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Abstract

Network rearrangement operations like SNPR (SubNet Prune and Re-
graft), a recent generalisation of rSPR (rooted Subtree Prune and Re-
graft), induce a metric on phylogenetic networks. To search the space of
these networks one important property of these metrics is the sizes of the
neighbourhoods, that is, the number of networks reachable by exactly one
operation from a given network. In this paper, we present exact expres-
sions for the SNPR neighbourhood of tree-child networks, which depend
on both the size and the topology of a network. We furthermore give
upper and lower bounds for the minimum and maximum size of such a
neighbourhood.
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1 Introduction

Phylogenetic trees and networks are used to represent and study the evolution-
ary relationships of species and languages. The set of all hypothesised net-
works to model the relationships for a set of data is referred to as a space of
phylogenetic networks. To navigate and work with such a space one common
tool is using rearrangement operations that transform one network into another
one and thereby induce a metric on the space. For phylogenetic trees three
well known such operations are the Nearest Neighbour Interchange (NNI) [20],
the Subtree Prune and Regraft (SPR) and Tree Bisection and Reconnection
(TBR) [1] operations. In recent years, the study of rearrangement operations
has moved from the tree space to the network space. For example, the NNI
operation has been generalised from trees to networks by Huber et al. [13], and
further considered in its unrooted variant [9, 14] and its rooted variant [12, 17].
Francis et al. [9] also introduced SPR and TBR on unrooted phylogenetic net-
works. Furthermore and as with this paper, the generalisation of rSPR (rooted
SPR) operation for rooted phylogenetic networks has been studied. Bordewich
et al. [3] introduced the SubNet Prune and Regraft (SNPR) operation, which
allows to navigate between phylogenetic networks with both the same and with
different number of reticulations. Gambette et al. [12] and Janssen et al. [17]
studied a slightly more powerful rSPR operation (reusing the original name) for
phylogenetic networks with the same number of reticulations.

An interesting property of these operations and spaces is the sizes of a neigh-
bourhood of a network. The neighbourhood problem with respect to a type of
operation asks how many networks in the space are exactly one such operation
apart from a given network. Robinson [20] already considered this question when
he laid the foundation for the studies of rearrangement operations with the in-
troduction of NNI on unrooted phylogenetic trees. Allen and Steel [1] solved the
problem for SPR on unrooted phylogenetic trees. The size of the neighbourhood
of an unrooted phylogenetic tree, for both NNI and SPR, only depends on the
number of leaves of the tree. However, Allen and Steel [1] further showed that
for unrooted trees and TBR, the size of the neighbourhood depends not only
on the number of leaves but also on the topology of the tree. Humphries and
Wu [15] later gave a closed formula for the neighbourhood under TBR using the
non-trivial splits of a tree to represent the topology. Beyond that, Baskowski
et al. [2] considered the problem for SPR and TBR on unrooted phylogenetic
trees that are restricted to a circular ordering of its leaves, and de Jong et al. [8]
considered the problem of finding neighbours that are two or more operations
away for an unrooted phylogenetic tree. For rooted phylogenetic trees and rSPR
the size of the neighbourhood depends again on the number of leaves, but also
on the topology of the tree. Song [21] gave a formula for this problem where
he characterises the size by the number of ancestors of each vertex in a tree.
He used a recursive approach to count neighbours, which he then transformed
into a closed formula. Furthermore, Song [22] did the same for totally ordered
phylogenetic trees.

The problem of determining the neighbourhood size gets harder for phylo-



JGAA, 22(2) 329–355 (2018) 331

genetic networks. Huber et al. [13] solved the problem for NNI operations on
unrooted level-1 networks. They showed that the size depends on structures of
the network like the number of cycles of size three and four. Gambette et al. [12]
extended this with an upper bound for the neighbourhood size of an unrooted
phylogenetic network and NNI, but restricted to networks with a fixed number
of reticulations. Similarly, Francis et al. [9] gave an upper bound for the same
networks but for SPR instead of for NNI. In this paper, we will show that for
rooted phylogenetic networks and SNPR the neighbourhood size depends on the
number of leaves, the topology of the network in terms of descendants and oc-
currences of certain structures. We will outline why identifying these structures
is difficult for rooted phylogenetic networks in general and for the classes of
tree-based [10] and reticulation-visible [16] networks. However, for classes like
tree-child [24], normal [25] and level-1 [11] networks, the dependencies of the
neighbourhood size on the topology are comprehensible. We will focus on the
class of tree-child networks, a class for which several problems that are difficult
in general can be solved efficiently [4, 5, 7, 23]. The class of tree-child networks
is also not as restricted as normal and level-1 networks, which are in fact sub-
classes of it. The main result of this paper is a formula for the neighbourhood
size of a tree-child network under SNPR. As byproduct we reprove the formula
for rooted phylogenetic trees by Song. We also give bounds on the neighbour-
hood size that only depend on the number of leaves (Section 4). First, however,
we introduce the notation and terminology used throughout this paper.

2 Preliminaries
We now recall the definitions of rooted phylogenetic networks, the class of tree-
child networks, and the SNPR and NNI operations. We also formally define
the unit neighbourhood problem and structures of a phylogenetic network like
triangles, diamonds and trapezoids.

Phylogenetic networks. A rooted binary phylogenetic network N = (V,E)
is a directed acyclic graph with edges E and the following vertices V :

• the root ρ with in-degree zero and out-degree one,

• n leaves with in-degree one and out-degree zero bijectively labelled with
a set of taxa,

• inner tree vertices with in-degree one and out-degree two, and

• reticulations with in-degree two and out-degree one.

The tree vertices of N are the union of the inner tree vertices, the leaves and
the root. The unique edge incident to the root is called the root edge eρ. An
edge e = (u, v) is called a reticulation edge, if v is a reticulation, and a tree
edge, if v is a tree vertex. An edge not incident to the root or a leaf is an
inner edge. Furthermore, we call e = (u, v) pure, if u and v are both either
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tree vertices or reticulations, and impure otherwise. Throughout this paper we
assume that n ≥ 2 and let r denote the number of reticulations. There are thus
m = 2n+ 3r − 1 edges in N [19, Lemma 2.1].

Our definition of a rooted binary phylogenetic network allows the existence
of parallel edges. Furthermore, we note that our definition of the root is known
as pendant root [3] and that it differs from another common definition where
the root has out-degree two. Our variation serves both elegance and techni-
cal reasons. Since we only consider a fixed set of taxa, we omit its notation.
Moreover, throughout this paper we only consider phylogenetic networks that
are both rooted and binary and therefore refer to them simply as phylogenetic
networks.

Let N be a phylogenetic network. For two vertices u and v in N , we say
that u is a parent of v and v is a child of u, if there is an edge (u, v) in N . We
say u is ancestor of v and v is descendant of u if there is a directed path from
u to v in N . We say u and v are siblings if they have a common parent. For
ease of use, we also say that u is an uncle of v, if u is sibling of a parent of v.
In reverse, v is then the nephew of u.

