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4Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
5Institute of Software Technology, Graz University of Technology

Abstract
We consider several classes of intersection graphs of line segments in the

plane and prove new equality and separation results between those classes. In
particular, we show that:

• intersection graphs of grounded segments and intersection graphs of down-
ward rays form the same graph class,

• not every intersection graph of rays is an intersection graph of downward
rays, and

• not every outer segment graph is an intersection graph of rays.

The first result answers an open problem posed by Cabello and Jejčič. The third
result confirms a conjecture by Cabello. We thereby completely elucidate the
remaining open questions on the containment relations between these classes
of segment graphs. We further characterize the complexity of the recognition
problems for the classes of outer segment, grounded segment, and ray intersection
graphs. We prove that these recognition problems are complete for the existential
theory of the reals. This holds even if a 1-string realization is given as additional
input.
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1 Introduction

Intersection graphs encode the intersection relation between objects in a col-
lection. More precisely, given a collection A of sets, the induced intersection
graph has the collection A as the set of vertices, and two vertices A,B ∈ A
are adjacent whenever A∩B 6= ∅. Intersection graphs have drawn considerable
attention in the past thirty years, to the point of constituting a whole subfield
of graph theory (see, for instance, the book from McKee and McMorris [20]).
The roots of this subfield can be traced back to the properties of interval graphs
— intersection graphs of intervals on a line — and their role in the discovery of
the linear structure of bacterial genes by Benzer in 1959 [1].

We consider geometric intersection graphs, that is, intersection graphs of
simple geometric objects in the plane, such as curves, disks, or segments. While
early investigations of such graphs are a half-century old [28], the modern theory
of geometric intersection graphs was established in the 1990s by Kratochv́ıl [14,
15], and Kratochv́ıl and Matoušek [16, 17]. They introduced several classes
of intersection graphs that are the topic of this paper. Geometric intersection
graphs are now ubiquitous in discrete and computational geometry, and deep
connections to other fields such as complexity theory [19, 24, 25] and order
dimension theory [7, 8, 10] have been established.

We will focus on the following classes of intersection graphs, most of which
are subclasses of intersection graphs of line segments in the plane, or segment
(intersection) graphs. In this paper, all geometric objects we consider lie in the
plane.

Grounded Segment Graphs. Given a grounding line ` in the plane, we call
a segment s in the plane a grounded segment if one of its endpoints, called the
base point, is on ` and the interior of s is above `. A graph G is a grounded
segment graph if it is the intersection graph of a collection of grounded segments
(w.r.t. the same grounding line `).

Outer Segment Graphs. Given a grounding circle C in the plane, a segment
s in the plane is called an outer segment if exactly one of its endpoints, called
the base point, is on C and the interior of s is inside C. A graph G is an outer
segment graph if it is the intersection graph of a collection of outer segments
(w.r.t. the same grounding circle C).

Ray Graphs and Downward Ray Graphs. A graph G is a ray graph if it
is the intersection graph of rays (halflines) in the plane. A ray r in the plane is
called a downward ray if its apex is above all other points of r. A graph G is a
downward ray graph if it is the intersection graph of a collection of downward
rays. It is not difficult to see that every ray graph is also an outer segment
graph: consider a circle C that contains all intersections in its interior, make C
the grounding circle and restrict every ray to the interior of C. Similarly, one
can check that every downward ray graph is a grounded segment graph.
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String Graphs. String graphs are defined as intersection graphs of collections
of Jordan arcs in the plane with no three intersecting in the same point. A Jor-
dan arc in the plane is the image of an injective continuous map of a closed
interval into the plane. We consider here 1-string graphs, defined as intersection
graphs of strings that pairwise intersect at most once. In particular, we define
outer 1-string graphs and grounded 1-string graphs in the same way as for seg-
ments.

In a recent paper, Cabello and Jejčič initiated a comprehensive study aiming
at refining our understanding of the containment relations between classes of
geometric intersection graphs involving segments, disks, and strings [3]. They
introduced and solved many questions about the containment relations between
various classes. In particular, they proved proper containment between intersec-
tion graphs of segments with k or k + 1 distinct lengths, intersection graphs of
disks with k or k+ 1 distinct radii, and intersection graphs of outer strings and
outer segments. In their conclusion [3], they left two natural questions open:

• Is the class of ray graphs a proper subclass of the class of outer segment
graphs?

• Is the class of downward ray graphs a proper subclass of the class of
grounded segment graphs?

In this contribution, we answer the first question in the positive, thereby
proving a conjecture of Cabello. We also give a negative answer to the second
question by showing that downward rays and grounded segments yield the same
class of intersection graphs. We henceforth completely settle the remaining open
questions on the containment relations between these classes of segment graphs.
We summarize the complete containment relationship in Theorem 1.

