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Aligned Drawings of Planar Graphs
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Abstract

Let G be a graph that is topologically embedded in the plane and let
A be an arrangement of pseudolines intersecting the drawing of G. An
aligned drawing of G and A is a planar polyline drawing Γ of G with an
arrangement A of lines so that Γ and A are homeomorphic to G and A.
We show that if A is stretchable and every edge e either entirely lies on a
pseudoline or it has at most one intersection with A, then G and A have a
straight-line aligned drawing. In order to prove this result, we strengthen
a result of Da Lozzo et al. [5], and prove that a planar graph G and a single
pseudoline L have an aligned drawing with a prescribed convex drawing of
the outer face. We also study the less restrictive version of the alignment
problem with respect to one line, where only a set of vertices is given and
we need to determine whether they can be collinear. We show that the
problem is NP-complete but fixed-parameter tractable.
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1 Introduction

Two fundamental primitives for highlighting structural properties of a graph in
a drawing are alignment of vertices such that they are collinear, and geometric
separation of unrelated graph parts, e.g., by a straight line. Both these tech-
niques have been previously considered from a theoretical point of view in the
case of planar straight-line drawings.

Da Lozzo et al. [5] study the problem of producing a planar straight-line
drawing of a given embedded graph G = (V,E) (i.e., G has a fixed combinatorial
embedding and a fixed outer face) such that a given set S ⊆ V of vertices is
collinear. It is clear that if such a drawing exists, then the line containing the
vertices in S is a simple curve starting and ending at infinity that for each edge
e of G either fully contains e or intersects e in at most one point, which may
be an endpoint. We call such a curve a pseudoline with respect to G. Da Lozzo
et al. [5] show that this is a full characterization of the alignment problem,
i.e., a planar straight-line drawing where the vertices in S are collinear exists
if and only if there exists a pseudoline L with respect to G that contains the
vertices in S. However, the computational complexity of deciding whether such
a pseudoline exists is an open problem, which we consider in this paper.

Likewise, for the problem of separation, Biedl et al. [1] considered so-called
HH-drawings where, given an embedded graph G = (V,E) and a partition
V = A ·∪ B, one seeks a y-monotone planar polyline drawing of G with few
bends in which A and B can be separated by a line. Again, it turns out that
such a drawing exists if there exists a pseudoline L with respect to G such that
the vertices in A and B are separated by L. As a side-result Cano et al. [2]
extend the result of Biedl et al. to planar straight-line drawings with a given
star-shaped outer face.

The aforementioned results of Da Lozzo et al. [5] show that given a pseudoline
L with respect to G one can always find a planar straight-line drawing of G
such that the vertices on L are collinear and the vertices contained in the half-
planes defined by L are separated by a line L. In other words, a topological
configuration consisting of a planar embedded graph G and a pseudoline with
respect to G can always be stretched. In this paper, we initiate the study of
this stretchability problem with more than one given pseudoline.

More formally, a pair (G,A) is a k-aligned graph if G = (V,E) is a planar
embedded graph and A = {L1, . . . ,Lk} is an arrangement of (pairwise intersect-
ing) pseudolines with respect toG. In case that every pair of distinct pseudolines
intersect at most once, we refer to A as a pseudoline arrangement. If the num-
ber k of pseudolines is clear from the context, we drop it from the notation and
simply speak of aligned graphs. For 1-aligned graphs we write (G,L) instead
of (G, {L}). Let A = {L1, . . . , Lk} be a line arrangement and Γ be a planar
drawing of G. A tuple (Γ, A) is an aligned drawing of (G,A) if and only if the
arrangement of the union of Γ and A is homeomorphic to the arrangement of
the union of G and A. A (pseudo)-line arrangement divides the plane into a set
of cells C1, C2, . . . , C`. If A is homeomorphic to A, then there is a bijection φ be-
tween the cells of A and the cells of A. If (Γ, A) is an aligned drawing of (G,A),
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(a) (b) (c)

Figure 1: (Pseudo-) Lines are depicted as blue curves, edges are black. The
color of the cells indicates the bijection φ between the cells of A and A. Aligned
drawing (b) of a 2-aligned planar embedded graph (a). (c) A non-stretchable
arrangement of 9 pseudolines (blue and black), which can be seen as a stretchable
arrangement of 8 pseudolines (blue) and an edge (black solid).

then it has the following properties; refer to Fig. 1(a-b). (i) The arrangement
of A is homeomorphic to the arrangement of A (i.e., A is stretchable to A),
(ii) Γ is homeomorphic to the planar embedding of G, (iii) the intersection of
each vertex v and each edge e with a cell C of A is non-empty if and only if the
intersection of v and e with φ(C) in (Γ, A), respectively, is non-empty, (iv) if
an edge uv (directed from u to v) intersects a sequence of cells C1, C2, . . . , Cr
in this order, then uv intersects in (Γ, A) the cells φ(C1), φ(C2), . . . , φ(Cr) in
this order, and (v) each line Li intersects in Γ the same vertices and edges as
Li in G, and it does so in the same order. We focus on straight-line aligned
drawings. For brevity, unless stated otherwise, the term aligned drawing refers
to a straight-line drawing throughout this paper.

Note that the stretchability of A is a necessary condition for the existence of
an aligned drawing. Since testing stretchability is NP-hard [13, 15], we assume
that a geometric realization A of A is provided. Line arrangements of size up to
8 are always stretchable [11], and only starting from nine lines non-stretchable
arrangements exist; see the Pappus configuration [12] in Fig. 1c. This figure
also illustrates an example of an 8-aligned graph with a single edge that does
not have an aligned drawing. It is conceivable that in practical applications,
e.g., stemming from user interactions, the number of lines to stretch is small,
justifying the stretchability assumption.

The aligned drawing convention generalizes the problems studied by Da
Lozzo et al. and Biedl et al. who focused on the case of a single line. We
study a natural extension of their setting and ask for alignment on general line
arrangements.

In addition to the strongly related works mentioned above, there are several
other works that are related to the alignment of vertices in drawings. Ravsky
and Verbitsky [14] used the fact that 2-trees have a drawing with at least n/30
collinear vertices to show that at least

√
n/30 vertices of a 2-tree can be fixed

to arbitrary positions. Dujmović [6] shows that every n-vertex planar graph
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alignment complexity k drawable
(0,⊥,⊥) ≥ 1 X – Planarity
(0, 0, 0) ≥ 1 X – Theorem 1
(1, 0,⊥) ≥ 1 X – Theorem 8
(1, 0, 0) 2 open – Fig. 17
(⊥,⊥, 2)

≥ 8 7 – Fig. 1(c)(⊥, 3,⊥)
(4,⊥,⊥)

Table 1: Families of aligned graphs that always have an aligned drawing are
marked with X. The symbol 7 indicates that for this particular class, there is
an aligned graph that does not have an aligned drawing.

G = (V,E) has a planar straight-line drawing such that Ω(
√
n) vertices are

aligned, and Da Lozzo et al. [5] show that in planar treewidth-3 and planar
treewidth-k graphs, one can align Θ(n) and Ω(k2) vertices, respectively. Chaplik
et al. [3] study the problem of drawing planar graphs such that all edges can
be covered by k lines. They show that it is NP-hard to decide whether such a
drawing exists. The computational complexity of deciding whether there exists
a drawing where all vertices lie on k lines is an open problem [4]. Drawings of
graphs on n lines where a mapping between the vertices and the lines is provided
have been studied by Dujmović et al. [7, 8].

