity perception-
influencing factors humans consider for their judgment.

Our results indicate that the similarity perception of DAGs in visual com-
parison is consistent and well objectifiable with graph theoretical and visual
properties. Visual factors are factors which result from visualizing the DAGs as
node-link diagrams, e.g., edge crossings. Graph theoretical factors result from
the data structure per se, e.g., the depth of the DAG. The factors mainly in-
fluencing human similarity perception of DAGs are the number of levels, the
number of nodes on a specific level, and the overall shape. The extension of
our analysis revealed several specifics of the influencing factors – e.g., partici-
pants considered on average four factors and there is no recognizable tendency
whether participants rather use visual or graph theoretical factors. These are
relevant details on the human mental model regarding judging the similarity
of DAGs. Furthermore, the analysis revealed that the participants adopt three
different strategies: divide and conquer, respecting the entire dataset considering
the factors one after the other, and considering one single factor. We provide
supplementary material – including our study material (dataset, task sheets,
etc.), our collected data, and our analysis results – on our website1.

The remainder of this paper is structured as follows: In the next section, we
review related work. In Section 3, we outline our study design, including the
research questions, the dataset employed, and the study procedure. In Section 4,
we discuss the analysis and results of which groups participants form (RQ1) and
which factors they consider while judging the similarity (RQ2). Section 5 reports
detailed results on the used factors and the strategies participants employed
to form their groups and consequently to solve the task of judging similarity.
In Section 6 we summarize and discuss our results as well as outline future
work. Finally, we draw conclusions from our work in Section 7 based on the
elaborations in Section 6.

1http://www.gris.tu-darmstadt.de/research/vissearch/projects/DAGSimilarityPerception/
index.html

http://www.gris.tu-darmstadt.de/research/vissearch/projects/DAGSimilarityPerception/index.html
http://www.gris.tu-darmstadt.de/research/vissearch/projects/DAGSimilarityPerception/index.html
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2 Related Work

There exists an extensive body of research in perceptual psychology and pattern
recognition on similarity judgments and dissimilarity measures (see [30, 41] for
an overview). In the following, we will concentrate on work dealing with graphs
and other types of visualizations.

Graph Visualization and Visual Comparison Techniques. Several
recent surveys deal with graph visualization techniques and visual comparison
techniques (e.g., [4, 17, 19, 56, 58]). The basic techniques, that is, juxtaposi-
tion, superposition, and explicit encoding – following Gleicher et al.’s [16, 17]
classification – are sometimes enriched by emphasizing the commonalities and
differences between graphs [10, 21]. Some highlight similar parts [3, 6, 21],
while others emphasize differences by collapsing the identical parts [1]. The
enrichment, that is, emphasizing the commonalities or differences, usually relies
on a similarity function. In this respect, Gao et al. [14] provide an overview
of research done on graph edit distances, a mathematical way to measure the
similarity between pairwise graphs. However, it is still unknown whether the
criteria on which existing similarity functions are based correspond to the crite-
ria used by humans when visually comparing two or more node-link diagrams.
Tominski et al. [54] proposed interaction techniques which aid users in doing
comparison tasks and which were inspired by the real-world behavior of people
when comparing information printed on paper. Getting a better understanding
of the perceived differences and commonalities is likely to result in better visual-
ization and interaction techniques. We can learn from this, for instance, which
differences and/or commonalities are overlooked by humans and consequently
need to be highlighted by the visualization system.

Graph Readability. Moreover, the existing body of work dealing with
perceptual and cognitive aspects focuses primarily on the readability of single
graphs. Several factors, including graph aesthetics (edge crossings [28, 44, 45],
layout [11, 25, 33, 34, 39], graph design [22, 51], and graph semantics or content
knowledge [29, 39, 46]) have been identified to be important for graph readabil-
ity. Huang et al. [23], concerned with sociograms, note that good readability
is not enough to effectively communicate network structures, emphasizing that
the spatial arrangement of the nodes also influences viewers in perceiving the
structure of social networks.

Visual Comparison of Node-Link Diagrams. While perceptual aspects
of single graphs have been thoroughly investigated, literature dealing with per-
ceptual aspects when comparing node-link visualizations is considerably more
scarce. Notable papers in this space are the work of Bach et al. [3] and Ghani et
al. [15] who are both concerned with dynamic graphs (cf. Beck et al. [4] for an
overview). The work of Archambault et al. [2] and Bridgeman et al. [7] is also
noteworthy. While Archambault et al. evaluated the effectiveness of difference
maps which show changes between time slices of dynamic graphs, Bridgeman et
al. were concerned with how the extent of the mental map preservation between
two time slices can be measured (metrics) and how the suitability of the metrics
can be evaluated. While we are not necessarily concerned with dynamic graphs,
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these works are nonetheless relevant in our context as dynamic graphs are often
analyzed by using discrete time-slices. In our previous work [59], we provided
an overview of methodological challenges when dealing with the investigation
of graph comparison and described a first preliminary study targeted towards
identifying factors which influence the recognition of graph differences in very
small star-shaped node-link diagrams. The work presented in this paper can be
viewed as a continuation of these efforts.

Visual Comparison of Other Visualization Types. Beyond the per-
ception of node-link diagrams, literature is currently also quite limited when it
comes to the similarity perception of other visualization types. This sentiment
is shared by Pandey et al. [40] who investigated how human observers judge the
similarity of scatterplots. Our quantitative analysis as presented in this paper
is partly based on the methodology put forward by Pandey et al. [40]. Fuchs
et al. [13] looked into how contours affect the recognition of data similarity in
star glyphs. Likewise, Klippel et al. [27] investigated the similarity judgments of
star glyphs using a methodology similar to that of Pandey et al. [40] and ours:
Participants were shown various visualizations which they then had to group
according to their perceived similarity.

Human Strategies. In addition to the similarity perception-influencing
factors, we also investigated how humans reached their similarity judgements.
There has been some research concerning problem-solving strategies in vari-
ous domains, but there is still fairly little research in the area of visualization
concerning these issues. Essential research has been conducted by Newell and
Simon [38], who point out that the some problem spaces can be very large so
that heuristics must be used to decrease the number of solutions that need to
be considered. Specific strategies have, for example, been investigated in the
context of solving logical reasoning problems [37] and graph comprehension [12].
In graph comprehension, researchers typically distinguish between identifying
data (finding data points) and going beyond the data (reasoning and drawing
inferences). Based on that, Trickett and Trafton [55] developed a more general
model of graph comprehension. Mirel [36] discussed the issue of strategies in
the context of Human-Computer Interaction. She argues that in this context,
high-level tasks should be investigated because only herewith it is possible to
understand complex problem-solving activities. In information visualization,
interaction strategies have been investigated to find out how users work with
visualizations and how they make sense of the data presented in these visual-
izations [42, 50]. In addition to such domain-specific strategies, there are also
general problem-solving strategies (e.g., means-end analysis). In general, there
is evidence from diverse domains indicating that humans adopt various strate-
gies to solve problems and that the investigation of these strategies can help to
design systems in a way to support users to work more efficiently. The users’
efficacy is increased by a system designed in that manner; thus, i.a. the chosen
interaction techniques are based on the users’ strategies. The system’s interac-
tion techniques, in turn, are the means by which the user can apply his task
solving strategy.
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3 Study Methodology

In this section, we present our study methodology. We were strongly inspired
by the work of Pandey et al. [40] about the human similarity perception of large
sets of scatterplots since we share the research questions for different data types.
Pandey et al. substantiate that the methodological principle of card sorting
produces valuable results for this type of research questions. For advantages,
drawbacks, and the suitability of card sorting for our research questions, see
Section 3.4.

