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1 Introduction

Art and Science .... These seems to be key words of many contemporary writ-
ings. And scientists certainly are only happy to stress aesthetic qualities of their
activity and artists like to justify their endeavor by science and technology. But
these connections are very often superficial and often lead only to impatience
how superficially without a deeper understanding and insight these connections
are treated [7].

Here we want to illustrate some conceptual, or rather spiritual and method-
ological similarities of doing mathematics and art. We stress the word ‘doing’.
‘Doing’ in the true sense of informed and complex pursuit of actual questions
and problems of contemporary art and science. (By ”Science” we mean here
Mathematics in general, but also Computer Science and. of course, Graph
Drawing; this is a volume devoted to the Drawing of Graphs.) Although both
these areas are manifold and extremely diverse, we believe that they share some
common qualities and profound similarities. These similarities are best traced
by considering together the development and the methods of modern mathe-
matics and modern art. Rather than considering the final products (works of
art or theorems) we wish to stress similarities in the modus operandi of artists
and mathematicians. We wish to stress that some of these similarities can be
traced to all levels and moments of the production of both art and mathemat-
ics. And we are convinced that these similarities stem mainly from the idealistic
character of both pursuits. But one has to search deep and one has to try to
avoid superficial similarities and differences. We would like to rephrase the
words Kandinsky used when comparing art and music [18]: In our opinion the
similarities of art and mathematics are evident but they lie very deep. In fact,
in the realm of true activity guided by inspiration and inspiring awareness there
seem to be common features in most human activities. We put this forward as
a creative thesis [29] and we return to this at the end of this article.

But this article is for Graph Drawing and also there is more here than meets
the eye. The prime problem of Graph Drawing is to visualize properly and
as accurately as possible the information which is given to us in a confusing,
sometimes pictorial and sometimes mathematical, or “technical”, way. This
intended visualization should help us to understand, should attract and should
explain. It is interesting to note that on such abstract gnoseological level these
are the same aspects and problems which are facing an artist when he/she is
trying to convey his/her message. Visualization, representation, the reality and
its model are the code words. Clearly this is complemented by further aspects
which make the whole picture more complicated and stresses the differences of
these areas but still the abstract core is similar if not the same. (At this place it
is only proper to stress the following: one has to be careful with analogies and
parallels. We try to stress only those points which one can see and prove beyond
doubts. Otherwise we can easily slip to the level of an essay and unjustified
speculations.)

This text is based on the article Art of Drawing [28] which in turn is based on
an invited talk delivered by the author at GD’99. That lecture was conceived as
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a multimedia show with slides, transparencies and CD projection (which oper-
ated fluently thanks to Hubert de Fraysseix). These three parts of the lecture,
projected on three different screens, were called Samples, Stories and Souve-
niers. Since then some progress has been made and this lecture has been given
in another context. Most notably in March 2001 in the Institute for Art His-
tory of the Academy of Sciences of the Czech Republic (thanks to an invitation
of Mahulena Nešlehová) and at E.H.E.S.S., Paris, (thanks to an invitation of
Pierre Rosenstiehl). Also on the scientific level a progress (a bit surprisingly)
has been made. Recently this author devised an invariant, Combinatorial En-
tropy, which could serve as a measure of an aesthetic quality of a scheme and
this, after several discussions with Michel Mendès France, was thoroughly tested
together with Jan Adamec on a large number of examples from both Art and
Graph Drawing. A research article appeared in [2] and led to an article (of a
more philosophical contents) in [30]. This text then complements both of these
texts and it contains some new complementary material.

I thank to the editors H. de Fraysseix and J. Kratochv́ıl for suggestion to
include this paper in their volume and for several constructive remarks.

2 Three easy problems

We begin our story by recalling a situation which happens often at IQ (or
similar) tests: The person being tested is asked to perform a routine task, task
which may be a bit time consuming and which basically tests whether he or
she understands a certain notion (i.e., understands under certain mental-time
stress). Such a question may read:

1. Draw a curve!
2. Divide a square in two rectangles and two squares!
3. Divide a rectangle into two triangles and two pentagons!

Of course the authors (of such tests, if they exist at all) are seeking an easy
answer. But sometimes in their own naivete they perhaps do not know that a
dog is hidden under carpet.