Theorem 1 The following containment relations of intersection graph classes
hold:

1. grounded segment graphs = downward ray graphs,

2. downward ray graphs ( ray graphs,

3. ray graphs ( outer segment graphs,

4. outer segment graphs ( outer 1-string graphs, and

5. outer 1-string graphs = grounded 1-string graphs.

Note that Item 4 of Theorem 1 was proved already by Cabello and Jejčič and
that Item 5 can be seen as folklore. A schematic description of the established
inclusion relations between the graph classes we consider is given in Figure 1.

For the sake of completeness, we reprove all inclusions and equalities of
Theorem 1 in Section 2. In Section 5, we show that downward ray graphs are
a proper subclass of ray graphs and ray graphs are a proper subclass of outer
segment graphs. See Theorem 3 and Theorem 4.
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Figure 1: Schematic description of Theorem 1.

Given a representation R of a graph G in one of the ways defined above, we
get in a natural way an ordering σ(R) of all the vertices. Note that a given graph
G might be realized with two different representations R 6= R′, which introduce
two different orderings σ 6= σ′. Conversely, given a graph G and an ordering π,
we can enforce that any representation R of G induces the ordering π.

The Complexity Class ∃R and the Stretchability Problem The com-
plexity class ∃R is the collection of decision problems that are polynomial-time
equivalent to deciding the truth of sentences in the first-order theory of the reals
of the form:

∃x1∃x2 . . . ∃xnF (x1, x2, . . . , xn),

where F is a quantifier-free formula involving inequalities and equalities of poly-
nomials in the real variables xi. This complexity class can be understood as a
“real” analogue of NP. It can easily be seen to contain NP, and is known to be
contained in PSPACE [4].

In recent years, this complexity class revealed itself most useful for charac-
terizing the complexity of realizability problems in computational geometry. A
standard example is the pseudoline stretchability problem.

Matoušek [18, page 132] defines an arrangement of pseudolines as a finite
collection of curves in the plane that satisfy the following conditions:

(i) Each curve is x-monotone and unbounded in both directions.

(ii) Every two of the curves intersect in exactly one point, and they cross at
the intersection.

In the stretchability problem, one is given the combinatorial structure of an
arrangement of pseudolines in the plane as input, and is asked whether the same
combinatorial structure can be realized by an arrangement of straight lines. If
this is the case, then we say that the arrangement is stretchable. This structure
can for instance be given in the form of a set of n local sequences: the left-to-
right order of the intersections of each line with the n− 1 others. Equivalently,
the input is the underlying rank-3 oriented matroid. The stretchability prob-
lem is known to be ∃R-complete [26]. We refer the reader to the surveys by
Schaefer [24], Matoušek [19], and Cardinal [5] for further details.
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Computational Complexity Questions Given a graph class G, we define
Recognition(G) as the following decision problem:

Recognition (G)

Input: A graph G = (V,E).
Question: Does G belong to the graph class G?

Potentially the recognition problem could become easier if we have some
additional information. In our case it is natural to ask if a given outer 1-string
representation of a graph G has an outer segment representation. The same goes
for grounded 1-strings and grounded segments. Finally, we will consider outer 1-
strings and rays. Formally, we define the decision problem Stretchability(G,F)
as follows.

Stretchability (G,F)

Input: A graphG = (V,E) and representationR that shows thatG belongs
to F .
Question: Does G belong to the graph class G?

Note that we need to assume that F is a graph class defined by intersections
of certain objects.

We also complete the picture by giving computational hardness results on
recognition and stretchability questions by proving the following theorem.

Theorem 2 The following problems are ∃R-complete:

• Recognition(grounded segment graphs) and
Stretchability(grounded segment graphs, grounded 1-string graphs),

• Recognition(ray graphs) and
Stretchability(ray graphs, outer 1-string graphs), and

• Recognition(outer segment graphs) and
Stretchability(outer segment graphs, outer 1-string graphs).

We want to point out that all statements of Theorem 2 are proven in one
simple and unified way. This uses heavily the complete chain of containment
of the graph classes and the intrinsic similarity of all considered graph classes.
A highlight of Theorem 2 is certainly the ∃R-completeness of the recognition
problem for ray intersection graphs. Note that this strengthens the result of
Cabello and Jejčič on the separation between outer 1-string and outer segment
graphs.

The main idea of the proof of Theorem 2 is a reduction from stretchability.
One important tool is the order forcing lemma, which we already mentioned



278 J. Cardinal et al. Intersection Graphs of Rays and Grounded Segments

above. In addition to that we need a new ingredient. In this case, we introduce
in a simple way so-called, probes, which enforce that the order of intersections
for certain segments are in an order that is prescribed by the given pseudoline
arrangement.

Previous Work and Motivation. The understanding of the inclusion prop-
erties and the complexity of the recognition problem for classes of geometric
intersection graphs have been the topic of numerous previous works.