3.1 Research Questions

Our superordinate research question (RQ) is: What factors influence the human
similarity perception of DAGs? We first have to know the factors influencing
the similarity judgment. Once we know the influencing factors, we can, for
instance, research the specific degree of influence of a single factor as well as the
interplay between the factors. To analyze our superordinate RQ, we formulate
two subordinate ones:

• RQ1: Which groups do the participants form?

• RQ2: Which factors did the participants consider to judge the similarity?

We designed our study procedure for RQ1 and RQ2 (cf. Section 3.4). More-
over, we deemed it also very important to understand (1) the specifics of the
factors influencing human similarity perception and (2) the strategies how the
participants combine these factors to come to a final similarity judgment. While
our study was not specifically designed for these questions, we were able to an-
swer them by processing the data collected for RQ2. We elaborate on this
extended analysis in Section 5.

3.2 Dataset

Creating an appropriate study dataset is challenging due to the large number of
possible variations of the data properties [59]. Therefore, we were forced to limit
the number of DAGs. Our object of study was 69 small (6 to 9 nodes), unlabeled,
synthetic DAGs visualized as node-link diagrams (cf. Table 1). We decided on
a traditional hierarchical node-link diagram layout with the root placed on top

( ), since Burch et al. [8] found that this layout type outperforms other types
such as orthogonal or radial layouts. In the following, we will use the term DAG
to also refer to its embedding.

We decided to have synthetic and small DAGs to keep the number of factors
to be tested manageable and to evaluate the factors’ influence systematically.
The size of our DAGs is realistic. They are comparable to cascades in finance
and biology (e.g., [32, 57]) and directed acyclic word graphs [52]. Because of our
study and data creation methodology, it is easy feasible to systematically extend
our results with further studies. Especially since knowledge about human graph
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C1

C2 C4

C3

C5

C6

C7

C8

Table 1: Schematic representation of the 69 DAGs used in our study grouped
by the clusters identified through hierarchical clustering. The color code is the
same as in Figure 2 and 3.
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similarity perception is currently quite limited, we consider the manageability
of the problem crucial.

When creating the DAGs, we considered known factors influencing graph
readability (e.g., edge crossings) and characteristics of DAGs from real-world
datasets (e.g., a node may be the child of more than one parent node). We deem
factors of graph readability important for visual graph comparison since to be
able to visually compare DAGs it is necessary that they are well perceivable. We
consider properties of real DAGs important for our studies since they influence
the visual appearance of the DAGs. More importantly, considering properties
of real DAGs strengthens the realism of our synthetic data and consequently
the transferability of our results to real-world use cases.

To create our dataset, we started with DAG G0, as depicted in Figure 1. G0
is symmetric since it is easier to break symmetry than to introduce symmetry.
Using G0, we cover symmetric and asymmetric DAGs. Covering symmetric and
asymmetric DAGs is important since humans are sensitive to symmetry [60]. G0
is single-rooted since this is typical for various real-world DAG datasets; e.g.,
cascades. To test node and edge changes (addition of node(s) and edge(s)) we
had a two-stage DAG creation process:

1.: We created the base graphs G1 - G6 and their horizontal reflec-
tions by adding one, two, and three nodes.
We ensured that the addition of the node(s) is done in the inner as well
as the outer areas of G0 (cf. Figure 1 - Base graphs). It is crucial to have
changes in the inner as well as the outer areas as changes in the inner area
are, presumably, harder to spot. Inner changes may get embedded in the
already existing DAG and may, therefore, be less salient. The reflections
of G2, G4, and G6 produce variation in the visual layout of the DAGs (cf.
Figure 1). The ability to test the impact of isomorphism is a beneficial
byproduct.

2.: We created all possible DAGs resulting from adding one and two
edges (cf. Figure 1 - Alternatives).
We used our custom-made GraphCreator. GraphCreator creates all possi-
ble DAGs resulting from a specific change of a DAG, e.g., adding one edge
to G1 - G6 and their reflections. Herewith, we ensure that we have the
maximal possible variation from which we then sample our study dataset.
We did not optimize the layout after a DAG change – e.g., resolving edge
crossings – to avoid confounding effects by destroying the mental map.

Down-sampling – i.e., selecting a sub-set of the created DAGs – is necessary
since the visual comparison of DAGs is a quite cognitive demanding task for the
participants. For the down-sampling we considered the following factors:

• Edge crossing : Edge crossing is a prominent factor in graph readabil-
ity [28, 44], so we presume that it also plays a role in visual graph com-
parison.
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+ 1 node

G1 G2 G2 Reflection

+ 3 nodes

G0

G5 G6 G6 Reflection

+1 edge

+2 edges

...

...
Alternatives 

Down-sampling 
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preserving the 

systematic

variation 

=> Dataset with 69 DAGs 

consisting of:

the base graphs,

down-sample of the 

alternatives

Base graphs Final dataset 

(cf. Table 1 or website  )

G3 G4 G4 Reflection

+ 2 nodes

1

Figure 1: Dataset creation: (I) Base graph creation by adding 1, 2, and 3 nodes
to G0, ensuring that the added node is placed at the inner as well as the outer
areas of G0, (II) creation of all possible alternatives by adding one and two edges
to the base graphs, (III) down-sampling of the alternatives considering these
factors: edge crossing, visual layout, more than one parent node has the same
child node, long connections – typically across more than one level, changes
are at the inner as well as the outer areas of the respective base graph (cf.
Section 3.2).

• Visual layout : The visual layout of DAGs does not contain any analyti-
cally relevant information about the DAGs’ data structure and properties.
However, it still has a significant impact on graph readability which is
why we deem it important to test its influence on visual graph compari-
son [11, 23].

• More than one parent node has the same child node ( ) and long

connections – typically across more than one level ( ) as charac-
teristics from real-world datasets: By visually inspecting DAGs from real-
world datasets we found these two frequently occurring properties. Parent
nodes which have the same child node, for instance, occur in biological or
financial cascades. Long edges occur, for instance, in directed acyclic word
graphs in natural language processing. Due to their frequency, we consid-
ered these two properties as down-sampling factors.

We did the down-sampling under the constraint of preserving the systematic
variation (cf. Figure 1 – Final dataset) and by ensuring that changes take place
at the inner as well as the outer areas of the respective base graph. Our dataset
is shown in Table 1 and downloadable here: website.

3.3 Participants

We recruited 20 volunteers (13 male, seven female, between 20 and 60 years).
We had no prerequisite of having experience with DAGs. This way our results
are not limited to experienced users. In our opinion, it is more likely that
experienced users know which factors really bear relevant information for the
comparison task whereas misconceptions are more likely for inexperienced users.

http://www.gris.tu-darmstadt.de/research/vissearch/projects/DAGSimilarityPerception/index.html
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We are convinced that if we want to understand the human similarity perception
and as a consequence improve comparative visualizations, we need a varying
range of expertise with DAGs. To achieve this, we recruited participants with
a diverse educational level (vocational training, undergraduate, graduate, post-
graduate) and from various disciplines.