Let (u, v), (x, y) be edges of N . We say (x, y) is a parent edge of (u, v) if
y = u. Consequently, (u, v) is then a child edge of (x, y). The two edges are
considered siblings if u = x. We say (u, v) is a descendant of (x, y) if either
y = u or if u is a descendant of y. In return, (x, y) is then an ancestor of (u, v).
For an edge e of N = (V,E) we use the function δ : E → N to count the number
of descendant edges of e, i.e. δ(e) := |{f ∈ E | f is descendant of e}|. For
example, in the phylogenetic network N2 in Figure 1 the edge g has δ(g) = 5
descendants and the root edge eρ has δ(eρ) = 2n + 3r − 2 = 17 descendants.
We note that we do not consider a vertex or an edge to be its own ancestor or
descendant.

Network classes. A phylogenetic network that has no reticulations is called
a rooted binary phylogenetic tree, or in this paper simply a phylogenetic tree. A
phylogenetic network in which every non-leaf vertex has a tree vertex as child is
a tree-child network. We denote by Nn all phylogenetic networks with n leaves,
and with Tn and T Cn the subsets of Nn consisting of all phylogenetic trees and
tree-child networks, respectively.

One important well known property of tree-child networks is that each vertex
v contains a path to a leaf consisting only of tree edges. Such a path is called a
tree path of v. Another property is that a tree-child network has at most n− 1
reticulations [6, Proposition 1].

A symmetry of a phylogenetic network N can be interpreted as an automor-
phism on N , distinct from the identity function, that fixes the leaf set of N . The
next proposition shows that tree-child networks have no such symmetries. It is
a reformulation of a result by McDiarmid et al. [19, Lemma 5.1]. This implies
that every vertex and every edge of a tree-child network is uniquely identifiable,
for example recursively by its set of descendant edges.
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Proposition 1 Let N ∈ T C.
Then N has exactly one automorphism that fixes its leaf set.

Note that it can also be shown that so-called normal networks, tree-sibling
networks and level-1 networks without parallel edges have no such symme-
tries [18]. We will see why this is favourable for counting neighbours in the
next section, and discuss at the end, in Section 5, why the problem gets harder
for more complex networks, which can have such symmetries.

Suboperations. To define SNPR operations we first have to define several
suboperations. Let G be a directed acyclic graph. A degree-two vertex v of G
with parent u and child w gets suppressed by deleting v and the edges (u, v)
and (v, w) and adding the edge (u,w). An edge (u,w) of G gets subdivided by
adding a new vertex v, deleting the edge (u,w) and adding the edges (u, v) and
(v, w). Hence, a subdivision is the reverse of a suppression.

Let N be a phylogenetic network. We say that an edge e = (u, v) of N with
u not a reticulation gets pruned by transforming it into the half edge (., v) and
suppressing u. In reverse, we say a half edge (., v) gets regrafted to an edge
(u,w) by becoming the edge (u′, v) where u′ is a new vertex subdividing (u,w).

SNPR. Let N ∈ Nn. Let e = (u, v) with u not a reticulation and f = (x, y)
an edge that is not a descendant edge of e. Then, like Bordewich et al. [3], we
define the SubNet Prune and Regraft (SNPR) operation that transforms N into
a phylogenetic network N ′ ∈ Nn by applying exactly one of the following three
operations:

(SNPR) If f 6= e, an SNPR operation (e, f) prunes e and regrafts it to f .

(SNPR+) If f 6= e, an SNPR+ operation (e, f) subdivides f and e with new
vertices u′ and v′, respectively, and adds the edge (u′, v′). If e = f ,
an SNPR+ operation (e, f) subdivides e twice with u′ and v′ such that
u′ is parent of v′, and adds the edge (u′, v′).

(SNPR−) If e is a reticulation edge, an SNPR− operation (e) deletes e and
suppresses u and v.

For an SNPR operation (e, f) (or equivalently for other types of operations),
we write (e, f)(N) to denote the phylogenetic network N ′ that results from
applying (e, f) to N . We note that SNPR is for rooted phylogenetic trees indeed
a generalisation of rSPR. Bordewich et al. [3] have shown that the three types
of SNPR operations are reversible. This means that for every SNPR operation
that transforms N into N ′, there exists an SNPR operation that transforms
N ′ into N , and that for every SNPR+ operation, there exists an inverse SNPR−
operation, and vice versa. The SNPR operation induces thus a distance function
and a metric on Nn. Bordewich et al. [3] also showed that Nn, Tn and T Cn
and other classes are connected under SNPR. Moreover, they showed that the
corresponding diameter of T Cn is linear in n.
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Figure 1: The phylogenetic network N2 can be obtained from N1 by the SNPR
operation (e, f). The phylogenetic networkN3 can be obtained fromN2 with the
SNPR− operation (g). Both operations have a corresponding SNPR and SNPR+
operation, respectively, that reverses the transformation.

NNI. The Nearest Neighbour Interchange (NNI) operation was defined on
(unrooted) phylogenetic trees [20], but has recently been generalised to unrooted
and rooted phylogenetic networks by Huber et al. [13, 14]. We define the NNI
operation here only for tree-child networks, because we will only use it as a
tool to count special sets of SNPR operations. Furthermore, our notation and
explanation below differ from the one of Huber et al. [13,14] for technical reasons
and since we consider rooted phylogenetic networks.

Let N ∈ T Cn and e = (u, v) be an edge of N . Note that e can not be a
pure reticulation edge, since N is tree child. If e is an inner edge, let g 6= e be
an edge incident to v. If u is a tree vertex, let f be the sibling edge of e and
otherwise a parent edge of e. Then we define the Nearest Neighbour Interchange
(NNI) operation that transforms N into N ′ ∈ T Cn by applying exactly one of
the following three operations:

(NNI) If e is an inner tree edge, an NNI operation (f, e, g) prunes g and regrafts
it to f , and, if e is a reticulation edge, prunes f and regrafts it to g.

(NNI+) An NNI+ operation (e, f) subdivides f with vertex u′ and e with vertex
v′, and adds the edge (u′, v′).

(NNI−) If e is the long side of a triangle (defined later), an NNI− operation (e)
deletes e and suppresses u and v.

The edge e is called the axis of the NNI operation (f, e, g). Note that our
definitions allow that N ′ = N . Figure 2 illustrates the three types of NNI
operations. We note that all three types of NNI operations are special cases of
SNPR operations. Furthermore, like for SNPR, we observe that NNI operations
are reversible and that NNI+ and NNI− operations are mutually inverse.

Neighbourhood. Two phylogenetic networks that are one SNPR operation
apart are called SNPR neighbours. The unit SNPR neighbourhood USNPR(N)
of N is the set of all SNPR neighbours of N . When we consider a tree-child
network N , we are only interested in neighbours that are also tree child. We
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Figure 2: The phylogenetic network N2 can be obtained from N1 by the NNI
operation (f, e, g). N3 can be obtained from N2 with the NNI− operation (g).
Both operations have a corresponding NNI operation (f ′, e′, g) and NNI+ oper-
ation (e, f), respectively, that reverses the transformation.

call this neighbourhood the unit SNPR tree-child neighbourhood and denote it
by UT CSNPR(N). Figure 3 gives an example of a tree-child network and its unit
tree-child SNPR neighbourhood.