Early investigations of string graphs date back to Sinden [28], and Ehrlich,
Even, and Tarjan [9]. Kratochv́ıl [14] initiated a systematic study of string
graphs, including the complexity-theoretic aspects [15]. It is only relatively
recently, however, that the recognition problem for string graphs has been iden-
tified as NP-complete [25]. NP membership is far from obvious, given that there
exist string graphs requiring exponential-size representations [16].

Intersection graphs of line segments were extensively studied by Kratochv́ıl
and Matoušek [17]. In particular, they proved that the recognition of such
graphs was complete for the existential theory of the reals. A key construction
used in their proof is the Order-forcing Lemma, which permits the embedding
of pseudoline arrangements as segment representations of graphs. Some of our
constructions can be seen as extensions of the Order-forcing Lemma to grounded
and outer segment representations.

Outer segment graphs form a natural subclass of outer string graphs as
defined by Kratochv́ıl [14]. They also naturally generalize the class of circle
graphs, which are intersection graphs of chords of a circle [22].

A recent milestone in the field of segment intersection graphs is the proof
of Scheinerman’s conjecture by Chalopin and Gonçalves [6], stating that planar
graphs form a subclass of segment graphs. It is also known that outerplanar
graphs form a proper subclass of circle graphs [30], hence of outer segment
graphs. Cabello and Jejčič [3] proved that a graph is outerplanar if and only if
its 1-subdivision is an outer segment graph.

Intersection graphs of rays in two directions have been studied by Soto and
Telha [29]. They show connections with the jump number of some posets and
hitting sets of rectangles. The class has been further studied by Shrestha et
al. [27], and Mustaţă et al. [21]. The results include polynomial-time recognition
and isomorphism algorithms. This is in contrast with our hardness result for
arbitrary ray graphs.

Properties of the chromatic number of geometric intersection graphs have
been studied as well. For instance, Rok and Walczak proved that outer string
graphs are χ-bounded [23], and Kostochka and Nešetřil [12, 13] studied the
chromatic number of ray graphs in terms of the girth and the clique number.

The complexity of the maximum clique and independent set problems on
classes of segment intersection graphs is also a central topic of study. It has
been shown recently, for instance, that the maximum clique problem is NP-
hard on ray graphs [2], and that the maximum independent set problem is
polynomial-time tractable on outer segment graphs [11].
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Organization of the Paper. In the next section, we give some basic defini-
tions and observations. We also provide a short proof of the equality between
the classes of downward ray and of grounded segment graphs.

In Section 3, we introduce the Cycle Lemma, a construction that will allow
us to control the order of the slopes of the rays in a representation of a ray
graph, and the order in which the segments are attached to the grounding line
or circle in representations of grounded segment and outer segment graphs.

In Section 4, we show how to use the Cycle Lemma to encode the pseudoline
stretchability problem in the recognition problem for outer segment, grounded
segment, and ray graphs. We thereby prove that those problems are complete
for the existential theory of the reals.

Finally, in Section 5, we establish two new separation results. First, we
prove that ray graphs form a proper subclass of outer segment graphs, proving
Cabello’s conjecture. Then we prove that downward ray graphs form a proper
subclass of ray graphs.

2 Preliminaries

We first give a short proof of the equality between the classes of downward ray
and grounded segment graphs, thereby answering Cabello and Jejčič’s second
question. The proof is illustrated in Figure 2.

Lemma 1 (Downward Ray Graphs = Grounded Segment Graphs)
A graph G can be represented as a grounded segment graph if and only if it can
be represented by downward rays.

Figure 2: Grounded segments and downward rays.

Proof: Consider a coordinate system where the grounding line is the x-axis,
and take the projective transformation defined in homogeneous coordinates byxy

1

 7→
 x
−1
y

 .



280 J. Cardinal et al. Intersection Graphs of Rays and Grounded Segments

This projective transformation is a bijective mapping from the projective plane
to itself, which maps grounded segments to downward rays. In the plane, it
can be seen as mapping the points (x, y) with y > 0 to (x/y,−1/y). Projective
transformations preserve the incidence structure and straightness. Thus the
equivalence of the graph classes follows. �

Lemma 2 (Ray Graph Characterization) A graph G can be represented as
an outer segment graph with all intersections of the supporting lines inside the
grounding circle C if and only if it can be represented by rays.

Proof: See Figure 3 for an illustration of the following.
(⇐) Let R be a representation of G by rays, and let L be the set of the

lines extending all involved rays. Then there exists a circle C that contains
all the intersections of L and at least some part of each ray. We define a
representation R′ of G as outer segment representation by restricting each ray
to the inside of C. It is easy to see that this indeed is a representation of G with
the desired property.