The expected answer to Question 1. is of course some ”easy” picture of a
curve. And as the authors of these tests believe, the easier answer mirrors a
deeper understanding. But the complicated history of curves and their theory
tells us something else.

It is hard to tell what a curve is. It is hard to postulate it once for all by
means of a self-contained definition (not involving pictures and hand waving)
which would nevertheless cover all the variety of shapes of all possible curves.
As often happens - a thing which is intuitively clear becomes less clear the more
we think about it: A curve may have no derivative (e.g. a sharp peak) at any of
its points (Bolzano and Weierstrass), a curve may have an infinite length and yet
it may enclose a finite area (Koch and others), a curve may fill the whole plane
(Peano and others). Even the notion like the length of a curve is a complicated
phenomenon and this question was in fact one of the initial questions which
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started the Theory of Fractals [20] and led to the notion of the fractal dimension.
If we generalize Euclidean plane and space to n-dimension we always have n an
integer (as it depicts the number of coordinates). However measuring curves in a
fractal way we arrive at dimensions which are not necessarily integers. So some
curves may have, say, dimension 4/3. The concept of fractal dimension goes
back to the beginning of this century (Hausdorff and Besicovitch). Much later
it recently played key role in theory which became truly part of popular science.
With all its beautiful and easily generated pictures (and perhaps, because of
this, so often quoted misleadingly in an art-historical context; see e.g. [19]).

The fractal theory got mathematics seemingly as close to visual mathematics
and even art as possible. As a result of this, the results were popularized,
misunderstood and even misused at both ends of the spectrum. On one side
these mathematically involved theories with all its interesting visual output are
too tempting to the scientific audience and as a result of this they substitute
modern art for many. On the other side, the interesting ‘mystical’ vocabulary is
too tempting to art historians and critics alike. There is much evidence that this
is done freely, too freely, like a new poetic enchanting word machine. (There is
a newly emerging new candidate for this: the complexity theory).

But the fractal theory is a natural counterpart of our theory and of our
definition of Combinatorial Entropy below.

Returning to our main theme: so just to define a curve is a highly non-trivial
matter and thus an answer to question 1. could be certainly less self-confident.
An informed individual would have the right to ask ‘A curve in which sense?’

Admittedly we cannot use this strategy at questions 2. and 3. Here the
questions call for a solution (displaying that one knows the meaning of the
concepts). And the answer to 3. comes without any effort at the very moment
when one gives up (try a flat rectangle and indicate that you give up by crossing
it twice!).

But both these questions involve the construction of a special pavement or
tiling and that is in general both an important and complicated question. A
question which can be traced from prehistoric times, through mysticism of the
Middle Ages until today. And in its combinatorial refinement this area took
several surprising twists.

We cannot resist mentioning here the spectacular configuration (non-periodic
tiling of the plane using just two building blocks!) due to Penrose which had
spectacular influence in as remote areas as algebra, crystallography, molecular
chemistry and other areas which had nothing to do with the original intentions.

Now, here is one of the pearls of the tiling theory: In 1903 the German
mathematician Max Dehn asked a simple, seemingly innocent question: Can
one divide a square into a finite number of squares of different sizes? Unlike in
the usual picture (a possible answer to the Question 2) where we divide a square
into 4 squares all of which are of the same size. Such a partition of the square is
called perfect square. Does a perfect square exist? Does a perfect square exist
at all? Yes or no? This is one of the beautiful aspects of mathematics, yes or
no, there is no other way around. Modern mathematics developed techniques
for asking and answering imprecise questions, for relative answers (subject to
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various models), for answering and (lying) with certain probability. Yet the
categorical yes/no question is still one of the main (and proud) characteristics
of the field.