For N ∈ Nn, we denote by ΘSNPR(N) the set of all SNPR operations on N .
(This can, in fact, be a multi-set, since (e, f) can denote an SNPR or an SNPR+
operation.) An operation on a tree-child network that yields again a tree-child
network is called tree-child respecting. If N ∈ T Cn, we write ΘT CSNPR(N) to
denote the set of tree-child-respecting SNPR operations on N . The definitions
for Tn and SNPR, SNPR+, and SNPR− are analogous.

An operation θ ∈ ΘSNPR(N) is called trivial, if θ(N) = N . Furthermore, we
call two distinct operations on N redundant, if they yield the same phylogenetic
network N ′. A set of pairwise redundant operations is called a redundancy set.
Note that |ΘSNPR(N)| ≥ |USNPR(N)|, since there can be trivial operations and
redundancy sets.

Structures. Let N ∈ T Cn. In the following we define certain subgraphs of N ,
which we call structures, that are the determining factor of whether operations
on N are tree-child respecting, trivial and redundant. Figure 4 accompanies our
description of these structures.

An r2 structure of N is a path of length two from a reticulation x via a
vertex u to a reticulation w. An r3 structure consists of four vertices x, y, u, w
with edges (x, y), (x, u) and (u,w) where y and w are reticulations. We refer to
the undirected path w, u, x, y as the underlying path of the structure. Note that
in both an r2 and an r3 structure, since N is tree child, both u and its second
child v are tree vertices. We abuse the notation to denote by r2 and r3 also the
number of these structures in N . We define r1 as the number of reticulations
in N whose child is a leaf.

Note that an r3 structure with y = w is a triangle. Formally, a triangle of
N consist of three vertices x, u, w with the edges (x, u), (x,w) and (u,w). We
call the edge (x, u) the top side, (x,w) the long side, and (u,w) the bottom side
of the triangle. We denote the number of triangles in N by t3. Furthermore, let
v 6= w be the second child of u. We note that since N ∈ T Cn, we know that u is
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Figure 3: A tree-child network N in the middle, with its SNPR tree-child neigh-
bourhood around it. The top row consists of the SNPR+ neighbours, the middle
row of the SNPR neighbours, and the bottom row of the SNPR− neighbours.

a tree vertex. Then if v is incident to three pure tree edges, we call the triangle
a tree-branching triangle. We denote the number of those by t∗3. We want to
point out that every tree-branching triangle of N is counted as an r3 structure,
as a triangle and as a tree-branching triangle.

For an r2, r3 structure, or a triangle, with the notation from above, we
call the tree edge (u, v) the critical edge of this structure. See again Figure 4,
where the critical edges are highlighted, and note how pruning them yields a
vertex without a tree child. This will be important in the next section when we
consider tree-child respecting SNPR operations.

A diamond of N is an undirected four-cycle consisting of edges (u, v), (u,w),

t∗3 d4 t4r2 r3

x

w

u
u

wv

z

u

z

v

w

r1

top

bottom

long
x x

u u

w w

y

vv
v

Figure 4: An r1, r2, and r3 structure, a tree-branching triangle t∗3, a diamond
d4, a trapezoid with outgoing tree edges t4. The critical edges (bold red) and
the paths between the reticulations of the r2 and r3 structure are highlighted.
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(v, z) and (w, z). A trapezoid is an undirected four-cycle consisting of edges
(u, v), (v, w), (w, z) and (u, z). We note that in both cases z is a reticulation.
Important for us are trapezoids with the outgoing edges of the four-cycle at v
and w being pure tree edges. We denote by d4 the number of diamonds and
with t4 the number of trapezoids with two outgoing pure tree edges.

3 SNPR neighbourhood of a tree-child network

Throughout this section let N ∈ T Cn. To count tree-child neighbours of N , it
is necessary to understand whether an SNPR operation on N results again in a
tree-child network, and which operations on N are redundant or trivial. In the
following we show that this only depends on different substructures of N . We
consider SNPR operations first, showing which respect the tree-child property,
which are trivial and which are redundant. This then allows us to count the
number of neighbours. After that, we include SNPR+ and SNPR− operations to
consider the SNPR neighbourhood.

Tree-child respecting SNPR operations. Let θ = (e, f) ∈ ΘT CSNPR(N) and
e = (u, v). For θ to respect the tree-child property, neither pruning (u, v)
nor then regrafting (., v) to f can yield a non-leaf vertex without a tree child.
Roughly speaking and as we show in the following lemma, this implies that if
e is a critical edge, then there are only limited options for f , and also that not
both e and f can be reticulation edges. Figure 5 illustrates the cases where e is
a critical edge.

u

v

u

v

x

yw v

u

v

x

yw

u′

x

w

Figure 5: Illustration of the cases r2, r3, and triangle, where there are only trivial
SNPR operations that prune (u, v) or in the case of r3 exactly one non-trivial one
as shown. This is formalised in Lemma 1

Lemma 1 Let N ∈ T Cn and (e, f) ∈ ΘSNPR(N), e = (u, v), f = (x, y) not a
descendant of e.
Then N ′ = (e, f)(N) is a tree-child network if and only if one of the following
cases holds:

(i) e is a reticulation edge and f is not a reticulation edge;

(ii) e is a pure tree edge that is not critical.

(iii) e is a critical edge and f is incident to u;
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(iv) e is a critical edge of an r3 structure with underlying path w, u, x, y such
that u and y are the children of x and f = (x, y);

(v) e is a critical edge of a triangle and f is the long side of the triangle.

Proof: We prove this by considering the different types of e = (u, v). By
definition of an SNPR operation, u can not be a reticulation. Thus, e can not be
a pure reticulation edge or an impure tree edge. Let e be an impure reticulation
edge, i.e. let v be a reticulation. Then, since N ∈ T Cn, the sibling w of v with
shared parent u is a tree vertex. Thus after pruning e and suppressing u, the
parent of u has in N ′ the vertex w as tree child. Hence, a reticulation edge
can always be pruned. Now, if f = (x, y) is a reticulation edge, then the new
vertex u′ in N ′, resulting from the subdivision of f , has the two children v and
y, which are both reticulations. Thus, if e is a reticulation edge, f can not be
a reticulation edge. If f is not a reticulation edge (Case (i)), then, in N ′, the
new vertex u′ has the tree child y, the vertex x has the tree child u′ and and all
other vertices stay unaffected.

Next, let e be a tree edge. Clearly, e is pure. If e is not critical (Case (ii)),
then either the sibling of v or the sibling of u is a tree vertex. Without loss of
generality let w, the sibling of v, be a tree vertex. Then, after pruning e and
suppressing u, the parent x of u has w as a tree child in N ′. Since v is a tree
vertex, regrafting (, v) to any edge f does not create a non-leaf vertex without
tree child. Hence, N ′ is tree child.