(⇒) Let R be a representation of G by outer segments with all intersections
of the supporting lines inside the grounding circle C. We define a set of rays by
just extending each segment at its base point on the grounding circle C to a ray.
If two segments intersected before, then the corresponding rays will intersect as
well trivially. Moreover, by the assumption that all the line extensions intersect
inside C, it follows that the rays will not intersect outside Cs, and hence the
cooresponding ray graph is a representation of G. �

Figure 3: Rays and outer segments.

Note that it is tempting to try to find a projective transformation that maps
the unit circle S1 to infinity in a way that outer segments become rays. As we
will show later, outer segments and rays represent different graph classes. Thus
such a mapping is impossible. With the help of Möbius transformations it is
possible to find a mapping that maps the unit circle S1 to infinity. However,
outer segments then become connected parts of hyperbolas instead of straight-
line rays.
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For the following lemma, recall that we define grounded 1-string graphs and
outer 1-string graphs in an analogous way to the corresponding segment graphs
by replacing segments by 1-strings.

Lemma 3 (Grounded 1-String Graphs = Outer 1-String Graphs)
A graph G can be represented as a grounded 1-string graph if and only if it can
be represented as an outer 1-string graph.

Proof: See Figure 4 for an illustration of this proof.
(⇒) Let R be a representation of G by grounded 1-strings with grounding

line `. Take a large circle C that completely contains R and extend the 1-strings
perpendicularly from the grounding point on ` to the opposite side of ` until
they meet the circle C. This procedure yields an outer 1-string representation
with grounding circle C and the same incidences as R, hence an outer 1-string
representation of G.

(⇐) Let R be a representation of G by outer 1-strings grounded on a circle C.
Let ` be a horizontal line below C. Extend any 1-string whose grounding point
is on the bottom half of C with a vertical line segment to `. Extend any 1-string
whose grounding point is on the top half of C with a horizontal segment followed
by a vertical segment from C to the line `. This procedure clearly does not alter
any incidences. Thus it provides a grounded segment representation of G. �

Figure 4: Outer 1-strings and grounded 1-strings.

Ordered Representations. Given a graph G and a permutation π of the
vertices, we say that a grounded (segment or string) representation of G is π-
ordered if the base points of the cooresponding segments or strings are in the
order of π on the grounding line, up to inversion and cyclic shifts. In the same
fashion, we define π-ordered for outer (segment or string) representations and
(downward) ray representations, where rays are ordered by their angles with
the horizontal axis.
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3 Cycle Lemma

For some of our constructions, we would like to force that the segments or
strings representing the vertices of a graph appear in a specified order on the
grounding line or circle. More exactly, we would like to force the representation
to be π-ordered for some given permutation π. To this end, we first study some
properties of the representation of cycles, which in turn will help us to enforce
this order.

Given a graph G = (V,E) on n vertices V = {v1, . . . , vn} and a permutation
π of the vertices of G, we define the order forcing graph Gπ as follows. The
vertices V (Gπ) are defined by V ∪{1, . . . , 2n2} and the edges E(Gπ) are defined
by E ∪{ (2in, vπ(i)) | i = 1, . . . , n }∪ { (i, i+ 1) | i = 1, . . . , 2n2 } (here, for conve-
nience, we consider addition modulo 2n2 so that 2n2 + 1 = 1). The definition
is illustrated on Figure 5.

For the sake of simplicity, we think of π as being the identity and the vertices
as being indexed in the correct way. The vertices of G are called relevant, and
the additional vertices of Gπ are called cycle vertices. Note that on the cycle,
the distance between any two cycle vertices u, v that are adjacent to different
relevant vertices is at least 2n.

v1

v2

v3

v4

π = (1234)

16

8 24

32

v1

v2

v3

v4

Figure 5: Illustration of the definition of order forcing graphs.

Lemma 4 (Cycle Lemma) Let G be a graph and π be a permutation of the
vertices of G. Then there exists a π-ordered representation of G if and only if
there exists a representation of Gπ. This is true for the following graph classes:
grounded segment graphs, ray graphs, outer segment graphs, and outer 1-string
graphs.

Note that for the case that |V (G)| ≤ 3 this statement is trivial, as it can
be easily checked that in these finitely many cases both graphs can always be
realized. Thus from now on, we assume that |V (G)| ≥ 4.
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Before proving Lemma 4 we first study the representations of cycles. Let
C = 1, 2, 3, . . . , n be a cycle of length n and R be a 1-string representation of
C. Then each string i has exactly two crossings, namely, one with string (i− 1)
and one with string (i+1). The part of i between the two intersections is called
central part of i and denoted by zi. The intersection points are denoted by pi,i−1
and pi,i+1. We use this notation throughout this section.

1

2

3

5

4

1

23
4

5

z5

z1

z2

z3

z4
p45

p12

p51

p23

p34

Figure 6: A 1-string representation of a 5-cycle.