The Dehn’s problem appeared to be not so easily solvable and after few
decades it was solved independently by A. Sprague(1940) and a group of Cam-
bridge undergraduates: A. Brooks, C. Smith, A. H. Stone and W. Tutte (1940),
all of whom later became well known researchers. The affirmative answer was
not obtained by an elaborate (and primitive) search, but by a search involving
the rudiment of a theory. A series of ingenious reductions and reformulations
(involving areas such as flows and electrical networks) made the initial problem
accessible. Without this the problem would be too difficult to handle. It is
interesting to note that the smallest perfect square is uniquely determined. It
presents a division of a square into 21 different squares. One cannot partition a
square in less than 21 different squares and there is only one such partition into
21 squares (up to natural transformation such as rotations and flipping). This
unique design was sought for several decades and Duijvestijn solution finally
came in 1978 (partly with the help of a computer). The uniqueness of this con-
figuration of 21 squares is quite astonishing! It is the conviction of this author
that the concentration of hard work and ideas makes from this square tiling
a similarly unique object as the sensitivity, experience and (yes) hard work of
Mondrian. So perhaps these special qualities justify its inclusion here. Actually,
Charles Payan (Grenoble) produced an artistic object based on the Duijvestijn
pattern and his object shares similarities with some of the Mondrian’s painting,
see [30].

3 Openings

The formal similarities between art and various aspects of mathematics (mostly
geometry) are both classical and contemporary.

The mysticism of the golden ratio, of the pentagon, of the regular polyhedra
and of pythagorean numbers draws fascination of many and this is applied with a
lot of effort to the analysis of anything from the principles of life to pyramids and
Gothic cathedrals. And this is of course more true for complicated mathematical
questions of perspective and vision in general. Particularly the Renaissance
connection is usually quoted as the prime time of relevance of mathematics and
art. There can be no doubts that mathematics at that time did some good
service to art. (If only to help to upgrade artists from mere craftsmen to free
artists in the same category as thinkers.) Maybe at this time of confusion and
(what some call) art crisis, art intuitively seeks again a helping hand or solid
base or whatever name you want to use for outwardly directed trends in recent
art. But this is not so simple and traps are waiting on this road. All this will
succeed only in the case when the mutual relationship (of mathematics and art)
is freed from arbitrariness, superficial analogies and passing comments.

Mathematics was always a source (yes, a generator; mathematics is also a
logical machine) of complex (for outsiders, mystical) patterns. This is even more
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true today than ever. With our understanding of randomness, of deterministic
chaos and aided by graphical devices attached to computers, this ‘artistic poten-
tial’ of mathematics is growing. It is our conviction that this pattern generation
displays mostly formal and superficial similarities to art. This is the case with
fractals (mentioned above) and computer graphics in general, with patterns in
chip design which resemble both minimalistic works and complex patterns of
microbiology and underwater life. These tricks found one of their culminating
forms in wonderful commercials and video clips. Complexity of these forms
surpasses any expectation and the variety and combination of tools (and en-
ergy, and money) is simply amazing. Consider an example from another corner:
the work of M.C. Escher displays a dizzying technique and explicitly touches
and even anticipates some mathematical problems of tilings (tilings with special
symmetries; similar to those we described above). But however intriguing all
this may be, we feel that this has no bearing on the mainstream of art, better
on the main problems and challenges which art and artists have been solving
and are facing and solving today. And in a sense all these forms are based
on combinatorially refined byproducts of mathematics and computer science as
well.

4 Archaeology of Aesthetic

Consider the following two problems:
I. When was the last time that you taught somebody (possibly your own

child) how nice this world is and what marvels and beauties it contains?
II. When was the last time that men and women were solving the prob-

lems how to make a painting, a drawing or a photograph which would depict
accurately (and/or romantically, and/or critically, and/or harmoniously) the
surrounding world?

The answers to these questions seem to be very different. An answer to
the first is reflecting (everyday) experience of parents and educators and on
the abstract (theoretical) level it was treated in numerous books by various
theories. These theories seem to be in (general) agreement with the concrete
and mainstream educational praxis. The second question seems to be more
complex (and it is also a more abstract problem). Somehow it seems (to many)
that this is an old fashioned problem which is the subject of early modernism if
not renaissance. Yet we believe that with computers this question gains a new
momentum. In this paper we address this problem.

Despite the implicit word computer in the title in this paper, we do not
address the question of visualization, of picture processing of visual information
in the sense of Computer Graphics. The information for us is already processed
and typically is of a very simple type such as a drawing (however, not necessarily
a technical drawing, it may be also a drawing of an artist). What we would like
to decide is how to formalize the fact that a picture (drawing) is harmonious.
We mean harmonious in the sense of being aesthetically pleasing. We prefer
the word harmonious to aesthetical (which is probably more in common usage)
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as an aesthetic feeling is probably highly individual and we cannot have an
ambition to define it (or even approach it). The long tradition of art history is
convincingly telling us this.