If e is critical and f incident to e (Case (iii)), as f is not a descendant edge
of e, then N ′ = N and N ′ is thus tree child. If e is the critical edge of an
r2 structure, then clearly f being incident to e is the only option for N ′ to be
tree child. If e is the critical edge of an r3 structure, then after pruning e and
suppressing u, the parent x′ of u has the two reticulations y′ and w as children
if and only if e is not regrafted to an incident edge and if f 6= (x′, y′) (Case (iv)).
In the case that the r3 structure is a triangle, this yields that f is the long side
of the triangle (Case (v)). Since we covered all types of e, the described choices
of e and f cover all tree-child-respecting SNPR operations. �

We now know when exactly an SNPR operation respects the tree-child prop-
erty. We can thus continue with counting them. Let ER denote all reticulation
edges, let ET∗ denote all pure non-critical tree edges and let δT be the restriction
of the δ function that only counts descendant edges that are tree edges.

Lemma 2 Let N ∈ T Cn.
Then the number of tree-child-respecting SNPR operations on N is

|ΘT CSNPR(N)| = 4n2 + 10nr − 2n(r2 + r3)− 6n+ 2r2 − 3r(r2 + r3)− 5r

+ 4r2 + 5r3 + 2−
∑
e∈ET∗

δ(e)−
∑
e∈ER

δT (e).

Proof: Following Lemma 1, we prove this by distinguishing different types of
the pruned edge e. We use the fact that N has m = 2n+3r−1 edges. First, any
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reticulation edge e = (u, v) can be regrafted to any non-reticulation edge that
is not descendant of e. Hence, there are the following many such operations:

2r(m− 2r)−
∑
e∈ER

δT (e) = 4nr + 2r2 − 2r −
∑
e∈ER

δT (e) (1)

Equation (1) uses δT (e) instead of δ(e), since we would otherwise double count
the forbidden operations of regrafting to an edge that is reticulation edge and
descendant of the pruned edge.

If e ∈ ET∗ , i.e. a pure non-critical tree edge, then e can be pruned and
regrafted to every edge not e itself or a descendant of e. Hence, there are the
following many such operations:

(m− 3r − r2 − r3)(m− 1)−
∑
e∈ET∗

δ(e)

= 4n2 + 6nr− 2n(r2 + r3)− 6n− 3r(r2 + r3 + 1) + 2r2 + 2r3 + 2−
∑
e∈ET∗

δ(e)

(2)

If e is the critical edge of an r2 or r3 structure (including triangles), then
there are only 2 or 3 operations, respectively. Hence, there are the following
many such operations:

2r2 + 3r3 (3)

Adding Equations (1) to (3) together, the lemma follows. �

Trivial SNPR operations. Pruning an edge and regrafting it at the same edge
is a trivial SNPR operation. Another trivial SNPR operation (e, f) arises for every
triangle where e is its critical edge and f is its long side. Furthermore, the
reticulation edges of a triangle induce a trivial operation each, as the proof of
the following lemma shows.

Lemma 3 Let N ∈ T Cn.
Then there are 4n+ 4r + 3t3 − 4 trivial operations in ΘT CSNPR(N).

Proof: Let (e, f) ∈ ΘT CSNPR(N) with e = (u, v) and f = (x, y). An operation
(e, f) can be trivial in three ways. First, f is incident to e at u. The root edge
and edges (u, v) with a reticulation u are not prunable. Therefore, there are
m − r − 1 prunable edges and 2(m − r − 1) trivial tree-child-respecting SNPR
operations.

Second, f is isomorphic to the edge g created by pruning e and suppressing
u. However, this can only happen if f and g are parallel edges, since by Propo-
sition 1 there are no pairs of isomorphic edges in a tree-child network. This
means that the critical edge of a triangle gets pruned. Thus, there are t3 many
trivial SNPR operations of that type.

Third, let f be neither of the above. Let the edges of N be labelled and
then in N ′ = (e, f)(N) let all labels be as in N except those affected (e, f). Let
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the regrafted edge have the label e. Then, since N ′ = N , there has to be an
edge e′ = (u′, v′) in N ′ that is, without label, the same edge as e in N . By
the choice of f , this can not be e. The edges e and e′ got, so to say, swapped.
Then, since by Proposition 1 every vertex is unique, v = v′ follows. The edges
e and e′ are thus reticulation edges. For N ′ = N , clearly, e and e′ have to be
the reticulation edges of a triangle: If we prune the long side of a triangle and
regraft it to the critical edge of the triangle, it results again in N . An equivalent
operation exists for the bottom edge of the triangle. Hence, there are 2t3 such
trivial SNPR operations.

Furthermore, these three cases do not overlap and we thus counted all trivial
SNPR operations on N . Since 2(m− r− 1) + 3t3 = 4n+ 4r+ 3t3− 4, the lemma
follows. �

Redundant SNPR operations. We now consider when and how non-trivial
SNPR operation on tree-child networks can be redundant. Humphries andWu [15]
used NNI operations to count redundancies of SPR and TBR operations on un-
rooted trees. The following lemma states how SNPR and NNI correspond to each
other with regards to redundancy on rooted trees.

Lemma 4 Let T ∈ Tn, and let θ, θ′ ∈ ΘTSNPR(T ), θ 6= θ′ be redundant with
θ(T ) = θ′(T ) = T ′ 6= T .
Then there exists an NNI operation σ ∈ ΘTNNI(T ) such that σ(T ) = T ′. Further-
more, every redundancy set of ΘTSNPR(T ) has size three.

We prove Lemma 4, after we generalise observations on how an SNPR redun-
dancy can occur. Figure 6 illustrates how, in the lemma, three SNPR operations
correlate to an NNI operation. There, in the subgraph of T , the axis (x, u) of
the NNI operation is a pure inner tree edge. We observe that, therefore, such
an NNI operation can also induce a redundancy in a phylogenetic network. The
edge (x, u) further has the siblings v and w as children of u and their uncle y
as child of x. Now, the three redundant SNPR operations could be described
as follows. First, ((u, v), (x, y)) prunes v and regrafts it as sibling of y. Sec-
ond, ((x, y), (u, v)) prunes y and regrafts it as sibling of v. Third, ((u,w), (p, x))
prunes w and regrafts it above x, thus makes v and y siblings. In general, to find
redundancies of SNPR operations, we can fix two vertices that stand in a certain
relation in N ′, but not yet in N . Then, to create this relation, say making v
and y siblings, we can either regraft one as sibling of the other or alter the path
between them. We formalise this with the following lemma, after we precisely
describe the initial situation.

Let N,N ′ ∈ T Cn be neighbours with N ′ = θ(N), θ ∈ ΘT CSNPR(N). Let the
vertices in both N and N ′ be labelled and let θ preserve these labels, except, of
course for removed or new vertices. Let now v and y be distinct vertices with
the same labels, and such that neither is ancestor of the other in both N and
N ′. We now say that v and y are in a desired relation if one of the following
holds:



JGAA, 22(2) 329–355 (2018) 341

u

v v

x

yyw w

SNPR

((u, v), (x, y))
((x, y), (u, v))
((u,w), (p, x))

NNI

((x, y), (x, u), (u, v))

p
T T ′

Figure 6: Correlation of an NNI operation with a pure inner tree edge as axis
and three SNPR operation, all being pairwise redundant.

• The vertex v is a sibling, an uncle or a nephew of y in N ′ via a path P ′,
but v is in a different relation to y in N .

• The vertex v is an uncle or a nephew of y in N ′ via a path P ′ and in N
via a path P 6= P ′.