Lemma 5 Let C be a cycle and R be a 1-string representation of C. The
union of all central parts of all the 1-strings of R forms a Jordan curve, which
we denote by J(C). This also holds in case that C is an induced subgraph of
some other graph G.

Proof: Using the above notation, the curve can be explicitly given as:

J(C) := p12, z2, p23, z3, . . . , zn, pn1, z1.

Obviously, J(C) is a continuous curve. Moreover, as C is a cycle or an induced
cycle of some other graph G, there are no further crossings between the strings
of R and hence J(C) is indeed a Jordan curve. �

Lemma 6 Let C be an induced cycle of the graph G and R be an outer 1-string
representation of G. Further, let a, b /∈ V (C) be two adjacent vertices, which are
respectively adjacent to ua and ub in V (C) with dist(ua, ub) ≥ 4 on the cycle,
and to no other vertex of C. Then a must intersect the central part of ua, b
must intersect the central part of ub, and a and b must intersect in the interior
of J(C).

Proof: Let i ∈ V (C) be an outer 1-string. We denote by start(i) the portion of
i between its base point and the first point on the central part, which we denote
by pi. Given three distinct points p, q, r on J(C), we denote by path(p, q, r) the
portion of J(C) bounded by p and q and containing r. Similarly, let p, q, r be
three distinct points on the grounding circle. Then there exists a unique portion
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i

j j − 2

j + 2

i+ 2

i− 2 R(i)

R(j)

Figure 7: Illustration of Lemma 6.

circle(p, q, r) of the grounding circle bounded by p and q and containing r. For
each i ∈ V (C), we consider the region R(i) bounded by the following four curves:

start(i− 2) , path(pi−2, pi+2, pi) , start(i+ 2) , circle(i− 2, i+ 2, i).

We summarize a few useful facts on these regions.

1. String i is contained in the union of the region R(i) and the interior
of J(C).

2. If dist(i, j) ≥ 4, then R(i) and R(j) are interior disjoint and i ∩Rj = ∅.

3. If v /∈V (C) is adjacent to i∈V (C) but not adjacent to any other j∈V (C),
then the base point of v must be inside R(i).

The first statement follows from the fact that i is disjoint from i−2 and i+2, as C
is an induced cycle. The second statement can be derived from the definition
of R(i) as follows. The two regions R(i) and R(j) define some closed Jordan
curve J . As C is an induced cycle, the boundaries of those regions cannot cross
because this would produce a forbidden adjacency in C. The last statement
follows from the fact that there is no way to reach the central part or R(i) in
the case that v does not start in R(i). Suppose for the purpose of contradiction
that v does not start in R(i). Then it must start in some other R(j) with
dist(i, j) ≥ 4, as R(0), R(4), R(8), . . . cover the outer circle. Furthermore, v is
not adjacent to any vertex defining the boundary of R(j), by assumption. Thus
v is completely contained in R(j). By Fact 1, string i is completely outside
of R(j). Thus v and i do not intersect — contradiction.

We can now complete the proof. The outer 1-string a must have its base
point in R(ua), and b must have its base point in R(ub), by Fact 3. These two
regions have disjoint interiors by Fact 2 and do not have a common boundary
formed by any part of ua or ub. Hence, as a and b are not allowed to cross any
other string of C, they can only intersect in the interior of J(C). �
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See Figure 7 for an illustration. We are now ready to prove our main lemma.

Proof of Lemma 4: (⇒) Let R be an ordered representation of G with respect
to π. We have to construct a representation Rπ of the graph Gπ.

We start with the case of outer 1-string graphs. We may assume w.l.o.g.
that every string in R intersects its grounding circle exactly in ints base point.
Then for any pair u and v of segments that are consecutive w.r.t. π, there is a
connected region E incident to the base points of both of them and to the part
of the grounding circle between them. For every string s of R, we add a tiny
outer segment ts close to the base point of s that properly crosses s and does
not cross any other string of R. It is straightforward to see that for every pair
u, v of strings of R that are consecutive w.r.t. π, the segments tu and tv can be
connected via a path of arbitrarily many strings inside E that does not interfer
with the remaining string representation; see the top part of Figure 8 for an
illustration.

v1 v2 v3 v1 v2 v3

v1

v2

v3

v1

v2

v3

Figure 8: Representations of order forcing graphs for ordered representations of
outer string graphs and grounded segment graphs.

For the case of grounded segment graphs, the line of argument is analogous to
the one for outer 1-string graphs, with the exception that the paths now consist
of grounded segments along the grounding line `. Further, the path between
the small segment for the first and the small segment for the last vertex in the
order π does not follow the grounding line ` but instead surrounds the original
grounded segment representation. Obviously, this is feasible with a path having
at least 3 segments; see the bottom part of Figure 8 for an example.