Contribution & Outline. After introducing notation in Section 2, we first study
the topological setting where we are given a planar graph G and a set S of ver-
tices to align in Section 3. We show that it is NP-complete to decide whether S
is alignable. On the positive side, we prove that this problem is fixed-parameter
tractable (FPT) with respect to |S|. Afterwards, in Section 4, we consider the
geometric setting where we seek an aligned drawing of an aligned graph. Based
on our proof strategy in Section 4.1, we strengthen the result of Da Lozzo et al.
and Biedl et al. in Section 4.2, and show that there exists a 1-aligned drawing
of G with a given convex drawing of the outer face. In Section 4.3 we consider
k-aligned graphs with a stretchable pseudoline arrangement, where every edge
e either entirely lies on a pseudoline or intersects at most one pseudoline, which
can either be in the interior or an endpoint of e. We utilize the result of Sec-
tion 4.2 to prove that every such k-aligned graph has an aligned drawing, for
any value of k. In the preliminaries we define the alignment complexity of an
aligned graph. It is a triple that indicates how many intersections an edge has
with the pseudoline arrangement depending on the number of endpoints that
lie on a pseudoline. Table 1 summarizes the results of our paper.

2 Preliminaries

Let A be a pseudoline arrangement with k pseudolines L1, . . . ,Lk and (G,A)
be an aligned graph with n vertices. The set of cells in A is denoted by cells(A).
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A cell is empty if it does not contain a vertex of G. Removing from a pseudoline
its intersections with other pseudolines gives its pseudosegments.

Let G = (V,E) be a planar embedded graph with vertex set V and edge
set E. We call v ∈ V interior if v does not lie on the boundary of the outer
face of G. An edge e ∈ E is interior if e does not lie entirely on the boundary
of the outer face of G. An interior edge is a chord if it connects two vertices on
the outer face. A point p of an edge e is an interior point of e if p is not an
endpoint of e. A triangulation is a biconnected planar embedded graph whose
inner faces are all triangles and whose outer face is bounded by a simple cycle.
A triangulation of a graph G is a triangulation that contains G as a subgraph. A
k-aligned triangulation of (G,A) is a k-aligned graph (GT ,A) with GT being a
triangulation of G. A graph G′ is a subdivision of G if G′ is obtained by placing
subdivision vertices on edges of G. For an abstract graph G and an edge e of G
the graph G/e is obtained from G by contracting e and merging the resulting
multiple edges and removing self-loops. Routing the edges incident to e close to
e yields a planar embedding of G/e in case of a planar embedded graph G. A
k-wheel is a simple cycle C with k vertices on the outer face and one additional
interior vertex that has an edge to each vertex in C. Let Γ be a drawing of G
and let C be a cycle in G. We denote with Γ[C] the drawing of C in Γ. Let T
be a separating triangle in G and let Vin and Vout be the vertices in the interior
and exterior of T , respectively. We refer to the graphs induced by T ∪ Vin and
T ∪ Vout as the split components of T and denote them by Gin and Gout.

A vertex is Li-aligned (or simply aligned to Li) if it lies on the pseudoline
Li. A vertex that is not aligned is free. An edge e is Li-aligned (or simply
aligned) if it completely lies on Li. Let Ealigned be the set of all aligned edges.
An intersection vertex lies on the intersection of two pseudolines Li and Lj .
A non-aligned edge is i-anchored (i = 0, 1, 2) if i of its endpoints are aligned
to distinct pseudolines. An L-aligned edge is i-anchored (i = 0, 1, 2) if i of its
endpoints are aligned to distinct pseudolines which are different from L. For
example, the single aligned edge in Fig. 2a is 1-anchored. Let Ei be the set of
i-anchored edges; note that, the set of edges is the disjoint union E0 ·∪E1 ·∪E2.
An edge e is (at most) l-crossed if (at most) l distinct pseudolines intersect e
in its interior. A 0-anchored 0-crossed non-aligned edge is also called free. A
non-empty edge set A ⊂ E is l-crossed if l is the smallest number such that
every edge in A is at most l-crossed.

The alignment complexity of an aligned graph describes how “complex” the
relationship between the graph G and the pseudoline arrangement L1, . . . ,Lk

is. It is formally defined as a triple (l0, l1, l2), where li, i = 0, 1, 2, indicates
that Ei is at most li-crossed or has to be empty, if li = ⊥. For example, an
aligned graph where every vertex is aligned and every edge has at most l interior
intersections has the alignment complexity (⊥,⊥, l). For further examples, see
Fig. 2.

Theorem 1 Every k-aligned graph (G,A) of alignment complexity (0, 0, 0) with
a stretchable pseudoline arrangement A has an aligned drawing.

Proof: We modify the graph (G,A) as follows; see Fig. 3. We place a vertex on



406 Mchedlidze et al. Aligned Drawings of Planar Graphs

(a) (1, 0,⊥) (b) (1, 0, 0) (c) (2, 1, 0)

Figure 2: Examples for the alignment complexity of an aligned graph.

Figure 3: The black edges and vertices and the blue pseudoline arrangement is
the input graph (G,A). The green and black graph together depict the modified
graph before the triangulation step.

each intersection of two or more pseudolines (if the intersection is not already
occupied). In case that k is at least two, every unbounded cell C of A has two
pseudosegments of infinite length. We place a vertex on each of them at infinity
and connect them by an edge routed through the interior of C.

Further, let u and v be two L-aligned vertices, that are consecutive along L.
If uv is not already an edge of G, we insert it into G and route it on L. Note that,
since (G,L) does not contain edges that cross a pseudoline, the resulting graph
is again an aligned graph of alignment complexity (0, 0, 0). The boundary of
every cell is covered by aligned edges. Thus, we can triangulate (G,A) without
introducing intersections between edges and a pseudoline.

We obtain an aligned drawing of the modified graph as follows. Note that
the only interaction between two cells are the aligned vertices and edges on their
common boundary, i.e., there are no edges crossing the boundary. Hence, for
every pseudosegments of A we place the aligned vertices on it, arbitrarily (but
respecting their order) on the corresponding line segment in A. Since, every cell
is covered by aligned edges, we can draw the interior of two cells independently
from each other. More formally, the vertex placements of the vertices of the
pseudolines prescribes a convex drawing of the outer face of the graph GC , i.e.,
the graph induced by the vertices in the interior or on the boundary of a cell C.
Thus, we obtain a drawing Γ of G by applying the result of Tutte [16] to each
graph GC , independently. �
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3 Complexity and Fixed-Parameter Tractability
In this section, we deal with the topological setting where we are given a planar
embedded graph G = (V,E) and a subset S ⊆ V . We ask for a straight-line
drawing of G where the vertices in S are collinear. According to Da Lozzo et
al. [5], this problem is equivalent to deciding the existence of a pseudoline L
with respect to G passing exactly through the vertices in S. We refer to this
problem as pseudoline existence problem and the corresponding search problem
is referred to as pseudoline construction problem. Using techniques similar to
Fößmeier and Kaufmann [9], we can show that the pseudoline existence problem
is NP-hard.

Let G? + V be the graph obtained from the dual graph G? = (V ?, E?) of
G = (V,E) by placing every vertex v ∈ V in its dual face v? and connecting it
to every vertex on the boundary of the face v?.

Lemma 1 Let G = (V,E) be a 3-connected 3-regular planar graph. There
exists a pseudoline through V with respect to the graph G? + V if and only if G
is Hamiltonian.

Proof: Recall that the dual of a 3-connected 3-regular graph is a triangulation
with a single combinatorial embedding.