In the second condition, P 6= P ′ means that the labels of the vertices on P differ
for a least one vertex from the labels of the vertices on P ′.

Lemma 5 Let N,N ′ ∈ T Cn and θ ∈ ΘT CSNPR(N) with θ(N) = N ′ 6= N . Let v
and y be in a desired relation via the path P ′ in N ′.
Then there are only the following possibilities of how θ operates on N to yield
N ′:

(i) an incoming edge of v or y gets pruned and regrafted such that v becomes
sibling, uncle or nephew, respectively, of y;

(ii) an incoming edge of the a parent of v or y gets pruned and regrafted such
that v becomes uncle or nephew, respectively, of y;

(iii) an edge e = (u,w) with u, but not w, being on a path connecting v and y,
gets pruned yielding P ′;

(iv) an edge gets regrafted to a path connecting v and y yielding P ′.

Proof: The existence of v and y in N ′ after applying θ to N means that θ
does not prune an outgoing edge of v or y. For θ to yield the desired relation
and path P ′ in N ′, θ can either alter an existing path between v and y by one
vertex, i.e. (iii) or (iv), or prune an edge of an existing path between v and y
and regraft it such that a desired path P ′ gets created, i.e. (i) or (ii). �

Applying Lemma 5 means that we can consider an SNPR operation θ, find two
vertices v and y in the resulting network N ′ that are in desired relation, and then
check whether other SNPR operations corresponding to one of the possibilities
listed in the lemma exist that are redundant to θ. We can now prove Lemma 4.

Proof of Lemma 4: The lemma states that if two non-trivial SNPR operations
θ and θ′ are redundant on a phylogenetic tree, that there is an NNI operation
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that is redundant to them. Let v and y be two distinct vertices of T that are
not siblings, but that are under preserving of labels by θ siblings in T ′. Then
v and y are in a desired relation. By Lemma 5 follows then that θ corresponds
to an NNI operation and, moreover, that θ′ is one of two other SNPR operations
redundant to θ. Hence, the redundancy set containing θ has size three. �

We now count the number of tree-child-respecting SNPR operations that we
can discard due to redundancy. In the proof for the following proposition,
we will see that redundancies only arise from a few different sources, like NNI
operations with the axis being a pure inner tree edge. The other sources of
redundancies are operations that create a triangle, the reticulation edges of a
triangle (see Figure 7), and the existence of tree-branching triangles, diamonds
and t4 trapezoids (see Figures 8 to 10). We note that an NNI operation on a
phylogenetic network with the axis being a reticulation edge or an impure tree
edge does not correspond to a redundancy set of SNPR operations.

e
e′

g

e′e

f

f ′

SNPR (e, f)
SNPR (e, f ′)

SNPR (e, g)
SNPR (e′, g)

Figure 7: Redundancies due to the creation of a triangle and the reticulation
edges of a triangle with listed redundant SNPR operations.

Proposition 2 Let N ∈ T Cn.
Then the number of non-trivial redundant SNPR operations of ΘT CSNPR(N) minus
the number of redundancy sets of non-trivial SNPR operations of ΘT CSNPR(N) is

2n(2 + t3) + r(2 + t3) + 4r1 − 2r3 − 8t3 + t∗3 + 3d4 + t4 − 8−
∑
e∈Et̄3

δT (e).

Proof: Let θ = (e, f) ∈ ΘT CSNPR(N) such that θ(N) = N ′ 6= N . Let e = (u, v), f =
(x, y).

The operations we want to count are those that we want to discard when
counting neighbours. To count all the operations we can discard, we go through
the sources of redundancy one by one and determine the sizes of the correspond-
ing redundancy sets. In order to find all sources, the idea of this proof is to
consider when and where θ can be redundant with other operations. To cope
with all possibilities, we fix a reticulation including a cycle for which this retic-
ulation is the lowest vertex (i.e. descendant of all other vertices on the cycle).
Then, when applying θ, it can be distinguished whether the size of this cycle
gets decreased, increased, or whether only the order of edges with start vertex
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on the cycle gets altered. Therefore in the following case distinction, we denote
the change from a cycle of size c to size c′ by [c → c′]. Note that there can be
no cycle of size 1 or 2. A cycle size of 0 denotes either no cycle, i.e. a tree, or
that no cycle is under consideration or of any influence to redundancies of θ.

One source of redundancy that we already identified are NNI operations with
a pure inner tree edge as axis. A phylogenetic network has n+ r1−2 pure inner
tree edges (all edges minus any incident to reticulations, leaves or the root) each
inducing two NNI operations. However, if the axis is part of an r3 structure,
then one of the possible NNI for this axis is not tree-child respecting. Also, if it
is part of a triangle, the operation is either trivial or not tree-child respecting.
There are thus 2(n+ r1 − 2)− r3 − t3 NNI operations of interest, each with an
SNPR redundancy set of size three. Therefore, we discard the following many
non-trivial tree-child-respecting SNPR operations:

4n+ 4r1 − 2r3 − 2t3 − 8 (4)

We freely use Proposition 1 throughout the remainder of this proof.

[0→ 0] If no cycle is involved, the part where the SNPR operations make changes
is tree-like and there are thus only tree edges. It follows thus from Lemma 4
that the redundancy comes from an NNI operation. Hence, these redun-
dancies are covered by Equation (4).

[3→ 3] A triangle with fixed reticulation has only one shape and thus can not
be transformed into another one with a single SNPR operation.

In the following two cases, we will see redundancies due to the reticulation edges
of triangles. We will count the SNPR operations we discard afterwards.

[3→ 4] A triangle can be transformed into a cycle of size four either by pruning
one of its edges and regrafting it to an edge outside of the triangle, thus
including this edge as third outgoing edge or by regrafting an edge from
outside to the triangle. We will see that considering only the latter case
will also cover all of the former case.

Let the edge e = (u, v) have distance at least two to the triangle and let
f = (x, y) be an edge of the triangle. Assuming e has distance greater
than two, it is clear (for example with the analysis of Lemma 5) that
there can only be a redundancy, if e is the reticulation edge of another
triangle and f the top side of the triangle. However, no SNPR operation
pruning an edge of the fixed triangle or incident to it can be redundant to
this operation and thus any redundancy would be accredited to the other
triangle. Therefore, assuming now that e has distance two to the triangle,
the following cases can be distinguished.

(i) u is parent of triangle, f is long side of triangle. Requiring that
e is a tree edge, the triangle gets transformed into a diamond. Using
the analysis of Lemma 5 with y and v as siblings in N ′ yields that
there are four redundant SNPR operations, as illustrated by Figure 8.



344 Klawitter The SNPR neighbourhood of tree-child networks

Three SNPR operations can be associated to the NNI operation (e, c, f)
where c it the incoming edge of the triangle. Also, pruning one of
the two reticulation edges of the triangle and regrafting it to e is
redundant to doing the same with the other. We note that the SNPR
operation (f, e) corresponds to both redundancies.