3.4 Study Procedure

The card sorting session was identical for every participant: after welcoming the
participant, the experimenter informed the participant that their data will be
anonymized, only used for study purposes and that they can abort the study at
any time since they participate voluntarily. The participants had to acknowledge
this in a consent form. Afterward, the experimenter handed over the study
material and explained the task. Each session took approximately one hour.

Task. We asked the participants to group 69 DAGs with respect to their
perceived similarity – multiple occurrences of a single DAG in different groups
were allowed. Furthermore, we asked them to tag each group with the factors
they used to build them. Finally, participants had to judge the easiness of
forming the respective group (“How difficult or easy was it for you to create
this group?”) and their confidence in the group’s consistency (“How doubtful
or confident are you about the consistency of the DAGs in the group, i.e., would
you create the same group again if you did this task again?”). The questions
regarding easiness and confidence were judged on a five-point Likert scale (“1 =
very difficult/doubtful, 2 = difficult/doubtful, 3 = neutral, 4 = easy/confident,
5 = very easy/confident”).

The formed groups provided the data needed to answer RQ1 while the par-
ticipants’ group tags provided the data to answer RQ2. The easiness and con-
fidence judgments provided information on the reliability of the formed groups
and their tags. A high easiness score means that the grouping is solid, thus,
due to a perceived easy assignment, it is less likely that a participant assigned a
DAG randomly. A high confidence score means that the grouping is robust since
it is highly probable that it would look similar in case the task was repeated.

For the task formulation, we kept the one from Pandey et al. [40] since
it exactly captured what we wanted to ask our participants. Moreover, the
formulation was already pretested and successful in Pandey et al.’s study.

Card Sorting Methodology. Card sorting is a well-known methodology in
psychology and human-computer interaction for externalizing mental models
humans have about the environment they live in. Wood and Wood [61] define
card sorting as follows: As the name implies, the method originally consisted of
researchers writing labels representing concepts (either abstract or concrete) on
cards, and then asking participants to sort (categorize) the cards into piles that
were similar in some ways. Humans group objects according to their perceived
similarity into different categories. In this way, card sorting helps to uncover
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the structure of mental models. There are different methods to conduct card
sorting. Researchers generally distinguish between open vs. closed sorting tasks
and between paper-based and computer-supported card sorting [18]. In closed
card sorting, participants have to sort the cards according to a given scheme,
whereas in open card sorting, the participants develop a scheme themselves. The
procedures for card sorting tasks sometimes differ considerably. Sometimes, the
cards that have been assigned to a category are placed in a pile [61], so that
participants do not shuffle them around on a canvas. Especially in computer-
ized card sorting, it is often not possible to see all cards from which to choose
at the same time [9, 40], which forces the study participants to compare the
cards in memory. We used an open, paper-based card sorting since literature
indicates that the paper-based approach yields more consistent results than the
computerized one [18]. To avoid confronting our participants with huge num-
bers of duplicate cards, we had the participants group the DAG IDs in lieu
of physical cards. These duplicates would have been necessary if we had used
physical cards since we allowed multiple occurrences of a single DAG in different
groups. Possible drawbacks of the card duplicates could have included priming
the participants regarding having to put the DAGs into more than one group
or confusing the participants with a huge number of cards and duplicates.

Study Setup and Materials. We used an empty meeting room with good
lighting for conducting the study. Each participant received the task sheet, the
data sheet, sheets for building the groups, and sheets for tagging each group
with the group building factors as well as for judging the easiness and the
confidence. The data sheet consisted of the 69 randomly positioned DAGs. We
decided to present our dataset on paper so that the participants could see all
data items at the same time. The order of the data items was kept the same
for all participants to control for which DAGs could be seen together and which
had to be compared in memory (cf. Paragraph “Card Sorting Methodology.”).
The participants had to write down the DAGs’ IDs which belong to a group and
give each group a unique identifier. Furthermore, they had to write down the
tags as well as their easiness and confidence judgment together with the unique
group identifier. The materials are available on our website1.

4 Analysis and Results

We did a quantitative and a qualitative analysis. The qualitative analysis pro-
vided the factors the participants tagged their formed groups with (RQ2 ). The
quantitative analysis resulted in the perceptual consensus over all participants’
groupings (RQ1 ). Moreover, it served as a verification of the participants’
self-reported factors extracted in the qualitative analysis. Therefore, the quan-
titative analysis also contributes to RQ2.
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4.1 Quantitative Analysis (RQ1, RQ2)

To answer RQ1, we needed to find the consensus among the individual partic-
ipant’s groupings. We did this by calculating the perceptual consensus of the
perceived similarity. It is based on the assumption that the perceived similarity
is expressed by whether two DAGs are (not) occurring in the same group. To
ensure the reliability of the consensus grouping and the following analysis, we
also calculated a perceptual consensus of the easiness and confidence for each
consensus cluster based on the participants’ individual judgments.

Based on the perceptual consensus grouping – the answer to RQ1 – we could
analyze:

1. whether the similarity perception is objectifiable with graph theoretical or
visual properties.
We understand objectifiability as whether it is possible to describe and
distinguish the clusters based on the graph theoretical and visual proper-
ties of the DAGs belonging to the clusters. Graph theoretical properties
result from the data structure per se, and visual properties are properties
which result from visualizing the DAGs as node-link diagrams. Examples
for these two factor types are edge crossings – visual – and the depth of
the DAG – graph theoretical.

2. whether the similarity perception of humans is consistent across individual
people.
We define consistency as whether individual people consider similar factors
for their similarity judgment.

In the objectifiability of human similarity perception also resides information
on the set of influencing factors, the overlap of this set with the set of already
known factors – e.g., those from graph readability – and, potentially, heretofore
unknown factors. A consistent and objectifiable human similarity perception
would mean that we would be able to model it. The model, in turn, would
be the perception aware analog to the already existing mathematical similarity
functions. To analyze the consistency and objectifiability, we performed a prop-
erty analysis of the clusters. A high consistency regarding (1) the properties of
the DAGs within each consensus cluster and (2) the properties distinguishing
the consensus clusters would speak for a consistent human similarity percep-
tion regarding the influencing factors. Objectifiable clusters, i.e., clusters based
on identifiable factors which seem not arbitrary, would speak for an objectifi-
able human similarity perception. In other words, the similarity judgment can
be described by identifiable factors – e.g., visual or graph theoretical factors.
This analysis also allows us to check for the presence of the bias ‘saying one
is influenced by the one thing and actually being influenced by another’ in the
self-reported factors. The mitigation potential resides in the perceived similarity
consensus encapsulating what the participants really did.

We did the perceptual consensus calculations and the property analysis over
all participants with complete data (16), i.e., participants who assigned each
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DAG to at least one group. We had to exclude 4 participants who had forgotten
to group some DAGs because the perceptual consensus calculation cannot deal
with ungrouped data items.

Analysis. To build the perceptual consensus for the participants’ similarity
judgments, we calculated a pairwise perceptual distance between each pair of
DAGs, based on the number of occurrences of each DAG pair in the same group
and on the number of individual occurrences (for details cf. [40]). The perceptual
distance calculation resulted in a 69 × 69 perceptual distance matrix (PDM).
Like Pandey et al. [40] we did a hierarchical clustering, in our case with average
linkage. We evaluated the correct number of clusters with the mean/median of
the number of participant-formed groups and with the gap statistic [53]. The
mean/median indicate the average number of participant-built groups and thus
served as a reasonable estimator for the number of clusters. The gap statistic,
like the individual groupings and similarity, employs the cluster similarity which
made it another reasonable estimator. The hierarchical clustering result is the
consensus grouping of all DAGs based on the perceived similarity consensus
contained in the PDM.