Next, we proceed with the case of outer segment graphs, which is more
involved. Let R be an ordered outer segment representation of G with respect
to π with grounding circle C. Modify R such that each segment stops at its last
intersection point. Further, any segment that does not intersect other segments
is redrawin such that it hits some other segment. Let u, v ∈ V (G) be two
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segments that are successive in the order of π, that is, the base points u and v
are consecutive on the grounding circle C. Further let d be the center of C. We
denote by E the region inside C, incident to u and v, and outside the convex
hull of all the truncated segments plus d; see the illustration on the left side of
of Figure 9. In order to construct Rπ, we will add the segments representing
the cycle vertices to R. As a first step, we add for each segment s of R a tiny
segment ts that crosses s very close to the base point of s, does not cross any
other segments, and has both endpoints on the grounding circle C. To close the
cycle, we add, for every pair u, v ∈ V (G) of two segments that are successive in
the order of π, a path inside E connecting tu and tv. To this end, note that the
boundary of E has at most n/2 + 1 reflex points r1, . . . , rk, where each reflex
point comes from a common endpoint of two truncated segments or the center
d of C. We extend k rays from the center d of C through r1, . . . , rk. This divides
E in at most k+1 convex regions. Note that k+1 ≤ n/2+2 ≤ 2n−1, for n ≥ 4.
Recall that on the added cycle, the distance between any two cycle vertices a, b
which are adjacent to different relevant vertices is at least 2n. It is easy to see
that we can place one grounded segment into each region such that they form
the desired path from tu to tv without intersecting any other segment from R.
In order to obtain enough segments on the path, it might be necessary to use
several segments inside one region.

u

v

E

u

v

u

v

Figure 9: Representation of Gπ as outer segment graph.

Now we show the statement for ray graphs, see Figure 10. We start with
a representation R of our ordered ray graph of G with respect to π. Let D
be a sufficiently large disk that contains all ray starting points as well as all
intersections among all the rays and let ∂D be the boundary of D. For each
ray r we define `r to be the line orthogonal to r through the unique point ∂D∩r.
Note that `r is usually not tangent to ∂D. However, when the radius of D goes
to infinity and the center of D remains unchanged, then the angle between `r and
∂D converges to π/2. Hence, by choosing D large enough, we obtain that the
collection of all lines `r defined in this way determine a convex polygonal region
P in which each `r is the supporting line of an edge of P . It can happen that P
is unbounded, if all rays are downward for instance. The convex polygon Q is
defined by adding n sufficiently small edges in the vicinity of each vertex of P .
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(Recall that the distance between two consecutive vertices on the cycle is 2n.)
In case P is unbounded, we define Q in a way that it is bounded, by adding
an appropriate edge. There are clearly many ways to construct Q. Anyway is
fine as long as Q has n + n2 vertices and every 2n-th edge is intersected by a
ray. Now denote with v1, . . . , vk the k = n+ n2 orthogonal vectors of the edges
e1, . . . , ek of Q in clockwise order. We place at each edge ei two rays qi and ri
with slopes vi+1 and vi so that qi and ri intersect (their apices being close to the
endpoints of the edges and not on any ray of R). This step is illustrated with a
regular k-gon Q at the right of Figure 10. It is easy to see that the intersection
graph of these rays is a cycle, after a small perturbation. Further each ray of
R intersects exactly one of the new rays. The representation Rπ of Gπ is the
union of the rays of R and the newly defined rays.

r

`r

P

Q
ei

qi
ri

Figure 10: Illustration of the proof of Lemma 4 for rays.

(⇐) Recall that we have to show the following. If Gπ has a representation,
then G also has a π-ordered representation. We show this by considering a
representation Rπ of Gπ. It is clear that Rπ restricted to the relevant vertices
gives a representation of G. We will show that the vertices V (G) are π-ordered.

It is sufficient to consider outer 1-string graphs. This is easy to see for outer
segment graphs as every outer segment representation is also an outer 1-string
representation. For rays, downward rays and grounded 1-strings, we know how
to transform any representation into an outer 1-string representation without
altering the order, see Section 2.

By Lemma 6, each relevant outer 1-string adjacent to the circle vertex i is
fully contained in the region R(i), as described in the proof of Lemma 6. As all
regions R(2n), R(4n), R(6n), . . . are pairwise disjoint and arranged in this order
on the grounding circle, this order is also enforced on the 1-strings of V (G). �
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4 Stretchability

The main purpose of this section is to show that the recognition of the graph
classes defined above is ∃R-complete. For this we will use Lemma 4 extensively.
It is likely that our techniques can be applied to other graph classes as well.

For convenience, we state again the theorem that we prove in this section.

Theorem 2 The following problems are ∃R-complete:

• Recognition(grounded segment graphs) and
Stretchability(grounded segment graphs, grounded 1-string graphs),

• Recognition(ray graphs) and
Stretchability(ray graphs, outer 1-string graphs), and

• Recognition(outer segment graphs) and
Stretchability(outer segment graphs, outer 1-string graphs).