(ii) u is sibling of reticulation of triangle, f is long side of trian-
gle. Requiring that both e and its sibling edge are tree edges (and
thus that the triangle is a tree-branching triangle), this transforms
the triangle again into a diamond (see again Figure 8). This time the
analysis, again with y and v as siblings, yields a redundancy set of
size two, namely regrafting e and its sibling edge e′ to f .
This means that each tree-branching triangle of N induces a redun-
dancy set of size two. We thus discard one SNPR operation per such
triangle:

t∗3 (5)

(iii) u is parent of triangle, f is top side of triangle. Without re-
quirement on e, this transforms the triangle into a trapezoid (see
Figure 9). Like in (i), the analysis with v being uncle of y, yields
again an NNI operation redundancy with an overlap of a triangle
reticulation edges redundancy. Furthermore, this can coincide with
a transformation of another triangle into a trapezoid of the next case.

(iv) u is sibling of reticulation of triangle, f is top side of trian-
gle. This requires that the sibling edge of e is a tree edge and trans-
forms the triangle into a trapezoid (see again Figure 9). The analysis
yields the same as in the previous case. If the sibling edge of e is not
a tree edge, we would have an r3 structure and N ′ would not be tree
child.
Furthermore, if e is a tree edge, the case is equivalent to f being the
bottom side of the triangle.

(v) u is parent of triangle, f is bottom side of triangle. The anal-
ysis yields that there is no redundancy of SNPR operations here.

[3→ c, c ≥ 5] Since it is not possible to add two outgoing edges to a triangle by
regrafting them to the triangle with a single SNPR operation, the size can
only be increased by pruning an edge of the triangle and regrafting it to
an edge f at wanted distance. This yields the same neighbour for the two
reticulation edges, but different cycles for the top side of the triangle and
one of its reticulation edges.

From the last two cases, we know that two SNPR operations θ and θ′ that
prune the two different reticulation edges of a triangle and regraft it to the same
edge are always redundant. In cases, where θ and θ′ are also redundant to SNPR
operations corresponding to an NNI operation, either θ or θ′ also corresponds to
that NNI operation. In any case, without loss of generality, we can discard all



JGAA, 22(2) 329–355 (2018) 345

e e′

f

f ′

c e

f ′f

NNI (e, c, f)
SNPR (f ′, e)

NNI (d, c, f)
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[3 → 4] (i)

[4 → 3]

[4 → 3]

[3 → 4] (ii)

Figure 8: Transformation of triangles into diamonds and vice versa with listed
redundancies, covering parts of the cases [3→ 4] and [4→ 3].
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NNI (e, c, f)
SNPR (d′, g)
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[3 → 4] (iii)

[4 → 3]
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NNI (e, c, f)
SNPR (f ′, e)
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SNPR (d, e′)
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Figure 9: Transformation of triangles into trapezoids and vice versa with listed
redundancies, covering parts of the cases [3→ 4] and [4→ 3].

(non-trivial) SNPR operations that prune an edge e ∈ Et̄3 , i.e the bottom side of
a triangle:

2nt3 + rt3 − 4t3 −
∑
e∈Et̄3

δT (e) (6)

[4→ 3] This is basically the analysis of [3→ 4] backwards. See again Figures 8
and 9 for illustrations.

[c→ 3, c ≥ 5] To create a triangle with a specific reticulation, one way is to
prune one of its reticulation edges and to regraft it to an edge incident to
the other reticulation edge. This is the reverse of [3 → c] and yields two
redundancy sets of size two.

The second possibility is to to prune the parent edge of one of the reticu-
lation edges and regraft it to the other reticulation edge. Again, as seen
in [3→ c], this is not redundant to the other way or other operations.

The last two cases covered the creation of triangles. With Equation (5) we
accounted for redundancies from a tree-branching triangle to a diamond. With
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Equation (7) we do the reverse:
d4 (7)

Furthermore, as the reverse of Equation (6), each reticulation edge that is not
part of a triangle corresponds to two redundant SNPR operations. In the case
that a four cycle is created, this can coincide with a redundancy due to an NNI
operation. Like before, we can discard one of the two operations:

2r − 2t3 (8)

[4→ 4] To change a cycle of size four into another cycle of size four, one can
either change the order of the outgoing edges of a trapezoid, which is then
equivalent to Case [0 → 0], or transform a trapezoid into a diamond or
vice versa (see Figure 10). Applying Lemma 5 for any of the direction
with two appropriate vertices yields redundancy sets of size four. We see
that three edges correspond to an NNI operation. We have thus already
counted a neighbour and can discard the fourth SNPR operation. We note
that there are two different transformations from a diamond to a trapezoid
distinguished by the order of the resulting trapezoid’s outgoing edges.
Hence, we discard the following many SNPR operations:

2d4 + t4 (9)

e′ e
f ′

NNI (f, c, e)
SNPR (e′, f ′)

NNI (f, c, e)
SNPR (e′, f)

f c

[4 → 4]

f

c
gg

e

e′

Figure 10: Transformation of diamonds into t4 trapezoids and vice versa with
listed redundancies, illustrating the case [4→ 4].

[c→ c+ 1, c ≥ 4] Adding a branch to a cycle of size at least four, and thus
increasing its size by one, is, by using Lemma 5, only possible if the oper-
ations correspond to an NNI operation.

[c→ c+ x, c ≥ 4, x ≥ 2] Unlike in the case [3→ 5] there is obviously no redun-
dancy of any edges of the cycle anymore.

[c+ 1→ c, c ≥ 4] This is the reverse of [c → c + 1] and there are thus only
redundancies due to an NNI operation.

[c+ x→ c, c ≥ 4, x ≥ 2] As the reverse of the case [c + x → c], there are no
redundancy in this case.
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We have now covered all cases of transformations of a cycle into another
one. We have further identified the different sources of redundancies and dis-
carded non-trivial tree-child-respecting SNPR operations accordingly. Adding
Equations (4) to (9) together, the statement follows. �

The unit SNPR tree-child neighbourhood. The unit SNPR tree-child neigh-
bourhood of N is determined by the number of tree-child-respecting SNPR opera-
tions on N (Lemma 2), from which trivial operations are subtracted (Lemma 3)
and operations that yield redundant neighbours are discarded (Proposition 2).

Theorem 1 Let N ∈ T Cn, n ≥ 2.
Then the unit SNPR tree-child neighbourhood UT CSNPR(N) of N has size

|UT CSNPR(N)| = 4n2 + 10nr − 2n(r2 + r3 + t3)− 14n+ 2r2 − r(3r2 + 3r3 + t3)

− 11r − 4r1 + 4r2 + 7r3 + 5t3 − t∗3 − 3d4 − t4 + 14

−
∑
e∈ET∗

δ(e)−
∑
e∈ER

δT (e) +
∑
e∈Et̄3

δT (e).

Table 1 lists the values for the parameters of the tree-child network N from
Figure 3. Applying these values to Theorem 1 we get that N has 7 different
SNPR tree-child neighbours, as depicted in Figure 3.

parameter description in N
n # leaves 3
r # reticulations 1
r1 # reticulations with leaf as child 1
r2 # r2 structures 0
r3 # r3 structures 0
t3 # triangles 0
t∗3 # tree-branching triangles 0
d4 # diamonds 0
t4 # t4 trapezoids 1∑

e∈ET∗ δ(e) # descendant edges of pure non-critical tree edges 13∑
e∈ER

δT (e) # descendant tree edges of reticulation edges 2∑
e∈Et̄3

δT (e) # descendant tree edges of triangle bottom sides 0

Table 1: Parameters for the network N from Figure 3, which has a unit SNPR
tree-child neighbourhood of size 7.