We propose an approach which should capture some features of what makes a
picture (drawing) harmonious by means of the notion of Combinatorial Entropy.
This approach is based on the analysis of curves ([25]) which in turn goes back
to Steinhaus and Poincaré. The hereditary approach which we introduce below
may be viewed as an approach dual to Piaget’s analysis of intelligence, see e.g.
[33] and compare [30].

Combinatorial Entropy is an invariant with respect to scaling and rotations,
and it is a very robust parameter. This is an important feature as a perception
of harmony (and of aesthetic pleasure) is a robust feeling. Moreover Combi-
natorial Entropy can be computed for a large class of drawing and pictures.
It is routine to apply it to scanned information and no analytic description is
needed. Perhaps this parameter could aid in the hierarchical approach to graph
visualization in selecting a particular model which suits the best a given specific
context. And as it can be scanned routinely it can be applied to vast data of
molecular biology, digital libraries and even museum collections (particularly
graphics and drawings) as an easily available descriptor. After these introduc-
tory lines let us begin by describing our initial situation in greater detail.

5 On Invariants for Graph Drawing

What makes the following pictures similar and what makes them different?
(The substance and the context are important artistic aspects. However we
are interested here only in formal similarities of these pictures; one picture is a
musical score - a sketch by Janáček [35], the other picture is one of the Moduli
- a sketch by Načeradský and the author [31].)
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And, very simply, can we distinguish or order in some systematic way the
following three figures (graph drawings using a program due to [9])?

The modern version of these questions is not how to teach a gifted and
collaborating child what is nice and beautiful. Instead we need to teach an
individual which is not collaborating at all and who takes every our information
deadly seriously and exploits it to the last bit - a computer. People usually do
not react this way (and if so, then only in comedies like [13] or [14]; the fact that
these great novels have a military setting is then not an accident). In order to
“teach” a computer (and even without ambition for teaching, just dealing with
it) we need a precision. And precision in the other words calls for some concrete
measures of our phenomena, in the other words for invariants. The purpose
of this note is to suggest such an invariant and to document some experiments
which we performed.

Consequently, the traditional principal problem of aesthetics (and art his-
tory) - to explain and to predict artistic and aesthetically pleasing - took recently
an unexpected twist. We do not explain and deal with individual instances, we
have to classify a vast amount of data and we have to design procedures with
likely harmonious output. This problem in its manifold variety is interesting
already when our objects are well defined compositions composed from simple
building blocks such as lines, squares, sticks,.... This in fact is a familiar exer-
cise and training ground of schools of design and architecture and (traditional)
art academies. This illustrates difficulty and variety of solutions even of sim-
ple situations. This should be not surprising if we realize how many simple
lines needed, say Rembrandt or Picasso, to produce full images (for example
drawings; 50 lines or even less!).

For our “simple composition from simple building blocks” we would like to
create an invariant which would help us to categorize and order these composi-
tions. It is difficult to say even on this simple level what it is an invariant, but
we can certainly state which properties such an invariant should have:

i. invariant should be an (easy) computable aspect of the structure;
ii. invariant should be consistent (or invariant, meaning it should not change)
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under chosen modification of structure;
iii. invariant should be useful in that it can be used to catalogue, to order

(which structure is “better”), to classify, to distinguish.
We propose here an invariant - called hereditary combinatorial entropy - to

measure an aesthetic quality of a visual data (drawing, scheme, painting, note
score, molecular data output and others). This invariant is presented in the
next section.

6 Hereditary Combinatorial Entropy of a Draw-

ing

Before defining the invariant we want to specify the rules under which the invari-
ant should remain unchanged. Such rules were specified several times and are
folklore in the visualization of scientific results. For example the book [5] lists
(in section “Aesthetics”) the following 11 graphic properties (called aesthetics)
which are commonly adopted:

Crossings, Area, Total Edge Length, Maximal Edge Length, Uniform Edge
Length, Total Bends, Maximum Bends, Uniform Bends, Angular Resolution,
Aspect Ration and Symmetry.