Assume that there exists a pseudoline L through V with respect to G? + V .
Then the order of appearance of the vertices of G? + V on L defines a sequence
of adjacent faces in G?, i.e., vertices of the primal graph G that are connected
via primal edges. This yields a Hamiltonian cycle in G.

Let C be a Hamiltonian cycle of G and consider a simultaneous embedding
of G and G? + V on the plane, where each pair of a primal and its dual edge
intersects exactly once. Thus, the cycle C crosses each dual edge e at most once
and passes through exactly the vertices V . There is a vertex v on the cycle C
such that v lies in the unbounded face of G? + V . Thus, the cycle C can be
interpreted as a pseudoline L(V ) in G?+V through all vertices in V by splitting
it in the unbounded face of G? + V . �

Since computing a Hamiltonian cycle in 3-connected 3-regular planar graphs
is NP-complete [10], we get that the pseudoline construction problem is NP-
hard. On the other hand, we can guess a sequence of vertices, edges and faces of
G, and then test in polynomial time whether this corresponds to a pseudoline L
with respect to G that traverses exactly the vertices in S. Thus, the pseudoline
construction problem is in NP. This proves the following theorem.

Theorem 2 The pseudoline existence problem is NP-complete.

In the following, we show that the pseudoline construction problem is fixed-
parameter tractable with respect to |S|. To this end, we construct a graph
Gtr = (V tr, Etr) and a set Str ⊆ V tr with |Str| ≤ |S|+ 1 such that Gtr contains
a simple cycle traversing all vertices in Str if and only if there exists a pseudoline
L that passes exactly through the vertices in S such that (G,L) is an aligned
graph.
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vvinf

voutf

e
ve

e′ ue′

Figure 4: The black and red edges depict a single face of the input graph G.
Red and blue edges build the transformed graph Gtr. Red round vertices are
vertices in S, red squared vertices illustrate the set Str, the filled red square is
a vertex in S and Str. Blue dashed edges sketch the clique edges between clique
vertices (filled blue).

We observe that if the vertices S of a positive instance are not independent,
they can only induce a linear forest, i.e., a set of paths, as otherwise, there is no
pseudoline through all the vertices in S with respect to G. We call the edges on
the induced paths aligned edges. An edge that is not incident to a vertex in S
is called crossable, in the sense that only crossable edges can be crossed by L,
otherwise L is not a pseudoline with respect to G. Let Sep ⊆ S be the subset
of vertices that are endpoints of the paths induced by S (an isolated vertex is a
path of length 0). We construct Gtr in several steps; refer to Fig. 4.

Step 1 Let G′ be the graph obtained from G by subdividing each aligned edge
e with a new vertex ue and let Str be the set consisting of all isolated
vertices in S and the new subdivision vertices. Additionally, we add to G′
one new vertex o that we embed in the outer face of G and also add to
Str. Observe that by construction |Str| ≤ |S|+ 1. Finally, subdivide each
crossable edge e by a new vertex ve. We call these vertices traversal nodes
and denote their set by T = Sep ∪{ve | e is crossable}∪ {o}. Intuitively, a
curve will correspond to a path that uses the vertices in Sep to hop onto
paths of aligned edges and the subdivision vertices of crossable edges to
traverse from one face to another. Moreover, the vertex o ∈ Str plays a
similar role, forcing the curve to visit the outer face.

Step 2 For each face f of G′ we perform the following construction. Let T (f)
denote the traversal nodes that are incident to f . For each vertex v ∈ T (f)
we create two new vertices vinf and voutf , add the edges vvinf and vvoutf to
G′, and draw them in the interior of f . Finally, we create a clique C(f) on
the vertex set {vinf , voutf | v ∈ T (f)}, and embed its edges in the interior
of f .

Step 3 To obtain Gtr remove all edges of G′ that correspond to edges of G
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(a)

ue

v

voutf

voutf ′

vinf ′

voutf ′′

vinf
vinf ′′

(b)

Figure 5: (a) A pseudoline (thick green) traversing a path of aligned edges (thin
red). (b) A path (thick green) in Gtr visiting consecutive vertices in Str (red
squared).

except those that stem from subdividing an aligned edge of G.

Lemma 2 There exists a pseudoline L traversing exactly the vertices in S such
that (G,L) is an aligned graph if and only if there exists a simple cycle in Gtr

that traverses all vertices in Str.

Proof: Suppose C is a cycle in Gtr that visits all vertices in Str. Without loss
of generality, we assume that there is no face f such that C contains a subpath
from vinf via v to voutf (or its reverse) for some vertex v ∈ T (f)\Sep, as otherwise
we simply shortcut this path by the edge vinf v

out
f ∈ C(f).

Consider a path P of aligned edges in G that contains at least one edge;
refer to Fig. 5. By definition, C visits all the subdivision vertices ue ∈ Str of
the edges of P , and thus it enters P on an endpoint of P , traverses P and leaves
P at the other endpoint. All isolated vertices of S are contained in Str, and
therefore C indeed traverses all vertices in S (and thus also all aligned edges).
As described above, Gtr is indeed a topological graph, and thus C corresponds
to a closed curve ρ that traverses exactly the vertices in S and the aligned edges.

We now show that ρ can be transformed to a pseudoline with respect to G.
Let e be a non-aligned edge of G that has a common point with ρ in its interior;

f

f ′ e

(a)

voutf ′

vinf ′

vinf

voutf

ve

(b)

Figure 6: (a) A pseudoline (thick green) passing through a non-aligned edge. (b)
A path (thick green) in Gtr traversing a subdivision vertex ve (blue non-filled
square). Black (dashed) segments are edges of G.
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α

β
γ

δ

Figure 7: Resolving an intersection by exchanging the intersecting segments
(red) with non-intersecting segments (green).

see Fig. 6. Thus, C contains the subdivision vertex ve. In particular, this
implies that e is crossable. Moreover, from our assumption on C, it follows that
C enters ve via vinf or voutf and leaves it via vinf ′ or voutf ′ , where f and f ′ are the
faces incident to e, and it is f 6= f ′ as we could shortcut C otherwise. Therefore,
ρ indeed intersects e and uses it to traverse to a different face of G. Moreover,
since e has only a single subdivision vertex in Gtr and C is simple, it follows
that e is intersected only once. Thus ρ is a curve that intersects all vertices in S,
traverses all aligned edges, and crosses each edge of G (including the endpoints)
at most once. Moreover, ρ traverses the outer face since C contains o.

The only reasons why ρ is not necessarily a pseudoline with respect to G are
that it is a closed curve and it may cross itself. However, we can break ρ in the
outer face and route both ends to infinity, and remove such self-intersections
locally as follows; see Fig. 7. Consider a circle D around an intersection I
that neither contains a second self-intersection nor a vertex, nor an edge of G.
Let α, β, γ, δ be the intersections of D with L. We replace the pseudosegment
αγ with a pseudosegment αβ, and βδ with a pseudosegment γδ. We route
the pseudosegments αβ and γδ through the interior of D such that they do
not intersect. Thus, we obtain a pseudoline L with respect to G that contains
exactly the vertices in S.

For the converse assume that L is a pseudoline that traverses exactly the
vertices in S such that (G,L) is an aligned graph. The pseudoline L can be split
into three parts L1, L2 and L3 such that L1 and L3 have infinite length and
do not intersect with G, and L2 has its endpoints in the outer face of G. We
transform L into a closed curve L′ by removing L1,L3 and adding a new piece
connecting the endpoints of L2 without intersecting L2 or G. Additionally, we
choose an arbitrary direction for L′ in order to determine an order of the crossed
edges and vertices.