For the clusters’ property analysis we determined various properties for each
graph. Based on this we determined the dominating properties of the clusters
as well as the properties separating the clusters. Examples of the employed

properties are: depth, visual symmetry, visual leaning (left: , right: ), edge
crossing – number and existence, edge length, number of nodes on a specific
level, and the existence and the number of nodes having more than one parent
node. In case we did not find any dominant properties, we would look for new,
heretofore unknown properties not present in our predefined list.

The calculation of the perceptual consensus for the easiness and confidence of
each consensus cluster is based on the idea that each DAG inherits the easiness
and confidence score of each participant group it belongs to (also called indi-
vidual easiness and confidence judgments). Based on these individual easiness
and confidence judgments we calculated an easiness and confidence score for
each DAG (also called DAG easiness and confidence score). Based on the DAG
easiness and confidence scores of the DAGs belonging to a respective consensus
cluster we calculated the perceptual consensus for the easiness and confidence
of each cluster. For the formulas, please refer to [40].

Results. The gap statistic indicated that the data creates eight clusters. Both
the mean and median of the number of built groups supported the indicated
eight clusters (mean = 7.6,median = 8.0, STD = 2.6). So, we decided to cut
the dendrogram into eight clusters. Figure 2 shows the resulting dendrogram
and the resulting clusters – marked using colored boxes. Table 1 shows the
hierarchical clustering result with the visualized DAGs. The clusters are marked
with the same colors which were used for the dendrogram. The easiness and
confidence scores of all hierarchical clusters are around 4.0 (cf. Table 2). This
means that the participants on average found their groups easy to build and
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Figure 2: Dendrogram resulting from hierarchical clustering with average link-
age. The resulting eight clusters (C1-C8) are marked using colored boxes.

were confident they would look similar if they repeated the task. Consequently,
this means that the consensus grouping is solid and robust, i.e., our collected
data is reliable.

The multi-dimensional scaling (MDS) plot, shown in Figure 3 illustrates
that the eight identified color-coded clusters form three larger clusters – I: C1
and C2; II: C3, C4, and C5; III: C6, C7, and C8. The following discussion is
structured along these three larger clusters. The properties which distinguish
the clusters best are the depth of the DAGs, the number of nodes on a specific
level of the DAGs, and the visual leaning of the DAGs. Table 2 summarizes the
properties of the clusters.

Clusters C1 and C2 are identical in depth and number of nodes on each of
their four levels. However, they are separated by the visual leaning. While the

DAGs of C1 are left-skewed ( ), those of C2 are right-skewed ( ).

Clusters C3, C4, and C5 have identical depth (3) as well as three nodes
on the second level. The number of nodes on the third level separates these
clusters. The depth separates the clusters C3, C4, C5 (II) from C1, C2 (I).

Clusters C6, C7, and C8 have identical depth (3) and four nodes on the
second level. The number of nodes on the third level separates them. The
number of nodes on the second level separates C6, C7, C8 (III) from C3, C4,
C5 (II). C6, C7, C8 (III) and C1, C2 (I) are separated by depth.

The visual leaning separating the clusters C1 and C2 suggests that not the
reflection of G6 (cf. Figure 1) itself was apparent to the participants but rather
a property which changed, that is, the leaning (cf. Section 3.2). This is contrary
to the clusters C5 and C7. Cluster C5 clearly shows that neither the reflection
of G2 (cf. Figure 1) itself nor a changed property mattered. It seems that
purely the number of nodes dominates over, e.g., node position (2 left, 1 right
vs. reflected: 1 left, 2 right). C7 shows that also the reflection of G4 itself
(cf. Figure 1) or a changed property, e.g., node position, did not matter. It is
remarkable that sometimes the impact of isomorphism resp. the visual layout
is recognized based on a property that changed because of that and sometimes
it seems to be dominated by another factor. All in all, this clearly shows that
humans do not tend to discover that two graphs having different visual layout
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C Ease Conf DAG Properties

C1 4.3 4.2 • depth: 4
• number of nodes on level 2 : 4; on level 3: 3; on level 4: 1
• leaning : left

C2 4.4 4.3 • depth: 4
• number of nodes on level 2 : 4; on level 3: 3; on level 4: 1
• leaning : right

C3 4.1 4.0 • depth: 3
• number of nodes on level 2 : 3; on level 3: 4

C4 4.1 4.1 • depth: 3
• number of nodes on level 2 : 3; on level 3: 2

C5 3.6 3.8 • depth: 3
• number of nodes on level 2 : 3; on level 3: 3

C6 3.7 3.7 • depth: 3
• number of nodes on level 2 : 4; on level 3: 4

C7 3.6 3.8 • depth: 3
• number of nodes on level 2 : 4; on level 3: 3

C8 3.8 3.9 • depth: 3
• number of nodes on level 2 : 4; on level 3: 2

Table 2: Properties of the DAGs in the clusters C1-C8 along with average
easiness (Ease) and confidence (Conf) values for each cluster.

have the same structure and are thus isomorphic; i.e. identical graphs. However,
recognizing the structure would be really relevant for an analytical comparison
thus the relevant information resides in the fact that the structure is the same
and not that the visual appearance – e.g., the skewness – is different.

Interestingly, edges and edge crossings – important factors of graph reading
and graph aesthetics – seem not to matter to the participants. The DAGs of C3
and C5 in Table 1 clearly show that the edges had no influence on the similarity
judgment of the participants. Otherwise, DAGs with such different structure
would not have been grouped. C7 shows that the participants also did not really
care about edge crossings.

To conclude, we consider the hierarchical clusters to have high consistency
regarding graph theoretical and visual DAG properties. They are also well
objectifiable with these properties.

4.2 Qualitative Analysis (RQ2)

We performed a thematic analysis of the participants’ tags to reveal the factors
they considered. We also analyzed the factors’ importance based on the number
of mentions of a specific factor. For this analysis, we used the data of all 20
participants since the thematic analysis is not that reactive to the participants
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Figure 3: Multi-dimensional scaling (MDS) plot of the perceptual distance ma-
trix (PDM). The clusters resulting from the hierarchical clustering are color-
coded and surrounded by their convex hull. (Dendrogram (cf. Figure 2), Ta-
ble 1, and MDS plot use the same color code for the respective cluster.

forgetting to group some data items. Since the four participants had forgotten
less than ten DAGs (10 DAGs= 14.5% of the entire dataset), we could be certain
that the tags provided by the participants still result from the to be grouped
dataset and are not dependent on whether a DAG was grouped or not.