Proof: We first show ∃R-membership. Note that each of the straight-line
objects we consider can be represented with at most four variables: for segments,
we use two variables for each endpoint, and for rays, we use two variables for
the apex and two variables for the direction. The condition that two objects
intersect can be formulated with constant-degree polynomials in those variables.
Hence, each of the problems can be formulated as a sentence in the first-order
theory of the reals of the desired form. Note that the given representation of the
stretchability instance is correct by assumption and hence need not be verified.

Let us now turn our attention to the ∃R-hardness. It is sufficient to show
hardness for the stretchability problems, as the problems can only become easier
with additional information. We will reduce from stretchability of pseudoline
arrangements. Given a pseudoline arrangement L, we will construct a graph GL
and a permutation π such that the following statements hold:

1. If L is stretchable, then GL has a π-ordered representation with grounded
segments.

2. If L is not stretchable, then there does not exist a π-ordered representa-
tion of GL as an outer segment graph.

By Lemma 4 GL has a π-ordered representation if and only if GπL has a repre-
sentation. Recall that we know the following relations for the considered graph
classes.

grounded segment graphs ⊆ ray graphs ⊆ outer segment graphs.

Thus, Statement 1 implies that if L is stretchable then GL has a π-ordered
representation with rays or outer segments. Furthermore, Statement 2 implies
that if L is not stretchable then GL has neither a π-ordered representation with
rays nor with grounded segments.
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We start with the construction of GL and π. Let L be an arrangement of
n pseudolines. Recall that we can represent L by x-monotone curves. Let `1
and `2 be two vertical lines such that all the intersections of L lie between `1
and `2. We cut away the part outside the strip bounded by `1 and `2. This
gives us a π-ordered grounded 1-string representation RL with respect to the
grounding line `1.

`1 `1

a

b

a

b

s

c c

s1

s2

s3

Figure 11: Illustration of Theorem 2: Construction of GL and its grounded
1-string representation RG.

Now we replace each string s representing a pseudoline in L by the following
construction (extending π accordingly): We split s into three similar copies
s1, s2, s3, shifted vertically by an offset that is chosen sufficiently small so that
the three copies intersect the other pseudolines (and their shifted copies) in the
same order. For each successive intersection point of s with a pseudoline s′

in L, we add a pair of strings grounded on either side of the base point of s2 and
between the base points of s1 and s3, intersecting none of s1, s2 and s3. The two
strings intersect all the pseudolines of L that s intersects, up to and including s′,
in the same order as s does. All the strings for s are pairwise nonintersecting;
see Figure 11. We refer to these pairs of strings as probes. The probes are meant
to enforce the order of the intersections in all π-ordered representations.

We now prove Statement 1. We suppose there is a straight line representation
of L, which we denote by K. Again let `1 and `2 be two vertical lines such that
all intersections of K are contained in the vertical strip between them. This
gives us a collection of grounded segments RK. One can check that the above
construction involving probes can be implemented using straight line segments,
just as illustrated in Figure 11. Thus, RK is a π-ordered grounded segment
representation of GL, as claimed.

Next, we turn our attention to Statement 2 and suppose that L is not stretch-
able. Let us further suppose, for the purpose of contradiction, that we have a
π-ordered outer segment representation R′G of GL. We show that keeping only
the middle copy s2 of each segment s representing a pseudoline of L in our con-
struction, we obtain a realization of L with straight lines. For this, we need to
prove that the construction of the probes indeed forces the order of the intersec-
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tions. We consider each such segment s2 in the grounded 1-string representation
RG of GL and orient it from its base point to its other endpoint. Now suppose
that in R′G, there exist strings a and b such that the order of intersections of
s2 with a and b with respect to this orientation does not agree with that of RG
and hence that of the pseudoline arrangement. Assume that in R′G, s2 crosses
the lines b before a in the left-to-right order, other than in RG and other than
shown in Figure 11. In R′G, consider the region bounded by the arc of the
grounding circle between the base points of s1 and s3, and segments from s1, b,
and s3. Due to the π-orderedness of R′G, this region is convex and split into two
convex sub-regions by s2. The pair of probes corresponding to the intersection
of s2 and a is completely contained in this region, with one probe in each sub-
region. As the line a must intersect those probes, a must enter both sub-regions,
thereby intersecting s2 on the left of b with respect to the chosen orientation,
a contradiction. Therefore, the order of the intersections is preserved, and the
collection of segments s2 is a straight line realization of L, a contradiction to
the assumption that L is not stretchable. �

5 Rays and Segments

Theorem 3 (Downward Ray Graphs ( Ray Graphs) There are graphs
that admit a representation as ray graphs but not as downward ray graphs.