We show that Gtr contains a simple cycle traversing the vertices in Str. By
definition L′ consists of two different types of pieces, see Fig. 5. The first type
traverses a path of aligned edges between two vertices in Sep. The other type
traverses a face of G by entering and exiting it either via an edge or from a
vertex in Sep; see Fig. 8. We show how to map these pieces to paths in Gtr; the
cycle C is obtained by concatenating all these paths.

Each piece of the first type indeed corresponds directly to a path in Gtr;
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see Fig. 5. Consider now a piece π of the second type traversing a face f ; refer
to Fig. 8. The piece π enters f either from a vertex in Sep or by crossing a
crossable edge e. In either case, T (f) contains a corresponding traversal node
u. Likewise, T (f) contains a traversal node v for the edge or vertex that L′
intersects next. We map π to the path uuinf v

out
f v in Gtr. By construction, paths

corresponding to consecutive pieces of L′ share a traversal node, and therefore
concatenating all paths yields a cycle C in Gtr. Moreover, C is simple, since
L′ intersects each edge and each vertex at most once. Note that C contains at
least one edge of the outer face (as L′ traverses the outer face), and we modify
C so that it also traverses the special vertex o.

It remains to show that C contains all vertices in Str. There are three
types of vertices in Str; the subdivision vertices of aligned edges, the isolated
vertices in S, and the special vertex o. The latter is in C by the last step of the
construction. The isolated vertices in S are traversed by L′ and contained in
Sep, and they are therefore visited also by C. Finally, the subdivision vertices
of aligned edges are traversed by the paths corresponding to the first type of
pieces, since L′ traverses all aligned edges. �

Theorem 3 (Wahlström [17]) Given an n-vertex graph G = (V,E) and a
subset S ⊆ V , it can be tested in O(2|S|poly(n)) time whether a simple cycle
through the vertices in S exists. If affirmative the cycle can be reported within
the same asymptotic time.

Theorem 4 The pseudoline construction problem is solvable in O(2|S|poly(n))
time, where n is the number of vertices.

Proof: Let G = (V,E) with S ⊆ V be an instance of the pseudoline construc-
tion problem. By Lemma 2 the pseudoline construction problem is equivalent
to determining whether Gtr contains a simple cycle visiting all vertices in Str.
Since the size of Gtr is O(n2) and it can be constructed in O(n2) time, and
|Str| ≤ |S|+1, Theorem 3 can be used to solve the latter problem in the desired
running time. �

(a)

voutf

vinfuin
f

uout
f

v

u

(b)

Figure 8: (a) A pseudoline piece π (thick green) passing through a face f . (b)
Path (thick green) in Gtr corresponding to π.
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We note that indeed the construction of Gtr only allows leaving a path of
aligned edges at an endpoint in Sep. Therefore, a single vertex in Str for each
path of aligned edges would be sufficient to ensure that C traverses the whole
path. Thus, by removing for each path all but one vertex from Str we obtain
an algorithm that is FPT with respect to the number of paths induced by S.

Theorem 5 The pseudoline construction problem is solvable in O(2P poly(n))
time, where n is the number of vertices and P is the number of paths induced
by the vertex set S to be aligned.

4 Drawing Aligned Graphs

We show that every aligned graph where each edge either entirely lies on a
pseudoline or is intersected by at most one pseudoline, i.e., alignment complexity
(1, 0,⊥), has an aligned drawing. For 1-aligned graphs we show the stronger
statement that every 1-aligned graph has an aligned drawing with a given aligned
convex drawing of the outer face. We first present our proof strategy and then
deal with 1- and k-aligned graphs.

4.1 Proof Strategy

Our general strategy for proving the existence of aligned drawings of an aligned
graph (G,A) is as follows. First, we show that we can triangulate (G,A) by
adding vertices and edges without invalidating its properties. We can thus
assume that our aligned graph (G,A) is an aligned triangulation. Second, we
show that unless G has a specific structure (e.g., a k-wheel or a triangle), it
contains an aligned or a free edge. Third, we exploit the existence of such an
edge to reduce the instance. Depending on whether the edge is contained in a
separating triangle or not, we either decompose along that triangle or contract
the edge. In both cases the problem reduces to smaller instances that are almost
independent. In order to combine solutions, it is, however, crucial to use the
same arrangement of lines A for both of them.

In the following, we introduce the necessary tools used for all three steps on
k-aligned graphs of alignment complexity (1, 0,⊥). Recall, that for this class
(i) every non-aligned edge is at most 1-crossed, (ii) every 1-anchored edge is
0-crossed, and (iii) there is no edge with its endpoints on two pseudolines.

Lemmas 3 – 5 show that every aligned graph of alignment complexity (1, 0,⊥)
has an aligned triangulation with the same alignment complexity. If G contains
a separating triangle, Lemma 6 shows that (G,A) admits an aligned drawing
if both split components have an aligned drawing. Finally, with Lemma 7 we
obtain a drawing of (G,A) from a drawing of the aligned graph (G/e,A) where
one particular edge e is contracted.

Lemma 3 Let (G,A) be a k-aligned n-vertex graph of alignment complexity
(1, 0,⊥). Then there exists a biconnected k-aligned graph (G′,A) that contains
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G as a subgraph. The set E(G′) \ E(G) has alignment complexity (1, 0,⊥) and
does not contain aligned edges. The size of E(G′) \ E(G) is in O(nk + k3).

Proof: Our procedure works in two steps. First, we connect disconnected
components. Second, we assure that the graph is biconnected by inserting edges
around a cut-vertex. Initially, we place a vertex in every cell that does not
contain a vertex in its interior.

Consider a cell C of A that contains two vertices u and v that belong to
distinct connected components Gu and Gv. We refer to two vertices u, v that
lie in the interior or on the boundary of C as C-visible if there is a curve in the
interior of C that connects u to v and that does not intersect G except at its
endpoints. In the following, we exhaustively connect C-visible pairs of vertices
of distinct connected components of G. If u and v are C-visible, we simply
connect them by an edge e. In case that both vertices are aligned, we have to
subdivide the edge e with a vertex to avoid introducing 2-anchored edges to the
graph. Assume that u, v are not C-visible. Consider any curve ρ in the interior
of C that connects u and v. Then ρ intersects a set of edges of G either in their
interior or in a vertex. Thus, there are two edges e1 and e2 consecutive along
ρ, that belong two distinct connected components. Since e1 and e2 are at most
1-crossed, there is an endpoint of e1 and an endpoint of e2 that are C-visible
and thus can be connected by an edge. Overall it is sufficient to add a linear
number of edges to join distinct connected components that have vertices in a
common cell.

By construction, every cell contains at least one free vertex. Thus, in order
to connect the graph we consider two cells C1, C2 with a common boundary.
Assume that there is a vertex u on the common boundary. In this case, the
previous step ensures that there is a path from u to every vertex that lies in
the interior or on the boundary of C1 or C2. Hence, consider the case where no
vertex lies on the common boundary of the two cells. Moreover, the common
boundary does also not contain an edge, since this edge would be 2-anchored
or l-crossed, l ≥ 2. Similar to the previous step, we can connect two arbitrary
vertices of C1 and C2 with a curve ρ that intersects the common boundary. If
this curve does not intersect an edge we can simply connect the two vertices
with an edge. Otherwise, at least in one cell C′ ∈ {C1, C2} the curve intersects at
least one edge. Therefore, there is an edge e′ that comes immediately before the
intersection of ρ with the boundary of C′. Since every edge is at most 1-crossed,
there are two vertices in C1 and C2 that can be connected by an edge. Due to
the previous step, we can assume that the vertices in the interior of each cell are
connected by a path. Thus, we add at most one edge for each pair of adjacent
cells. Since there are O(k2) cells we add O(k2) vertices and edges to G, i.e., the
size of G is O(n+ k2).