Analysis. First, we literally transcribed the participants’ tags by noting each
tag together with how the participant used it, e.g., in a hierarchical manner.
Additionally, we collected the following data for the tags (henceforth called
factors) of each participant:

• factor type – visual, graph theoretical, no type

• combined vs. single factors – e.g., number of levels vs. number of levels
and number of nodes

• number of distinct considered factors

• number of values per factor – e.g., number of edge crossings = 1, 2 and 3
→ number of values = >1 value per factor

We deemed the factor type as important since the graph theoretical properties
are those which contain the information relevant for comparison insights due
to them describing the DAGs per se. From graph readability research, we al-
ready know that visual factors – e.g., edge crossing – have significant influence.
However, knowing these for visual comparison is beneficial for controlling their
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Factors used by at least 20% of the participants
number of levels 12

number of nodes on a specific level 9
shape 9

arm/branch (DAG sub-shape) 4
edge crossing 4

child node(s) with > 1 parent node 4
leaning 4

Factors used by less than 20% of the participants
one parent node 3

visual symmetry (entire DAG) 3
number of nodes in the entire DAG 2

node position/layout 2
level style 2

graph type 2
DAG appears nearly full 2

leave nodes on higher level than the lowest level 2
number of edges to level ID + 1 2

visually approximated number of nodes in branch 1
one root-like node 1

cycle 1
long edges 1

outlier subgraph (self-defined) 1
visual symmetry (edges) 1

hierarchy violations (self-defined) 1
isomorphic 1

balance 1
“Other” 1

“Not classifiable” 1

Table 3: Number of mentions of the factors used by the participants to form
the groups ( : graph theoretical, : visual, : no type). Multiple mentions
of the same factor by the same participant were excluded. When a participant
used a combined factor it was a combination of a subset of the 27 factors listed
here.

influence. We introduced the category ‘no type’ for factors which do not denote
specific properties of a DAG. We collected the other data as meta-information
on the factors the participants used to learn more about the participants’ usage
of the factors.
To unify the participants’ wording we used an open coding procedure. Four
coders abstracted the participants individual wording to more general factor
denoting concepts. After the individual coding phase, the coders achieved a
coding consensus by discussing their individual coding results.

For the analysis of the factor importance we counted for every factor how
many participants used it. Multiple mentions o the same factor by one partici-
pant were not considered.
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Results. The individual literal transcriptions can be found on our website1.
Table 3 shows the factors considered by the participants together with how often
a factor was named. In total, our participants used 27 distinct factors. Ten of
them can be considered as graph theoretical factors ( ) and 15 as visual factors
( ). Two of the used factors are neither graph theoretical nor visual ( ). The
participants used descriptive wording such as “others” or “not classifiable” for
these factors. Both of these factors had the purpose of distinguishing the DAGs
within the group tagged with such a factor from the other groups.
Just five out of 20 participants used a combined factor and only two out of these
five used more than one combined factor. The most frequently combined factor
was number of nodes on a specific level (five times). The combined factors were
constructed from the 27 distinct factors by using conjunctions like or or and ;
e.g., number of nodes on the second level = 3 and number of nodes on the third
level = 4.
Seven of the 27 factors were used by at least 20% of the participants (cf. Table 3,
top). We will focus on these seven. For the other 20 factors, please refer to
Table 3, bottom.

The most important factors according to usage frequency were: number
of levels (i.e., depth of the DAG), number of nodes on a specific level, shape,
arm/branch (≡ DAG sub-shape), edge crossing, child node(s) with > 1 parent

node, visual leaning (left: , right: ).

The factor shape is basically the convex hull of the DAG ( ). Regarding shape,
it is interesting to note that we could observe a correlation of shape with the
number of nodes on a specific level. Participants, for instance, denoted a DAG

such as as “narrow/small pyramid” and a DAG such as as “wide/large
pyramid”. However, it is clear that this coherence is also influenced by the

DAGs’ layout. Arm/branch refers to the shape of a DAG’s sub-graph ( ).

Edge crossing deals with crossings of the visualized edges ( ). The participants
considered different types of edge crossings, e.g., the mere presence of edge
crossing or (un)resolvable edge crossings.
The factor child node(s) with > 1 parent node relates to the number of nodes

which are the parent of another node ( , ). Again, we could observe that
participants used different types of these factors; e.g., the mere existence of
nodes with greater one parent node or the number of nodes in a DAG which
have greater one parent node.

Interestingly, the extracted factors also substantiate that edges and edge
crossings are immaterial to humans comparing DAGs. This confirms the findings
of Section 4.1. The factor edge crossing is one of the least used of the most
important factors. Other edge related factors, e.g., the visual edge length (long
edges), were used just once (cf. Table 3, bottom). Various individual groupings
also support the absence of recognizable influence of edge related factors, e.g.:

(factor: one parent left).
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5 Extended Analysis

In addition to understanding the individual factors, we also deem it important
to understand:

(1) the specifics of the factors; e.g., the average number of factors the partic-
ipants consider while judging the similarity.

(2) the strategies the participants employ to manage the dataset and come to
a final similarity judgment ; e.g., grouping the dataset according to one
factor and then grouping the resulting groups into further sub-groups.

Understanding the specifics of the factors helps us to learn the details of the
human mental model; e.g., the average number of used factors over all par-
ticipants tells us about the limit on similarity perception-influencing factors
that humans consider for their judgment. Detailed knowledge about the human
mental model is valuable for future perception-aware mathematical similarity
functions; thus it tells us, i.a., how many factors such a function should consider.
Understanding these strategies helps to offer useful interactions with compar-
ative visualizations since the interaction is the means by which the users can
apply their task-solving strategies to the data. To gain initial insights regarding
these subsequent questions, we performed this extended analysis.

5.1 Factor Specifics Analysis

We assume the following specifics to be relevant:

(1) the limit on similarity perception-influencing factors humans consider for
their judgment,

(2) whether graph theoretical or visual factors are more dominant respectively
more frequently used.
Graph theoretical factors result from the data structure per se, and visual
factors result from visualizing the DAGs as node-link diagrams. Examples
include edge crossings (visual) and the depth of the DAG (graph theoret-
ical).

(3) how humans think about the factors they use.

Therefore, we analyzed the following for the transcription data of our thematic
analysis (cf. Section 4.2, Analysis):

(1) the average number of factors the participants used,

(2) tendencies regarding the factor type – e.g., is one factor type used more
often than others,

(3) the value range of the factors – boolean (true/false), a single value per
factor or more than one value per factor but not a boolean value; hence-
forth denoted as boolean, 1 value, and > 1 value.
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If they choose a boolean value range for their factor, they more likely think
about the existence or non-existence of the property the factor denotes.
If they attribute concrete values to the factor, they more likely do an an-
alytical analysis promising more detailed knowledge about and, therefore,
more precise insights based on the to be compared data.

Analysis. First, we collected the total number of distinct factors each partici-
pant used (cf. Table 4 column #). In addition to that, we collected information
on how many factors of each type – graph theoretical, visual, no type (cf. Sec-
tion 4.2) – each participant used (cf. Table 4 columns graph th., visual, no
type). We then calculated descriptive statistics for this data: mean, median,
standard deviation.
We also analyzed how many participants used just one factor type – graph the-
oretical, visual, no type – and determined which factor type it was. Since it
can happen that participants used just one factor type but more than a single
factor, we analyzed how many participants used just a single factor. For the
single factor, we were also interested in the factor’s type.