If N is a phylogenetic tree, it has of course zero reticulations and no special
structures. We thus get the following formula for phylogenetic trees.

Corollary 1 Let T = (V,E) ∈ Tn.
Then the unit SNPR tree neighbourhood UTSNPR(T ) of T has size

|UTSNPR(T )| = 4n2 − 14n+ 14−
∑
e∈E

δ(e).
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Accounting for the fact that we count descendants of edges and not ancestors
of vertices, this formula equals the result by Song [21].

The unit SNPR+ and SNPR− tree-child neighbourhood. We now con-
sider SNPR+ and SNPR− operations and count again first the number of such
operations. For this, let EPS denote the set of edges that are pure tree edges
with a sibling pure tree edge.

Lemma 6 Let N ∈ T Cn with n ≥ 2.
Then

|ΘT CSNPR+(N)| = 4n2 − 2nr − 8n− 2r2 + 2r + 4−
∑

e∈EPS

δT (e), and

|ΘT CSNPR−(N)| = 2r.

Proof: For an SNPR+ operation (e, f), which adds an edge from f to e, for
(e, f)(N) to be tree child, e has to be a pure tree edge with a sibling pure tree
edge. This implies that e 6= eρ and that e can not be incident to a reticulation
or sibling edge of a reticulation edge. Otherwise, if e would be incident to a
reticulation, this would yield a pure reticulation edge, and if e would be the
sibling edge of a reticulation edge, this would yield a vertex with two reticula-
tions as children. In either case (e, f)(N) would not be tree child. Thus every
reticulation induces a set of five edges, consisting of the three edges incident to
it and their two sibling edges. Since N ∈ T Cn, clearly these sets are disjoint for
every pair of reticulations of N . There are thus m− 5r − 1 choices for e.

Next, by the definition of an SNPR+ operation, the edge f can not be a
descendant of e. Furthermore, f can not be a reticulation edge or e. Otherwise,
if f would be a reticulation edge, this would yield a vertex with two reticulations
as children, and if f = e, the operation would create a parallel edge. In either
case (e, f)(N) would not be tree child. Clearly any other choice of f is fine. For
any feasible choice of e, there are thus m−2r−1− δT (e) choices of f . With the
δT (e) summing up to

∑
e∈EPS

δT (e) over all choices of e and (m− 5r− 1)(m−
2r − 1) = 4n2 − 2nr − 8n− 2r2 + 2r + 4 the first statement follows.

Concerning ΘT CSNPR−(N), it is easy to see that removing any reticulation edge
of a tree-child network yields again a tree-child network. There are thus 2r
tree-child respecting SNPR− operations on N . �

Note that SNPR+ and SNPR− operations are never trivial, since they change
the number of reticulations. However, for both of these types of operations
redundancies might exist. Like for most SNPR redundancies, these redundan-
cies are equivalent to NNI+ and NNI− operations, as the proof of the following
proposition shows.

Proposition 3 Let N ∈ T Cn with n ≥ 2.
Then the unit SNPR+ tree-child neighbourhood UT CSNPR+ of N has size

|UT CSNPR+(N)| = 4n2 − 2nr − 10n− 2r2 + 4r + 6−
∑

e∈EPS

δT (e),
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and the unit SNPR− tree-child neighbourhood UT CSNPR− of N has size

|UT CSNPR−(N)| = 2r − t3.

Proof: This proof uses the concept of the proof of Proposition 2. For the first
part, we assume that the considered SNPR+ operations are tree-child respecting.

[0→ 3] Let f = (u, v) be a tree edge with v having two outgoing pure tree
edges e = (v, w) and e′ = (v, y). Then a reticulation and a triangle can
be added by the SNPR+ operation (e, f), which adds an edge from f to e.
This is however redundant to the SNPR+ operation (e, e′). It follows by
the uniqueness of e that there are no further redundant SNPR+ operations.
Furthermore, these operations are redundant to the NNI+ operation (e, e′).

[0→ c, c ≥ 4] Similar to [0 → 3], the edge e that gets subdivided for the new
reticulation is unique. However, for a new cycle of size at least 4, there
are no two edges that can be chosen interchangeably to be subdivided for
the source of the new reticulation edge to yield the same network N ′.

There are n − r − 1 pairs of siblings of pure tree edges in N . To account for
redundancy, we can thus discard 2(n− r − 1) SNPR+ operations. The first part
follows then from Lemma 6.

[3→ 0] If a triangle gets removed, removing one of the reticulation edge of the
triangle is redundant to removing the other. Since no reticulations are
isomorphic in N , there can be no further reticulation edges in N that if
removed would yield the same network. These SNPR− operations are thus
equivalent to an NNI− operation of the respective triangle.

[c→ 0, c ≥ 4] The reticulation edges of a cycle of size at least four are neither
isomorphic nor can they change roles like in triangles. Thus removing a
reticulation edge can not be redundant to removing another of a cycle of
size at least four.

There are t3 many NNI− operations in N . Discarding one SNPR− operation per
triangle, the second part follows again from Lemma 6. �

We can again consider the tree-child network N from Figure 3. Since N has
one reticulation, but no triangles, N has two SNPR− neighbours. Using Table 1
and the fact that

∑
e∈EPS

δT (e) = 2, we get that N has 6 SNPR+ tree-child
neighbours.

The unit SNPR tree-child neighbourhood. To obtain the total size of
the SNPR tree-child neighbourhood of a tree-child network N we can now add
together the sizes of the SNPR, SNPR+ and SNPR− neighbourhoods (Theorem 1
and Proposition 3).
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Theorem 2 Let N ∈ T Cn with n ≥ 2.
Then the unit SNPR tree-child neighbourhood UT CSNPR of N has size

|UT CSNPR(N)| = 8n2 + 8nr − 2n(r2 + r3 + t3)− 24n− r(3r2 + 3r3 + t3)− 5r

− 4r1 + 4r2 + 7r3 + 4t3 − t∗3 − 3d4 − t4 + 20

−
∑
e∈ET∗

δ(e)−
∑
e∈ER

δT (e)−
∑

e∈EPS

δT (e) +
∑
e∈Et̄3

δT (e).

We conclude this section with the comment that, since each parameter and
sum can be computed in O(n) time (r,m ∈ O(n)), the unit SNPR tree-child
neighbourhood size of a tree-child network N can be computed in linear time
O(n).

4 Minimal and maximal neighbourhoods
The formula for the SNPR unit tree-child neighbourhood of a tree-child network
depends on a lot of parameters. It is therefore of interest to see how small and
big a neighbourhood can get in terms of n.

Proposition 4 Let n ≥ 2. Then

n− 1 ≤ min
N∈T Cn

{|UT CSNPR(N)|} ≤ 3

2
n2 − 7

2
n+ 2, and

8n2 −O(n log2 n) ≤ max
N∈T Cn

{|UT CSNPR(N)|} < 16n2 − 38n+ 26.