We now assume that G is connected but not biconnected and has n′ ∈
O(n+ k2) vertices. Consider a single cut vertex v; refer to Fig. 9. We consider
the common arrangement F of A and G, i.e., a face can be restricted by pseu-
dosegments of A and edges of G. Let Fv be the set of faces in F with v on their
boundary. We place a vertex vf in every face f of Fv. Let f and f ′ be two
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Figure 9: Green edges and vertices are added around a cut-vertex v to connect
the connected components (black) incident to v. (a) v is an intersection vertex.
(b) v is a free vertex.
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Figure 10: Black lines indicate a face f of G. Light green edges or vertices are
newly added into f . Blue lines denote the pseudoline arrangement. (a) Isolation
of an intersection. (b-c) Isolation of an aligned vertex or edge. (d) Isolation of
a pseudosegment.

distinct faces of Fv with a common edge ε on their boundary. If ε is an edge uv
of G, we insert the edges uvf and uvf ′ . Since uv is at most 1-crossed, the new
edges are as well at most 1-crossed. If ε corresponds to a pseudosegment, we
insert the edge vfvf ′ such that it crosses ε. Since vf and vf ′ are free vertices,
the edge is by construction 1-crossed.

This procedure adds O(k+deg v) vertices and edges around v, since at most
k pseudolines intersect in a single point. The degree of vertices adjacent to v is
increased by at most 2. Thus, the size of G increases to O(n′k). Thus, we have
that the size of G is O(nk + k3). �

Lemma 4 Let (G,A) be a biconnected k-aligned n-vertex graph of alignment
complexity (1, 0,⊥). There exists a k-aligned triangulation (GT = (VT , ET ),A)
of f whose size is O(nk+ k3). The set E(GT ) \E(G) has alignment complexity
(1, 0,⊥) and does not contain aligned edges.

Proof: We call a face non-triangular if its boundary contains more than three
vertices. An aligned vertex v or an aligned edge e is isolated if all faces with v
or e on their boundaries are triangles. A pseudosegment s is isolated if s does
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not intersect the interior of a simple cycle. Our proof distinguishes four cases.
Each case is applied exhaustively in this order.

1. If the interior of f contains the intersection of two or more pseudolines,
we split the face so that there is a vertex that lies on the intersection.

2. If the boundary of a face has an aligned vertex or an aligned edge, we
isolate the vertex or the edge from f .

3. If the interior of a face f intersects a pseudoline L, then it subdivides
L into a set of pseudosegments. We isolate each of the pseudosegments
independently.

4. Finally, if none of the previous cases apply, i.e., neither the boundary
nor the interior of f contains parts of a pseudoline, the face f can be
triangulated with a set of additional free edges.

Let Af be the arrangement of A restricted to the interior of f .
1. Let f be a non-triangular face whose interior contains an intersection

of two or more pseudolines; see Fig. 10a. We place a vertex on every
intersection in the interior of f . We obtain a biconnected graph G1 with
the application of Lemma 3. Since there are O(k2) intersections, the size
of G1 is O

(
(n+ k2)k + k3

)
= O(nk + k3).

2. Let f1 be a non-triangular face of G1 with an aligned vertex or an aligned
edge uv on its boundary. Further, the interior of f1 does not contain the
intersection of a set of pseudolines; see Fig. 10b and 10c. In case of an
aligned vertex we simply assume u = v. Since G is biconnected, there exist
two edges xu, vy on the boundary of f1. Let C1, . . . , Cl ∈ cells(Af1) be
cells with u or v on their boundary, such that Ci is adjacent to Ci+1, i < l.
Since f1 does not contain 2-anchored edges, at most one of the vertices u
and v can be an intersection vertex. Thus, l is at most 2k. We construct
an aligned graph (G2,A) from (G1,A) as follows. We place a vertex qi in
the interior of each cell Ci, i ≤ l. Let q0 = x and ql+1 = y. We insert edges
ei = qiqi+1, i = 0, . . . , l in the interior of f1 so that the interior of ei crosses
the common boundary of Ci and Ci+1 exactly once and it crosses no other
boundary. Thus, if the edge ei is either incident to x or to y, it at most
1-anchored and 0-crossed. Otherwise, it is 0-anchored and 1-crossed. The
added path splits f into two faces f ′, f ′′ with a unique face f ′ containing u
and v on its boundary. If w ∈ {u, v} is on the boundary of cell Ci, we insert
an edge wqi. Each edge wqi is 1-anchored and 0-crossed. Let Ci and Ci+1

be two cells incident to w. Then, the vertices w, qi, qi+1 form a triangle.
If u 6= v, there is a unique cell Ci incident to u and v. Hence, the vertices
u, v, qi form a triangle. Moreover, for 1 ≤ i ≤ l, every edge uqi and vqi is
incident to two triangles. Therefore, f ′ is triangulated. By construction,
we do not insert aligned vertices and edges, thus the number of aligned
edges and aligned vertices of f ′′ is one less compared to f1. Hence, we can
inductively proceed on f ′′.
Assume the aligned vertex v is an intersection vertex. Thus, isolating v
uses O(k) additional vertices and edges. Therefore, all intersection vertices
can be isolated with O(k3) vertices and edges.
Now consider an aligned vertex v that is not an intersection vertex. In
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this case v is incident to at most two cells. We can isolate all such vertices
with O(n) vertices and edges. The same bound holds for aligned edges.
Finally, we obtain an aligned graph (G2,A) of size O(nk + k3).

3. Let f2 be a non-triangular face of G2 whose interior intersects a pseudo-
line L and has no aligned edge and no aligned vertex on its boundary.
Further, the interior of f2 does not contain the intersection of two or more
pseudolines. Then the face f2 subdivides L into a set of pseudosegments;
see Fig. 10d. We iteratively isolate such a pseudosegment S. Since f2
does not contain the intersection of two or more pseudolines in its inte-
rior, there are two distinct cells C1 ∈ cells(Af ) and C2 ∈ cells(Af ) with
S on their boundary. Since f1 neither contains an aligned vertex nor an
aligned edge and G is biconnected, there are exactly two edges e1 = vw
and e2 = xy with the endpoints of S in the interior of these edges and
v, x and w, y on the boundaries of C1 and C2, respectively. Since f2 does
not have an l-crossed edge, l ≥ 2, and every 1-crossed edge is 0-anchored,
the vertices v, w, x, y are free. We construct a graph G′ by placing a
vertex u on s and inserting edges uv, uw, ux uy, vx and wy. We route
each edge so that the interior of an edge does not intersect the boundary
of a cell Ci, i = 1, 2. Thus, the edges vx and wy are free and the others
are 1-anchored and 0-crossed.
Every edge in G2 is at most 1-crossed, thus the number of pseudosegments
is linear in the size of G2. Therefore, we add a number of vertices and
edges that is linear in the size of G2.
Thus, we obtain an aligned graph (G3,A) of size O(nk + k3).

4. If none of the cases above applies to a non-triangular face f4 of G3, then
neither the interior nor the boundary of the face intersects a pseudoline
Li. Thus, we can triangulate f4 with a number of free edges linear in the
size of f4. Thus, in total we obtain an aligned triangulation (GT ,A) of
(G,A) of size O(nk + k3).