The names of these criteria are self-explanatory and together they form a
very good paradigm for drawing of graphs. However most of them are specific
for drawings of graphs (or similar structures) and they do not apply generally
(for example to artistic drawings or sketches). Yet we believe that the aesthetic
quality of visual algorithms should be tested on aesthetically charged objects.
This is one of the underlying ideas of our approach.

There is another drawback of the above paradigm. In all of these criteria
(with exception of angular resolution, where we want to maximize, and sym-
metry which is a structural property) we are aiming for a minimization (for
example we want to minimize the total length of our drawing). That of course
means that we have to optimize these criteria (as they are sometimes mutually
pointed against each other) and we have to add to our paradigm preferences
among them. However as optimization problems these criteria are computa-
tionally hard (see [5]).

Our approach is different and we believe it could add a new aspect to visu-
alization and analysis of visual data.

Let us first specify objects which are relevant to our method:
A drawing D is a finite set of curves in Euclidean plane. (As our drawings are

man made we assume that the set is finite.) A curve is a continuous image of unit
interval in plane (we mean a “nice” image; this is not place for technicalities).

A painting can be any image, including photographs. It typically consists of
differently colored areas.

An engraving is a very special kind of object, since it can be included in the
previous two classes. However seeing it as a drawing gives a lot more informa-
tion.
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For an infinite line L and a drawing D denote by i(L, D) the number of in-
tersections of the line L and the drawing D. We define the Combinatorial
Entropy Hc(D) of a drawing D as the expected value of i(L, D) where expec-
tation relates to the random selection of line L. Combinatorial Entropy is also
called Fractional Length from reasons to be mentioned later, see [1, 2].

By virtue of this definition we note the following:
i. The combinatorial entropy Hc(D) is easily evaluated by a random gener-

ation of lines;
ii. Hc(D) is invariant under transposition and rotation;
iii. Hc(D) is invariant under scaling (i.e. “blowing up”).

The role of randomness in the art has been discussed e.g. in [25], [26]. These
facts make it possible to evaluate (or very accurately to estimate) combinato-
rial entropy of many drawing schemata, drawings of artists (we systematically
tested some of the early works of Picasso [32] and Kandinsky [18] as well some
drawings from [31]). We also used the analytical description of tertiary struc-
ture of some of the proteins (provided by P. Pančoška, compare [17]). The
software developed in [1] uses standard tools of digital image processing, see [3],
[34] and allows to handle a very broad spectrum of examples. Most difficulties
are with paintings, because they must be transformed into drawings in order to
count number of intersections (several filters are applied on the picture to find
its contours, the resulting picture is drawing as we defined it before).

Let us state some specific examples: the above Janáček score had combina-
torial entropy 18.55 which is quite similar to the combinatorial entropy 17.87 of
the above drawing of Načeradský and Nešetřil taken from [31]. The three graph
drawings depicted above have combinatorial entropy (from left to right) 5.70,
5.37, 6.96.



J. Nešetřil, Art of Graph Drawing and Art , JGAA, 6(2) 131–147 (2002) 141

The method is flexible enough to handle complex drawings and pictures.
For example classical prints from J. Verne novels when considered as a dense
network of individual lines (no blurring). For example the following picture (due
to Roux) [38] which serves as the front illustration of [22] has combinatorial
entropy 136.6.

As expected (both by the intuition and a few trials) the n × n grid has
approximate combinatorial entropy n. (As lattices are given analytically we can
perform this experiment for very large n). Many more examples are contained
in [1, 2].

What do these numbers mean? What is a significance of the combinatorial
entropy of a drawing? The definition of the combinatorial entropy is motivated
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by the research done by prof. Michel Mendes France in a series of papers devoted
to the analysis of curves, [25]. He defines the temperature T (D) of a curve D
by the following formula

T (D) = (log
E(i(L, D))

E(i(L, D)) − 1
)−1

where expectation relates to the random selection of the line L.
He related this parameter to entropy, dimension and other parameters which

he defined in an analogy to fractal theory, statistical physics and geometric
probability and integral geometry. These definitions rest on classical theorems
due to Steinhaus [37] (which in turn goes to Poincaré). One can show that the
logHc(D) is a good approximation of the entropy of a curve. Thus the name
Combinatorial Entropy for our invariant.