Proof: We consider the graph G and the permutation π as displayed in Fig-
ure 12 (left). We show that G does not have a π-ordered representation as a

e
f

h

g

a
b

d

c

π = (abcdefgh)

a b

c
d

ef

g

h

a b e fdc g1g2

Figure 12: Illustration of Theorem 3: A graph G together with a permutation π
of the vertices (left); A π-ordered outer segment representation of G (middle);
The segment g cannot enter the gray triangle without intersecting b or f (right).

grounded segment graph, hence Gπ has a representation as a ray graph, but
not as a grounded segment graph or a downward ray graph; see Lemma 4 and
Lemma 1.

Assume for the sake of contradiction that G has a π-ordered representa-
tion Rπ as a grounded segment graph. As G is rotation symmetric, we can
assume without loss of generality that in Rπ the base points of the segments
a, b, c, d, e, and f are sorted from left to right in this order along `; cf. Fig-
ure 12 (right). Consider first the segments a, f , b and e in Rπ. As a and f
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intersect, they form a triangle ∆af together with `. An according statement
holds for b and e with triangle ∆be. Moreover, as none of a and f intersects b or
e, and as the base points of b and e lie between the base points of a and f , the
triangle ∆be, as well as the whole segments b and e lie completely inside ∆af .
Now consider the segment d, which has its base point between b and e. As d
does not intersect any of b and e, d lies completely inside ∆be. Finally, consider
the segment g which has its base point either to the left of a or to the right of f .
The two possibilities are indicated with g1 and g2 in Figure 12 (right). On the
one hand, g must intersect d and hence enter the triangle ∆be. On the other
hand, g is not allowed to intersect any of b and f , a contradiction. �

Theorem 4 (Ray Graphs ( Outer Segment Graphs) There are graphs
that admit a representation as outer segment graphs but not as ray graphs.

α β

ab

u

v x

y

c d

ab

x

y

c d

u

v

a

b

u

v

x

y

c

d

α

π = (abuvcdxy)

Figure 13: Illustration of Theorem 4. On the left is a graph G together with
a permutation π of the vertices displayed. In the middle is a π-ordered outer
segment representation of G. The right drawing illustrates that the angles α
and β must each be at most 180◦.

Proof: Consider the graph G and a permutation π as displayed on the left of
Figure 13. We show that G has a π-ordered representation as an outer segment
graph, but not as a ray graph. This implies that Gπ has a representation as an
outer segment graph, but not as a ray graph, see Lemma 4.

Consider any π-ordered outer segment representation of G where grounding
points of the segments appear in clockwise order along the grounding circle, for
example the one depicted in the middle of Figure 13. Consider the intersection
point pbc of the segments b and c and the base points b′ and c′ of b and c,
respectively, and denote as α the angle between pbcc

′ and pbcb
′ in clockwise

order. Likewise, for the intersection point pad of the segments a and d and the
base points a′ and d′ of a and d, respectivily, let β be the angle between pada

′

and padd
′ in clockwise order.

We show that both α and β are smaller than 180◦ in any π-ordered outer seg-
ment representation of G. As the two cases are symmetric we show it only for α.
Assume α ≥ 180◦ as on the right of Figure 13. Note that if α ≥ 180◦, then the
region bounded in clockwise order by c′pbc, pbcb

′, and the part of the grounding
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circle between c′ and b′ is convex and the remaining parts of b and c lie outside
this region. Hence, u must intersect c′pbc and v must intersect pbcb

′. However,
by the π-orderedness of the representation, if u intersects c′pbc (as in Figure 13)
then it blocks v from intersecting b, as v must not intersect u. Likewise, v
intersecting b would block u from intersecting c. This shows α, β < 180◦.

As both angles are smaller than 180◦, we conclude that either the extensions
of a and b or the extensions of c and d must meet outside of the grounding circle
(as none of the extensions can intersect any of the segments b′c′ and a′d′ in the
interior of the grounding circle). Recall that we considered any π-ordered outer
segment representation of G. By Lemma 2 it holds for every ray graph that
there exists at least one representation of G with outer segments such that all
extensions meet within the grounding circle. (The lemma also holds for ordered
representations.) Thus there cannot be a π-ordered ray representation of G. �
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The first author also thanks Sergio Cabello for insightful discussions on these
topics. We also want to thank anonymous reviewers for their careful reading
and detailed comments. This helped us to improve the write up.



JGAA, 22(2) 273–294 (2018) 293

References

[1] S. Benzer. On the topology of the genetic fine structure. Pro-
ceedings of the National Academy of Sciences, 45(11):1607–1620, 1959.
doi:10.1073/pnas.45.11.1607.

[2] S. Cabello, J. Cardinal, and S. Langerman. The clique problem in ray
intersection graphs. Discrete & Computational Geometry, 50(3):771–783,
2013. doi:10.1007/s00454-013-9538-5.
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