�

Observe that the correctness of the previous triangulation procedure only
relies on the fact that every non-triangular face contains at most 1-crossed edges.
While Lemma 4 is sufficient for our purposes, for the sake of generality, we show
how to isolate l-crossed edges. This allows us to triangulate biconnected aligned
graphs without increasing the alignment complexity.

Theorem 6 Every biconnected k-aligned n-vertex graph (G,A) of alignment
complexity (l0, l1, l2) has an aligned triangulation (GT ,A). The alignment com-
plexity of E(GT )\E(G) is (max{l0, 1}, l1, l2) and the size of this set is O(nk + k3).

Proof: For l ≥ 1, we iteratively isolate l-crossed edges uv from a non-triangular
face f as sketched in Fig. 11. Let C0, C1, . . . , Cl ∈ cells(A) be the cells in f that
occur in this order along uv. If one of these vertices is free, say v, we place
a new vertex x in the interior of Cl−1. We insert the two edges ux, xv and
route both edges close to uv. This isolates the edge uv from f . Notice that the
edge xv is 0-anchored and 1-crossed and the edge ux (l − 1)-crossed. In case
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Figure 11: An l-crossed edge uv in a (grey) face f and a pseudoline arrangement
(blue). The green edges isolate the edge uv.

that l0 ≥ 1, the alignment complexity of the new aligned graph is (l0, l1, l2).
Otherwise, the alignment complexity is (1, l1, l2). If u and v are aligned, we
place x on the boundary of Cl−1 and Cl and route the edges ux and vx as
before. The alignment complexity is not affected by this operation. The face
uvx is triangular and therefore the edge uv is processed as above at most twice.

This procedure introduces a new (l−1)-crossed edge. Repeating the process
l − 2 times generates a new face f ′ from f where edge uv is substituted by a
path of at most 1-crossed edges. To isolate all l-crossed edges in (G,A), we add
O(kn) vertices and edges.

By isolating all l-crossed edges in this way, we obtain an aligned graph where
every non-triangular face is bounded by at most 1-crossed edges. The proof of
Lemma 4 handles all non-triangular faces independently. For the correctness of
the triangulation it is sufficient to ensure that every non-triangular face does
neither contain 2-anchored edges nor l-crossed edges. Thus, we can apply the
methods used in the proof of Lemma 4 to triangulate (G,A) with O(nk + k3)
additional vertices and edges. �

We now return to the treatment of aligned graphs with alignment complexity
(1, 0,⊥). To simplify the proofs, we augment the input graph with an additional
cycle in the outer face that contains all intersections of A in its interior, and we
add subdivision vertices on the intersections of Li-aligned edges with pseudolines
Lj , i 6= j. A k-aligned graph is proper if (i) every aligned edge is 0-crossed,
(ii) for k ≥ 2, every edge on the outer face is 1-crossed, (iii) the boundary of
the outer face intersects every pseudoline exactly twice, and (iv) the outer face
does not contain any intersection of A.

An aligned graph (Grs,A) is a rigid subdivision of an aligned graph (G,A)
if and only if Grs is a subdivision of G and every subdivision vertex is an
intersection vertex with respect to A. We show that we can extend every k-
aligned graph (G,A) to a proper k-aligned triangulation.

Lemma 5 For every k ≥ 2 and every k-aligned n-vertex graph (G,A) of align-
ment complexity (1, 0,⊥), let (Grs,A) be a rigid subdivision of (G,A). Then
there exists a proper k-aligned triangulation (G′,A) of alignment complexity
(1, 0,⊥) such that Grs is a subgraph of G′. The size of G′ is in O(nk2 + k4).
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The set E(G′) \E(Grs) has alignment complexity (1, 0,⊥) and does not contain
aligned edges.

Proof: We construct a rigid subdivision (Grs,A) from (G,A) by placing subdi-
vision vertices on the intersections of Li-aligned edges with pseudolines Lj , i 6= j.
The number nrs of vertices of Grs is in O(n+ k2).

We obtain a proper biconnected k-aligned graph (Gb,A) by embedding a
simple cycle C in the outer face of Grs and applying Lemma 3. In order to
construct C, we place a vertex vc in each unbounded cell c of A and connect
two vertices vc and vc′ if the boundaries of the cells c and c′ intersect. The
size nb of Gb is O(nrsk + k3) = O(nk + k3). We obtain a proper k-aligned
triangulation (G′,A) of Gb with the application of Lemma 4. The size n′ of G′
is in O(nbk + k3) = O((nk + k3)k + k3) = O(nk2 + k4). �

The following two lemmas show that we can reduce the size of the aligned
graph and obtain a drawing by merging two drawings or by geometrically un-
contracting an edge.

Lemma 6 Let (G,A) be a k-aligned triangulation. Let T be a separating tri-
angle splitting G into subgraphs Gin, Gout so that Gin ∩ Gout = T and Gout

contains the outer face of G. Then, (i) (Gout,A) and (Gin,A) are k-aligned
triangulations, and (ii) (G,A) has an aligned drawing if and only if there ex-
ists a common line arrangement A such that (Gout,A) has an aligned drawing
(Γout, A) and (Gin,A) has an aligned drawing (Γin, A) with the outer face drawn
as Γout[T ].

Proof: It is easy to verify that (Gout,A) and (Gin,A) are aligned triangulations.
An aligned drawing (Γ, A) of (G,A) immediately implies the existence of an
aligned drawing (Γout, A) of (Gout,A) and (Γin, A) of (Gin,A).

Let (Γout, A) be an aligned drawing of (Gout,A). Since (Γout, A) is an aligned
drawing, (Γout[T ], A) is an aligned drawing of (T,A). Let (Γin, A) be an aligned
drawing of (Gin,A) with the outer face drawn as Γout[T ]. Let Γ be the drawings
obtained by merging the drawing Γout and Γin. Since (Γout, A) and (Γin, A) are
aligned drawings on the same line arrangement A, (Γ, A) is an aligned drawing
of (G,A). �

Lemma 7 Let (G,A) be a proper k-aligned triangulation of alignment complex-
ity (1, 0,⊥) and let e be an interior 0-anchored aligned edge or an interior free
edge of G that does not belong to a separating triangle and is not a chord. Then
(G/e,A) is a proper k-aligned triangulation of alignment complexity (1, 0,⊥).
Further, (G,A) has an aligned drawing if (G/e,A) has an aligned drawing.

Proof: We first prove that (G/e,A) is a proper k-aligned triangulation. Con-
sider a topological drawing of the aligned graph (G,A). Let c be the vertex in
G/e obtained from contracting the edge e = uv. We place c at the position of u.
Thus, all the edges incident to u keep their topological properties. We route the
edges incident to v close to the edge uv within the cell from which they arrive
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Figure 12: Unpacking an edge in a drawing Γ′ of G/e (a) to obtain a drawing
Γ of G (b).

to v in (G,A). Since e is not an edge of a separating triangle, G/e is simple and
triangulated.

Consider a free edge e. Observe that the triangular faces incident to e do
not contain an intersection of two pseudolines in their interior, since (G,A)
does not contain l-crossed edges, for l ≥ 2. Therefore, (G/e,A) is an aligned
triangulation. Since e is not a chord, (G/e,A) is proper. Further, u and v lie
in the interior of the same cell, thus, the edges incident to c have the same
alignment complexity as in (G,A).