Proof: We first establish a lower bound for the minimal neighbourhood size
of a tree-child network. Let N ∈ T Cn with n ≥ 2 and r reticulations. By
Proposition 3, we have that |UT CSNPR−(N)| = 2r − t3. Each reticulation gives
rise to two different SNPR− operations with redundancy sets of size at most
two. Furthermore, a reticulation edge can be added from the root edge eρ to
every other pure tree edge that is not sibling edge of a reticulation edge. There
are 2n − 2r − 2 such edges. Note that t3 ≤ n − 1. There are thus at least
2n− 2r − 2 + 2r − t3 = 2n− t3 − 2 ≥ n− 1 SNPR tree-child neighbours of N .
This is sharp for a tree-child network with n = 2 and r = 1.

Next, we look at an upper bound for the minimal neighbourhood size of a
tree-child network. For this we consider a family of tree-child networks, where
each has a relative small neighbourhood. Let Nr ∈ T Cn, n ≥ 2 be a chain of r
triangles, where one triangle is child of the triangle above it in the chain, like
N4 in Figure 11. Since Nr has n−1 reticulations, Nr has no SNPR+ neighbours.
Removing a reticulation edge from one of the triangles corresponds to one of
r = n − 1 different SNPR− neighbours of Nr. Concerning SNPR operations, the
only prunable non-critical edges are the long sides of the triangles (and the
bottom sides, which however behave redundantly and are thus ignored). Since
these are reticulation edges they can, when pruned, only be regrafted to tree
edge that are not their descendants. For the long side of the triangle closest to
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the root three such edges exist, which however correspond to trivial operations.
For the long side of the triangle below six such edges exist, of which again three
yield trivial operation. Thus, in total there are

3 + 6 + 9 + 12 + . . .+ (n− 2)3 =

n−2∑
i=1

3i =
3

2
(n− 2)(n− 1) =

3

2
n2 − 9

2
n+ 3

SNPR neighbours. All together, Nr has 3
2n

2 − 7
2n+ 2 SNPR neighbours.

N4 T16

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 11: Tree-child networks with small and big neighbourhoods: The tree-
child network N4 has 3

252 − 7
25 + 2 = 22 SNPR neighbours. The balanced tree

T16 has at least 8 · 162 − 4 · 16 log2 16− 22 · 16 + 22 = 1462 SNPR neighbours.

For a lower bound of the maximal SNPR tree-child neighbourhood size of a
tree-child network, we consider the balanced tree Tn on n leaves, as illustrated
by T16 in Figure 11. The formula for the SNPR neighbourhood (Theorem 2) is
then

8n2 − 24n+ 20−
∑
e∈E

δ(e)−
∑

e∈EPS

δT (e).

For simplicity, we now assume that n = 2k with k ≥ 1. Then, for the first sum
we have ∑

e∈E
δ(e) =

log2 n∑
i=1

i2i = 2n log2 n− 2n+ 2.

The second sum only differs from the first by the fact the root edge eρ is not in
EPS and thus∑

e∈EPS

δT (e) = 2n log2 n− 2n+ 2− δ(eρ) = 2n log2 n.

In total this yields that, for n = 2k, Tn has 8n2 − 4n log2 n − 22n + 18 SNPR
neighbours. With no restriction on n, the tree Tn has at least 8n2−O(n log2 n)
SNPR neighbours.
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For an upper bound of the maximal SNPR neighbourhood size, we esti-
mate bounds for the various parameters. We thus assume that the parame-
ters r1, r2, r3, t3, d4, and t4 are zero. Concerning the sums −

∑
e∈ET∗ δ(e) −∑

e∈ER
δT (e)−

∑
e∈EPS

δT (e) +
∑
e∈Eb̄3

δT (e) of the SNPR neighbourhood for-
mula, we observe that the first and third sum are at best zero, that the second
sum is at best 2r and that the last sum is at best half of the second. The sums
account therefore only for −r in our estimate. Assuming that r = n−1 and thus
maximal, we get that for any tree-child network N the unit SNPR tree-child
neighbourhood has size at most 16n2 − 38n+ 26. �

5 Discussion and outlook

In this paper, we have presented formulas for the unit SNPR tree-child neigh-
bourhood size of tree-child networks. We have shown that the neighbourhood
size does not only depend on the number of leaves and reticulations, but also
on the shape of the network. In the formulas the shape is represented by the
occurrences of certain structures, like triangles and diamonds, and the number
of descendant edges of certain edge sets. The size of the SNPR− neighbourhood
is at most n − 1, because the number of reticulations in a tree-child network
is at most n− 1 [6, Proposition 1]. On the other hand, the SNPR and SNPR+
neighbourhoods can both have a quadratic size in terms of n. We presented
further bounds on the minimal and maximal neighbourhood size.

The main tool in our proofs of redundancy of operations was Proposition 1,
which states every tree-child network has exactly one automorphism that fixes
its leaf set. This allowed us to pinpoint redundancies to some simple structures.
Our methodology can be applied to other network classes, especially subclasses
of tree-child networks. For example, normal networks are tree-child networks
that do not contain both an edge (u, v) and a path from u to v that consists of
at least two edges. Vertices and edges are thus also unique in normal networks
and, moreover, they do not contain triangles or trapezoids. While this simplifies
counting SNPR redundancies, it comes at the cost that counting all normal-
respecting SNPR operations get harder. Another class that is suitable for our
methodology is the class of level-1 networks. A phylogenetic network is level-1 if
each of its biconnected components contains at most one reticulation. A level-1
network without parallel edges is thus also a tree-child network. The size of the
unit SNPR neighbourhood for normal and level-1 networks can be found in the
author’s thesis [18].

Finding a formula for the unit SNPR neighbourhood is more complicated
for the network classes of reticulation-visible and tree-based networks. A phy-
logenetic network is reticulation visible if every reticulation separates the root
from at least one leaf [16]. Roughly speaking, a phylogenetic network is tree
based if it is contains a phylogenetic tree on the same leaf set that covers all its
vertices [10]. The class of tree-child networks is known to be a subclass of both
the classes of reticulation-visible and tree-based networks [10]. However, Fig-
ure 12 shows a reticulation-visible (and thus also tree-based) network with only
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a b

u v

Figure 12: A reticulation-visible (and tree-based) network with non-unique ver-
tices and edges. The vertices u and v are isomorphic and so are the three groups
of edges in same colour and style.

two leaves and two reticulations, where two isomorphic vertices and three pairs
of isomorphic edges exist. More complicated phylogenetic networks with bigger
sets of pairwise isomorphic vertices or edges can easily be found. Isomorphic
edges in a phylogenetic network have the consequence that pruning one of them
or regrafting to one of them is redundant to any of the others. Determining
the size of a neighbourhood would thus require to identify and account for all
equivalences. While we think that a recursive approach (similar to the work of
Song [21, 22]) to count neighbours might still be possible, a closed formula is
likely to require even more parameters.

The space of rooted phylogenetic networks under NNI has, in contrast to the
unrooted case, not found much attention in the literature so far. We defined
NNI operations for tree-child networks as a tool to count several redundancies.
However, to consider the space itself and its properties could be of interest.
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