Second, we collected the distinct value range types the participants used(cf.
Table 4 boolean, 1 value, > 1 value). These were boolean, 1 value, > 1 value.
A value range of a factor is boolean, if it is only concerned with whether a
property is present or not; e.g., There are nodes on the graph which only have
one predecessor (≡ one parent node) (cf. Figure 4 (2), factor (4)). A factor
has a 1 value value range, if the participant focuses on one specific value and
the value is not boolean; e.g., number of layers = 4 (cf. Figure 4 (2), factor
(2)). It would have been possible to interpret the 1 value value range as boolean
since it also depends on whether the factor has the specific value or not, but
we kept it as a separate type due to the participants, in this case, respecting
a specific value whereas for the boolean factors they were just concerned with
the (non-)existence. We consider a factor to have a > 1 value value range, if
the participant attributed more than one concrete value to the factor and if
these values are not boolean. An example of this is the factor number of nodes
on level 2 = 3, 4 of participant 15 (cf. Figure 4 (2), factor (1), (2)). We then
collected the total number of each distinct value range type for each participant.
Subsequently, we calculated the sum, mean, median and standard deviation as
descriptive quantitative values respectively statistics for this data.

As the final step in this analysis, we determined how often each value range
type was used for each of the 27 distinct factors we identified with our thematic
analysis (cf. Section 4.2).

Results. The participants used on average 4 factors (median = 4.0,mean =
3.8, STD = 1.7). Two of them are graph theoretical factors and two are visual
factors (graph theoretical – mean = 2.0,median = 2.0, STD = 1.6; visual –
median = 1.5,mean = 1.7, STD = 1.1; paired t-test over all participants and
their number of used visual and graph theoretical factors: t(19) = 0.6227, p =
0.5409 → no statistically significant difference). Thus, there is no clearly visi-
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boolean 1 value >1 value Σ graph th. visual no type #†

P01 1 0 4 5 4 1 0 5
P02 4 1 1 6 3 3 0 6
P03∗ 3 0 1 4 1 2 0 3
P04 0 0 1 1 0 1 0 1
P05 0 0 3 3 2 1 0 3
P06 2 2 2 6 5 1 0 6
P07 5 0 0 5 1 4 0 5
P08 2 0 3 5 3 2 0 5
P09 0 0 1 1 0 1 0 1
P10 4 0 1 5 4 1 0 5
P11 0 0 3 3 3 0 0 3
P12 0 0 2 2 1 1 0 2
P13∗ 2 0 3 5 0 3 1 4
P14 1 0 3 4 2 1 1 4
P15 5 1 1 7 5 2 0 7
P16 4 0 0 4 1 3 0 4
P17 0 0 2 2 0 2 0 2
P18 0 0 2 2 2 0 0 2
P19 0 0 3 3 1 2 0 3
P20 3 0 2 5 2 3 0 5

Σ 36 4 38 78 - - - -
mean 1.8 0.2 1.9 - 2.0 1.7 1.0 3.8
median 1.5 0.0 2.0 - 2.0 1.5 1.0 4.0

∗Participant used factor with two distinct value ranges, therefore she was considered for
both value range types ⇒ sum (Σ) > #

†number of distinct factors

Table 4: Number of distinct factors (#), number of factor types – graph theo-
retical (graph th.) ( ), visual ( ), and no type ( ) and number of value range
types – boolean ( ), 1 value ( ), > 1 value ( ) – per participant
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ble tendency of whether a person would rather use visual or graph theoretical
factors, whereas regarding all 27 distinct factors we could observe a clear dom-
inance of visual factors (15 × ) over graph theoretical factors (10 × ) (cf.
Section 4.2, Table 3). Just two participants used a factor which is neither graph
theoretical nor visual. Both of these factors had the purpose of distinguishing
the DAGs within this group from the other groups. Six participants used just
one factor type. Four of those six participants just used visual factors and two
just used graph theoretical factors. Two of our participants used even just a
single factor and for both it was a visual factor (shape).

In total, a boolean value range and a > 1 value value range were used ap-
proximately equally often; 36 (boolean) resp. 38 (> 1 value) times (cf. Ta-
ble 4). So, one could think the existence-2 and the analytically-coined3 mental
models are approximately equally distributed in the humans’ mind. The mean
and the median for these two value ranges support that hypothesis – boolean:
mean = 1.8,median = 1.5, STD = 1.8, > 1 value: mean = 1.9,median =
2.0, STD = 1.1. However, when we look at the value ranges’ frequency per
distinct factor (cf. Table 5), the aforementioned facts and possible hypothesis
are put into perspective. Here, we see that the existence-coined mental model is
well-distributed over almost all factors whereas the analytically-coined mental
model is used for only 10 factors. This is a crucial insight since the analytical
information, relevant for a comparison, generally lies less in the existence of a
property than in the concrete values of a property. Interestingly, the usage of
the > 1 value value range tends to accumulate for the factors which influenced
at least 20% of our participants (cf. Table 5). The 1 value value range seems
to be more of an outlier – it was used only four times (cf. Table 4 and 5).

5.2 Strategy Analysis

How the participants combined their similarity perception-influencing factors as
tags for their similarity groups reflects the strategy they employed to come to
a final similarity judgment. A strategy is defined as a sequence of processes to
solve a task [31]. In the context of similarity judgment, this means a sequence
of employing several influencing factors to come to a final similarity judgment
in a specific manner, e.g., hierarchical or one after the other. We did a quali-
tative content analysis [49] of the transcription data to reveal the strategies for
completing the task of similarity judgment.

As part of the strategy analysis, we were also interested in:

(1) whether participants who employ different strategies employ the same or
different factors.

(2) the dominant factors for the specific strategies.
Here, dominant means whether there are factors used recognizably more
often than others by participants employing a specific strategy.

2only thinking about the (non-)existence of a factor expressing that with boolean value
ranges

3considering the concrete values of a factor expressing that with (>)1 value value ranges
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Factors used by at least 20% of the participants
number of levels 7 1 0 0 0 5 0 0 2 10

number of nodes on a specific level 0 4 4 1 0 3 0 0 1 8
shape 1 1 0 1 0 6 2 2 0 7

arm/branch (DAG sub-shape) 0 0 0 0 0 4 0 4 0 0
edge crossing 0 1 0 0 0 3 0 4 0 0

child node(s) with > 1 parent node 0 1 0 0 0 3 0 3 0 1
leaning 0 3 0 0 0 1 0 0 0 4

Factors used by less than 20% of the participants
one parent node 0 0 0 0 0 3 0 3 0 0

visual symmetry (entire DAG) 0 0 1 0 0 2 0 3 0 0
number of nodes in the entire DAG 0 1 0 0 0 1 0 0 0 2

node position/layout 0 1 0 0 0 1 0 1 0 2
level style 0 2 0 0 0 0 0 0 0 2

graph type 0 1 0 0 0 1 0 2 0 0
DAG appears nearly full 1 0 0 0 1 1 0 2 0 0

leave nodes on higher level than the lowest level 0 0 0 1 0 1 0 2 0 0
number of edges to level ID + 1 0 1 1 0 0 1 0 0 1 1

visually approximated number of nodes in branch 0 0 0 0 0 1 0 1 0 0
one root-like node 1 0 0 0 0 0 0 1 0 0

cycle 0 0 0 0 0 1 0 1 0 0
long edges 0 0 0 0 0 1 0 1 0 0

outlier subgraph (self-defined) 0 0 0 0 0 1 0 1 0 0
visual symmetry (edges) 0 0 0 0 0 1 0 1 0 0

hierarchy violations (self-defined) 1 0 0 0 0 0 0 0 0 1
isomorphic 0 0 0 0 0 1 0 1 0 0

balance 0 0 1 0 0 0 0 1 0 0
“Other” 0 0 0 0 0 1 0 1 0 0

“Not classifiable” 0 0 0 0 0 1 0 1 0 0
†respecting entire dataset and considering factors one after the other

level 1 = lowest level, level 5 = highest level

Table 5: Participants’ usage of the 27 identified distinct factors ( : graph
theoretical, : visual, : no type) together with the three identified strategies:
divide and conquer (split into the strategy hierarchy levels), respecting the entire
dataset and considering factors one after the other, considering a single factor.
Additionally, the frequency of the value ranges – boolean, 1 value, > 1 value –
that the participants chose for the 27 distinct factors is shown.
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(3) whether we can gain insights on the importance of the factors relative to
each other.
We understand the relative factor importance as something equivalent to
the ranking of visual variables introduced by Bertin [5].