If e is aligned, it is also 0-crossed, since (G,A) is proper. Since e is also
0-anchored, the triangles incident to e do not contain an intersection of two
pseudolines and therefore (G/e,A) is a proper aligned triangulation. The rout-
ing of the edges incident to c, as described above, ensures that the alignment
complexity is (1, 0,⊥).

Let (Γ′, A) be an aligned drawing of (G/e,A). We now prove that (G,A) has
an aligned drawing. Let Γ′′ denote the drawing obtained from Γ′ by removing
c together with its incident edges and let f denote the face of Γ′′ where c used
to lie. Since G/e is triangulated and e is an interior edge and not a chord, f is
star-shaped and c lies inside the kernel of f ; see Fig. 12. We construct a drawing
Γ of G as follows. If one of vertices u and v lies on the outer face, we assume,
without loss of generality, that vertex to be u. First, we place u at the position
of c and insert all edges incident to u. This results in a drawing of the face f ′ in
which we have to place v. Since u is placed in the kernel of f , f ′ is star-shaped.
If e is a free edge, the vertex v has to be placed in the same cell as u. We then
place v inside f ′ sufficiently close to c so that it lies inside the kernel of f ′ and
in the same cell as u. All edges incident to v are at most 1-crossed, thus, (Γ, A)
is an aligned drawing of (G,A).

Likewise, if e is an L-aligned edge, then v has to be placed on the line L ∈ A
corresponding to L. In this case, also c and therefore u lie on L. Since e is an
interior edge, there exist two triangles uv, vx, xu and uv, vy, yu sharing the edge
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uv. Since, e is not part of a separating triangle, x and y are on different sides
of L. Therefore the face f ′ contains a segment of the line L of positive length
that is within the kernel of f ′. Thus, we can place v close to u on the line L
such that the resulting drawing is an aligned drawing of (G,A). �

Note that contracting a 1-anchored aligned edge can result in a graph (G/e,A)
with an alignment complexity that does not coincide with the alignment com-
plexity of (G,A). Further, for general alignment complexities there is an aligned
graph (G,A) and an 1-anchored aligned edge e such that (G/e,A) is not an
aligned graph.

4.2 One Pseudoline
We show that every 1-aligned graph (G,R) has an aligned drawing (Γ, R), where
R is a single pseudoline and R is the corresponding straight line. Using the
techniques from the previous section, we can assume that (G,R) is a proper
1-aligned triangulation. We show that unless G is very small, it contains an
edge with a certain property. This allows for an inductive proof to construct an
aligned drawing of (G,R).

Lemma 8 Let (G,R) be a proper 1-aligned triangulation without chords and
with k vertices on the outer face. If G is neither a triangle nor a k-wheel whose
center is aligned, then (G,R) contains an interior aligned or an interior free
edge.

Proof: We first prove two useful claims.
Claim 1. Consider the order in which R intersects the vertices and edges of G.
If vertices u and v are consecutive on R, then the edge uv is in G and aligned.

Observe that the edge uv can be inserted into G without creating crossings.
Since G is a triangulation, it therefore already contains uv, and further, since
every non-aligned edge has at most one of its endpoints on R, it follows that
indeed uv is aligned. This proves the claim. /

Claim 2. If (G,R) is an aligned triangulation without aligned edges and x is an
interior free vertex of G, then x is incident to a free edge.

Assume for a contradiction that all neighbors of x lie either on R or on the
other side of R. First, we slightly modify R to a curve R′ that does not contain
any vertices. Assume v is an aligned vertex; see Fig. 13. Since there are no
aligned edges, R enters v from a face f incident to v and leaves it to a different
face f ′ incident to v. We then reroute R from f to f ′ locally around v. If v is
incident to x, we choose the rerouting such that it crosses the edge vx.

Notice that if an edge e intersects R in its endpoints, then R′ either does
not intersect it or intersects it in an interior point. Moreover, e cannot intersect
R′ twice as in such a case R would pass through both its endpoints. Now,
since G is a triangulation and the outer face of G is proper, R′ corresponds to
a simple cycle in the dual G? of G, and hence corresponds to a cut C of G. Let
H denote the connected component of G−C that contains x and note that all
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Figure 13: Transformation from a red vertex (a) to a gray vertex (b).

edges of H are free. By the assumption and the construction of R′, x is the
only vertex in H. Thus, R′ intersects only the faces incident to x, which are
interior. This contradicts the assumption that R′ passes through the outer face
of G and finishes the proof of the claim. /

We now prove the lemma. Assume that G is neither a triangle nor a k-wheel
whose center is aligned. If G is a k-wheel whose center is free, we find a free
edge by Claim 2. Otherwise, G contains at least two interior vertices. If one
of these vertices is free, we find a free edge by Claim 2. Otherwise, all interior
vertices are aligned. Since G does not contain any chord, there is a pair of
aligned vertices consecutive along R. Thus by Claim 1 the instance (G,R) has
an aligned edge. �

Theorem 7 Let (G,R) be a proper aligned graph and let (ΓO, R) be a convex
aligned drawing of the aligned outer face (O,R) of G. There exists an aligned
drawing (Γ, R) of (G,R) with the same line R and the outer face drawn as ΓO.

Proof: Given an arbitrary proper aligned graph (G,R), we first complete it to a
biconnected graph and then triangulate it by applying Lemma 3 and Lemma 4,
respectively.

We prove the claim by induction on the size of G. If G is just a triangle,
then clearly (ΓO, R) is the desired drawing. If G is the k-wheel whose center
is aligned, placing the vertex on the line in the interior of ΓO yields an aligned
drawing of G. This finishes the base case.

If G contains a chord e, then e splits (G,R) into two graphs G1, G2 with
G1 ∩G2 = e. It is easy to verify that (Gi,R) is an aligned graph. Let (Γi

O, R)
be a drawing of the face of ΓO ∪ e whose interior contains Gi. By the inductive
hypothesis, there exists an aligned drawing of (Γi, R) with the outer face drawn
as (Γi

O, R). We obtain a drawing Γ by merging the drawings Γ1 and Γ2. The
fact that both (Γ1, R) and (Γ2, R) are aligned drawings with a common line R
and compatible outer faces implies that (Γ, R) is an aligned drawing of (G,R).

If G contains a separating triangle T , let Gin and Gout be the respective
split components with Gin ∩ Gout = T . By Lemma 6, the graphs (Gin,R)
and (Gout,R) are aligned graphs. By the induction hypothesis there exists an
aligned drawing (Γout, R) of the aligned graphs (Gout,R) with the outer face
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Figure 14: All possible variations of vertices and edges in Lemma 9.

drawn as (ΓO, R). Let Γ[T ] be the drawing of T in Γout. Further, (Gin,R) has
by induction hypothesis an aligned drawing with the outer face drawn as Γ[T ].
Thus, by Lemma 6 we obtain an aligned drawing of (G,R) with the outer face
drawn as ΓO.

If G is neither a triangle nor a k-wheel, by Lemma 8, it contains an interior
aligned or an interior free edge e. Since e is not a chord and does not belong
to a separating triangle, by Lemma 7, (G/e,R) is an aligned graph and by the
induction hypothesis it has an aligned drawing (Γ′, R) with the outer face drawn
as ΓO. It thus follows by Lemma 7 again that (G,R) has an aligned drawing
with the outer face drawn as ΓO. �

4.3 Alignment Complexity (1, 0,⊥)
We now consider k-aligned graphs (G,A) of alignment complexity (1, 0,⊥), i.e.,
every edge with two free endpoints intersects at most one pseudoline, every 1-
anchored edge has no interior intersection with a pseudoline, and 2-anchored
edges are entirely forbidden. In this section, we prove that every such k-aligned
graph has an aligned drawing. As before we can assume that (G,A) is a proper
aligned triangulation. We show that if the structure of the graph is not suffi-
ciently simple, it contains an edge with a special property. Further, we prove
that every graph with a sufficiently simple structure indeed has an aligned draw-
ing. Together this again enables an inductive proof that (G,A) has an aligned
drawing. Fig. 14 illustrates the statement of the following lemma.