By viewing a drawing as a set of curves and thinking of Eulerian trail [22](in
each component of the drawing) as a new curve of double length (as we traverse
every segment of a drawing twice) we can define the the temperature by the
same formula for a more general class of pictures (drawings). For large num-
ber of intersections (of a drawing D with a line L) the temperature T (D) is
approximately equal to the average value of i(D, L)− 1 = Hc(D) − 1 while the
entropy H(D) (in the classical sense) is approximated by the logarithm of the
combinatorial entropy Hc(D). It follows (and this is Steinhaus’ theorem) that
the combinatorial entropy Hc(D) of a drawing D is approximated by the ratio

2`(D)/c(D)

where `(D) denotes the total length of the drawing D and c(D) denotes the
length of circumference of the (convex closure) of D. (This suggests the alter-
native name fractional length, see [30] for details.)

Based on these interpretations Hc(D) measures the information content and
the amount of work which the artist (explicitly) put into his drawing. On the
other hand, by comparing various drawings of the same object (or theme) the
lower Hc(D) indicates the elegance and simplicity of the output. However as
such the combinatorial entropy captures only the global properties of the draw-
ing (expressed by the total length of the drawing and the circumference). Still,
via the average number of intersections it captures, implicitly, many properties
of the drawing. In [30] we also proposed a technique (based on the algebraic
structure cogroup ) to generate harmonious objects. In our setting this can be
formulated as follows:

Hereditary Combinatorial Entropy Thesis
A harmonious (or aesthetically pleasing) drawing or design has combinatorial

entropy in each of its (meaningful) parts proportional to the global combinatorial
entropy. Here a meaningful part is a part which reflects the properties of D.

For the following (author) drawing (of our institute in Prague)
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we found the following distribution of combinatorial entropies (this is based
on the regular partition of the square into smaller squares; the combinatorial
entropy of the drawing restricted to a particular subsquare is listed in the middle
of the subsquare):
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7 Constructible World

The spiritual contents of art is growing. More and more an artistic object is an
act, quoting Damisch, a move of the mind. A painter thinks and he/she does so
through and in his/her painting, just in the same way as a mathematician thinks
and he/she does so through his/her results: definitions, theorems, proofs. We do
not have here in mind only conceptual art and the like, we think of art generally.
And this is not a revolution. Only the dust of time, misinterpretations of history
and the pride of contemporaries covered all the bold moves (how fitting a word
in this context) of old masters. Let us summarize:

Our intention in this short paper has been to draw some parallels between
art and mathematics mainly from the creative point of view. We have tried
to stress some similarities. [28, 29, 30] contains some more and perhaps more
complete material. The interested reader probably knows many other examples
of such similarities from his/her experience.

Is the existence of such similarities just a coincidence? We do not know. Let
us end this note in a highly speculative way:

In mathematics there is a principle called ‘Church thesis’ which in essence
claims that every (intuitive) algorithmic procedure takes a particular form, a
form expressed by (any) universal computing machine. Maybe something like
Church’s thesis holds in general for human activities. Let us try to formulate
this thesis as follows:
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Creative Thesis( [29])
All sufficiently deep human activities, all sufficiently deep understandings,

have profound similarities. This is exhibited in the way the work (knowledge)
is organized, in the way it is revealed and in the way it interacts with other
activities.

Admittedly this is too vague. But this one has to expect at such a level of
generality.

Perhaps one should interpret the thesis positively. How often are stressed
only the conflicting features of artistic and scientific communities, say, along
the lines of feelings and sensibilities as opposed to mind and brain activities.
We feel that these views are often superficial and isolationist, and sometimes
simply an overreaction. On the other hand there is a numerous supporting
evidence and two such examples were considered in [29]: sketches or sketching
and minimalistic trends.

By the same token it is difficult to find a counterexample to the thesis.
Mathematics, in particular, is a rich generator of complex patterns and as such
it is often used (above we mentioned some examples). So it will be difficult to
break the mathematical trap -everything goes, everything is possible. There is
no doubt that the new means of technology and guided by math- and computer-
devices will lead to new art form. But it is a conviction of this author that to
break the trap of uniformity and unbelievable combinatorial variety of technol-
ogy will require some profound and probably not yet discovered ideas. And this
is probably the realm of scientists and artists, maybe for the first time since the
Renaissance. We do not know yet.

But we have to try...
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