To address these questions we analyzed:

(1) which of the 27 distinct factors, identified in Section 4.2, are used in
combination with which strategy,

(2) the usage frequency per factor per strategy, and

(3) the usage frequency per factor over all strategies for all 27 distinct factors.

Analysis. The participants’ strategies were analyzed according to qualitative
content analysis [49]. This method is especially used for studying verbal mate-
rial, but also for other types of documents. It is a systematic method based on
a system of categories – a coding scheme – which can be developed either before
the process of analysis (top-down) or during this process (bottom-up) [48]. We
used the bottom-up approach because there is no previous research in this area
and the investigation of the strategies is exploratory. The elements of the strate-
gies are the factors identified in the qualitative analysis described in Section 4.2.
For every participant we did the following: Based on the transcriptions made
during our qualitative analysis and the subset of the 27 distinct factors the par-
ticipant was influenced by while judging the DAGs’ similarity (cf. Section 4.2),
we derived how the participant combined the factors to come to a final similarity
judgment by objectifying the participant’s groups with this subset of factors.
By “how”, we mean the order and the structure of the factors. Order means
which factor was used first and which factors followed in which order. Structure
means whether the participant used the factors for instance in a hierarchical
manner or just one after the other. The derivation is done by respecting all the
groups of the participant individually and testing the factors’ order and struc-
ture combinations to find the order which produces exactly the groups of the
participant.
We recorded the results as an ordered list and as a pictogram (cf. Figure 4
(Ordered List), (Pictogram)). The ordered list represents the order and the
structure of the factors used by the participant. The pictogram represents how
the participant dealt with the dataset and the structure of the grouped dataset.
The pictogram shows the entire dataset as a black square and the groups re-
sulting from a specific factor as colored squares. A different color denotes that
the groups result from different factors.

For naming the strategies, we used the results of the afore-explained analysis
procedure. The central aspects for the naming were the structure of the par-
ticipants’ factors and how they dealt with the dataset; e.g., partitioning it and
dealing with one sub-dataset at a time or always respecting the entire dataset.

To investigate our three more in-depth questions regarding the strategies,
we analyzed which of the 27 distinct factors is used together with which strat-
egy. For a strategy with a hierarchical factor structure, we analyzed which of
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the identified distinct factors is used on which strategy hierarchy level by the
participants. The hierarchical factor structure is represented in the (Ordered
List) of Figure 4 by a change in the (sub-)bullet point style. The first hierarchy
level uses numerical values in brackets, e.g., (1) . The second hierarchy level
is identified by small Roman numbers, e.g., ii. . The third level uses again
numerical values, e.g., 1. . As a consequence, we could quantify which factor is
used how often in combination with which strategy. For this analysis, we used
the same data as for the identification of the strategies.

Results. We could observe that the participants used three distinct strategies
to judge the similarity of DAGs: divide and conquer, respecting the entire dataset
and considering the factors one after the other, and considering a single factor.
Eleven participants chose one factor, grouped the entire dataset according to
it, and then grouped the resulting groups into further sub-groups (divide-and-
conquer strategy, cf. Figure 4 (1)). There were nine participants who always
respected the entire dataset considering the factors one after the other (cf. Fig-
ure 4 (2)). For this strategy, the groups will stay the same if the factors are
applied in a permuted order since the entire dataset is always considered. Some
of the participants chose all their factors in advance. Others chose their factors
in an ad hoc fashion; meaning, after having grouped the dataset according to
a factor they thought about the next. Finally, there were two participants who
did their grouping by considering just one single factor (cf. Figure 4 (3)).
Participants employing the divide and conquer strategy used strategy hierarchies
with an average depth of three (mean = 2.8,median = 3.0, STD = 0.9). Par-
ticipants who respected the entire dataset considering one factor after the other
employed on average five factors (mean = 5.1,median = 5.0, STD = 2.1). The
two participants who considered only one single factor used the factor shape.
One of these two participants used four different values of shape to do her
grouping, and the other, eight.

In addition to the strategies we could observe the following details: There
were two participants who did a combination of the divide and conquer strategy
and the strategy of respecting the entire dataset and considering the factors one
after the other. We counted these two participants towards both strategies.
Three participants performed their divide and conquer strategy with the same
factor per strategy hierarchy level, in other words, they varied factors across
hierarchy levels but not within. This is contrary to the behavior of the rest of the
participants who employed the divide and conquer strategy. These participants
had a strong tendency to vary their factors across and within strategy hierarchy
levels, especially within the second level. An example for this is participant P1;
shown in Figure 4 (1). P1 used just one factor for her first and third strategy
hierarchy level – hierarchy level 1: (1) number of levels, hierarchy level 3: 1.
and 2. number of nodes on a specific level (cf. Figure 4 (1)). However, on
her second hierarchy level she used three factors: child node(s) with > 1 parent
node, graph type, and number of nodes on a specific level (cf. Figure 4 (1),
factors i., ii., iii.). Two of the three participants, who conducted their divide



544 Ballweg et al. Visual Similarity Perception of Directed Acyclic Graphs

and conquer strategy with the same factor per strategy hierarchy level, varied
the value range type, cf. Section 5.1, within the strategy hierarchy levels as
P1 did it on the third strategy hierarchy level. Just one participant kept the
factors and value range types the same. Two of the 11 participants employing
the divide and conquer strategy used non-discriminating factors at a certain
strategy hierarchy level. Non-discriminating factors do not divide the entire
dataset or the already existing groups into further sub-groups; for instance:

factor 1 discriminates the dataset, however, factor 2 does not further
discriminate the dataset than the already existing groups. One of these two
participants employed three non-discriminating factors and the other one two.

Table 5 summarizes the results for our three more in-depth questions re-
garding the strategies. These were: (1) Are the same factors, or rather different
ones, used across the strategies?, (2) Are there dominant factors regarding a
specific strategy?, (3) Are we able to gain initial insights on the factors’ impor-
tance relative to each other?
From Table 5 it is evident that the factors used across the three strategies
are comparable. It is not the case that one of the three strategies completely
disregards some factors which, in turn, another strategy frequently respects.
However, it also becomes apparent from Table 5 that more of the 27 factors are
used in the respecting the entire dataset and considering the factors one after
the other strategy than in the others. This observation can be related back to
the tendency of participants who employed this strategy to use more factors; on
average five compared to the three of the divide and conquer strategy.
The dominant factors of all three strategies reflect those we identified in our
qualitative and quantitative analysis: number of levels, number of nodes on
a specific level, shape, arm/branch (≡ DAG sub-shape), edge crossing, child
node(s) with > 1 parent node, leaning, one parent node (cf. Section 4).
The insights regarding a relative importance ranking of the factors are just very
circumstantial. As can be seen from Table 5, the factor number of levels is most
frequently used as the factor of first strategy hierarchy level. On the second and
third strategy hierarchy level, the most frequent factors are number of nodes on
a specific level and leaning. This relates well to the most frequent factors of
the respecting the entire dataset and considering the factors one after the other
strategy. The most frequent factors of this strategy are: number of levels, num-
ber of nodes on a specific level, shape, arm/branch (≡ DAG sub-shape), edge
crossing, child node(s) with > 1 parent node, one parent node. However, the
frequency of the most frequent factors does not differ in total that much from
the less frequent factors, therefore we are convinced that more thorough inves-
tigations with user studies specifically designed for this purpose are necessary
to reveal the relative importance of the factors.

6 Result Summary, Discussion, and Future Work

We conducted a card sorting study to identify the factors influencing the sim-
ilarity perception of DAGs. Herewith, we mitigate the present knowledge gap
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(1) Divide and conquer

(2) Respecting the entire dataset & considering 

the factors one after the other

(3) Considering a single factor

(Ordered List) (Pictogram)

Figure 4: The three distinct strategies the participants employed to solve the
task of judging the similarity presented on the example of three individual par-
ticipants: (1) divide and conquer, (2) respecting the entire dataset and consid-
ering the factors one after the other, and (3) considering a single factor.
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regarding this topic despite the vast presence of visual graph comparison tasks
in various disciplines, e.g., finance, biology.

6.1 Research Questions: Formed Similarity Groups (RQ1)
& Influencing Factors (RQ2)

Result Summary. Both the results of our quantitative (RQ1, RQ2 ) and
qualitative (RQ2 ) analysis point to similar factors which seem to dominantly
influence similarity perception of DAGs, namely the number of levels (depth),
the number of nodes on specific levels, and shape-related aspects such as the
visual leaning of a DAG. The strong influence of shape is remarkable as in our
case the spatial arrangement did not convey any additional information. This
resulted in cases where structurally identical DAGs were assigned to different
groups due to one being left-skewed or right-skewed. Being skewed to the left
or right mainly played a role for the 4-level DAGs (cf. C1 and C2), most likely
because it had a stronger influence on the overall shape than in the 3-level cases.
Nevertheless, this observation supports previous results which found evidence
that perception of graphs is sensitive to its spatial layout ([23, 34]). Surprisingly,
edge crossings – an important factor concerning the readability of graphs [43] –
contrary to our expectations did not seem to have a strong influence on perceived
DAG similarity. This lack of influence is, for example, evident in the clusters C5
and C6 where no distinction between DAGs with and without edge crossings
was made (cf. Table 1). In the participants’ statements, we found evidence
that they did not subconsciously resolve the edge crossing and therefore did not
mention edge factors. On the contrary, the edges were not in the focus of the
participants.

Discussion. The fixed order of our data items did not lead to order-
influenced groupings. The individual groupings and the consensus grouping
are well objectifiable with DAG properties and do not show signs for group-
ings influenced by the order of the DAGs on the data sheet. The quantitative
analysis shows the objectifiability of the consensus grouping (cf. Section 4.1).
We analyzed the individual groupings by checking the objectifiability of grouped
consecutive data items (see our website1 for details). We considered the analysis
of grouped consecutive data items as a valid analysis instrument since group-
ing the DAGs based on their ID sequences is the most apparent option for an
order-influenced grouping. We analyzed the participants’ groupings for simple
sequences (successor ID = predecessor ID +1, +2, +3 and +4). Since we did not
find such simple order-influenced sequences, we can be sufficiently certain that
more complex order-influenced sequences are also not present and that the in-
dividual groupings as well as our similarity consensus grouping result are based
on reasonable factors of the participants. For the complete analysis, please refer
to our supplementary material.

Future Work. In future work, it will be necessary to investigate how the
identified factors and their importance varies across different graph sizes. It is,
for instance, reasonable to assume that, for larger graphs, factors concerning
details of a graph (e.g., number of parent nodes, number of nodes on a specific
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layer) decrease in importance while factors concerning the overall appearance
(e.g., shape) increase. Regardless of that, our study provides first results which
can contribute to the design of comparative visualizations. Moreover, a bet-
ter understanding of the factors which drive humans’ similarity judgment may
also be used towards developing perception-based graph similarity measures.
Current notions of graph similarity such as graph isomorphism and edit dis-
tance (cf. [14]), descriptive statistics of graph structure measures such as degree
distribution or diameter, or iterative approaches which assess the similarity of
the neighborhood of nodes (e.g., [24, 26, 35]) rely purely on graph theoretical
properties.

6.2 Extended Analysis: Factor Specifics & Strategy
Analysis

Result Summary. From our extended analysis, we found that the averaged
limit of factors humans consider for their similarity judgment is four factors
and that there is no clear tendency whether the human similarity perception is
driven by visual or graph theoretical factors if we focus on participants individ-
ually. This reveals an interesting divergence from the results of our analysis in
Section 4. There, we could see a clear dominance of visual factors – 15 visual fac-
tors ( ) and ten graph theoretical factors ( ) (cf. Table 3). We further found
initial insights that humans rather consider the pure existence of a similarity
influencing factor than its concrete manifestations (cf. Table 5). Regarding an
analytical comparison, this habit promises less detailed and precise knowledge
about the data and consequently less detailed and precise insights based on the
data. At this point, we were not able to discover the factors’ relative importance
to each other. Nevertheless, we found that the participants used three distinct
strategies to solve the task of judging the similarity: divide and conquer, re-
specting the entire dataset and considering the factors one after the other, and
considering a single factor.

Discussion. These results provide further relevant details for future perception-
aware similarity measures. Perception aware similarity measures can draw, e.g.,
the following information from our results: the number of to be considered
factors, the type – visual or graph theoretical – of factors which should be con-
sidered, the factors’ value range, and which factors should be chosen from the
list of potential factors with respect to the weighting factor of the respective
factors. Moreover, these results help to improve comparative visualizations,
e.g., by showing us which factors are rather overlooked by humans and conse-
quently should be highlighted in comparative visualizations. Furthermore, they
inform the choice and development of useful techniques for interacting with the
comparative visualizations since the interaction is the means by which the users
should be able to apply their task-solving strategies to the data.

Future Work. Still, at the moment these are initial or even circumstantial
insights. Therefore, we aim at verifying and detailing the afore-discussed aspects
in our future work. An example is the three similarity judgment strategies.
Although our analysis result clearly reveals these three strategies, we think
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more thorough investigations are necessary to verify these results. One way
would be a user study specifically designed for the investigation of similarity
judgment strategies.

7 Conclusion

To conclude, we consider the similarity perception of DAGs in visual compari-
son across people as consistent and well objectifiable using graph theoretical or
visual properties. We find the objectifiability substantiated by our quantitative
and qualitative analysis. Also, we find that humans employ a structured ap-
proach – a strategy – to judge the similarity of DAGs. Furthermore, we find that
the specifics of the used factors – e.g., their value ranges – provide pivotal detail
on the mental model of humans regarding the perceived similarity of DAGs.
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