Lemma 9 For k ≥ 2 let (G,A) be a proper k-aligned triangulation of alignment
complexity (1, 0,⊥) that neither contains a free edge, nor a 0-anchored aligned
edge, nor a separating triangle. Then (i) every intersection contains a vertex,
(ii) every cell of the pseudoline arrangement contains exactly one free vertex,
(iii) every pseudosegment is either covered by two aligned edges or it intersects
a single edge.

Proof:
The statement follows from the following sequence of claims. We refer to an

aligned vertex that is not an intersection vertex as a flexible aligned vertex.
Claim 1. Every intersection contains a vertex.
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Assume that there is an intersection I that does not contain a vertex. Since
(G,A) is proper, every aligned edge of G is 0-crossed. Thus, no edge of G
contains I in its interior. Moreover, since (G,A) is a proper triangulation, the
outer face of G does not contain intersections of A. Hence, there is a triangular
face f of G that is not the outer face and that contains I. Thus, f either has
a 2-anchored edge, a 1-anchored l1-crossed edge, l1 ≥ 1, or an l0-crossed edge,
l0 ≥ 2, on its boundary. This contradicts that (G,A) has alignment complexity
(1, 0,⊥).

Claim 2. Every cell contains at least one free vertex.

Let C be a cell of A. Assume that the boundary of C is neither covered
by 1-aligned edges nor crossed by an edge. Since (G,A) is proper, there is a
face f of G that entirely contains C in its interior. Further, G is triangulated
and therefore, f is a triangle. But every triangle that contains a cell C in its
interior either has a 2-anchored edge, a 1-anchored l1-crossed edge, l1 ≥ 1,
or an l0-crossed edge, l0 ≥ 2, on its boundary. The alignment complexity of
(G,A) excludes these types of edges, thus, there is either a 1-crossed edge with
an interior intersection with the boundary of C, or C is covered by 1-anchored
aligned edges.

If there is an edge e with an interior intersection with the boundary of C,
one endpoint of e lies in the interior of C. Thus, in the following we can assume
that no such edges exist. Therefore, the boundary of C is covered by 1-anchored
aligned edges. There are two possibilities to triangulate the interior of the cell,
either by edges routed through the interior of C with endpoints on the boundary
of C or with interior vertices. The former is not possible, since such a non-aligned
edge would either be 2-anchored or have both of its endpoints on the same
pseudoline. Since (G,A) is an aligned graph of alignment complexity (1, 0,⊥),
it does not contain such edges. Thus, every proper aligned triangulation of the
graph induced by edges on the boundary of C contains a vertex in the interior
of C. /

Claim 3. Every cell contains at most one free vertex.

The following proof is similar to Claim 2 in the proof of Lemma 8. Let C
be a cell and assume for the sake of a contradiction that C contains more than
one vertex in its interior; see Fig. 15a. These vertices are connected by a set of
edges to adjacent cells. If C contains a vertex v or an edge e on its boundary, we

(a)

B

(b)

u

w
x

y
v

(c)

Figure 15: Illustrations for the proof Lemma 9.
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reroute the corresponding pseudolines close to v and e, respectively, such that
v and e are now outside of C; refer to Fig. 15b. Let C′ be the resulting cell, it
represents a cut in the graph with two components A and B, where C′ contains
B in its interior. It is not difficult to see that the modified pseudolines are
still pseudolines with respect to G. Since (G,A) neither contains 2-anchored
edges, nor 1-anchored l1-crossed edges, l1 ≥ 1, nor l0-crossed edges, l0 ≥ 2,
every edge of (G,A′) intersects the boundary of C′ at most once. Further, G
is a triangulation and therefore, B is connected and since it contains at least
two vertices it also contains at least one free edge, contradicting our initial
assumption. /

Claim 4. Every flexible aligned vertex is incident to two 1-anchored aligned
edges.

Let v be a flexible aligned vertex that lies on a pseudosegment S of A; refer
to Fig. 15c. Since k ≥ 2, S is either incident to one or two intersection vertices.
Let u be an intersection vertex incident to S and let S be on the boundary
of the cells C1, C2. First, we will show that u is adjacent to a vertex x in the
interior of C1 and a vertex y in the interior of C2, respectively. Depending on
whether S is incident to one or two intersection vertices, the edge ux helps to
find either a separating triangle or a 4-cycle that each contains v in its interior.

We initially show that the graph contains the edge ux. Since G is triangu-
lated there is a fan of triangles around u. Further, all edges in (G,A) are at
most 1-crossed, hence we find a vertex x′ in the interior of C1. Due to Claim 3
and Claim 4 the vertex in the interior of C1 is unique. Thus, we have that x′
is equal to x and therefore G contains the edge ux. Correspondingly, we find a
vertex y in the interior of C2 adjacent to u.

Consider the case where S contains only a single intersection vertex, i.e, S
intersects the outer face of G. Since (G,A) is proper (edges on the outer face are
1-crossed), G contains the edge xy. Thus, we find a triangle with the vertices
x, y and u that contains v in its interior. This contradicts the assumption that
G does not have a separating triangle. Therefore, if S is incident to a single
intersection, there is no flexible aligned vertex that lies in the interior of S.

Now consider the case where S is incident to two intersection vertices u and
w. As shown before, the vertices u,w are each adjacent to the free vertices x
and y. Therefore, vertices u,w, x, y build a 4-cycle containing v in its interior.
Since G does not contain a separating triangle, it cannot contain the edge xy.
Moreover, v is the only vertex in the interior of S, as otherwise, we would find a
free aligned edge. Finally, since (G,A) is an aligned triangulation, the vertex v
is connected to all four vertices and thus v is incident to two 1-anchored aligned
edges. /

Claim 1 proves that (G,A) has Property (i). Claim 2 and Claim 3 together
prove that Property (ii) is satisfied. Since (G,A) is an aligned triangulation,
Property (iii) immediately follows from Property (ii) and Claim 4. �

Lemma 10 Let (G,A) be a proper k-aligned triangulation of alignment com-
plexity (1, 0,⊥) that does neither contain a free edge, nor a 0-anchored aligned
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edge, nor a separating triangle. Let A be a line arrangement homeomorphic to
the pseudoline arrangement A. Then (G,A) has an aligned drawing (Γ, A).

Proof: We obtain a drawing (Γ, A) by placing every free vertex in its cell,
every aligned vertex on its pseudosegment and every intersection vertex on its
intersection. According to Lemma 9 every cell and every intersection contains
exactly one vertex and each pseudosegment is either crossed by an edge or it
is covered by two aligned edges. Observe that the union of two adjacent cells
of the arrangement A is convex. Thus, this drawing of G has an homeomor-
phic embedding to (G,A) and every edge intersects in (Γ, A) the line L ∈ A
corresponding to the pseudoline L ∈ A in (G,A) �

We prove the following theorem along the same lines as Theorem 7.

Theorem 8 Every k-aligned graph (G,A) of alignment complexity (1, 0,⊥) with
a stretchable pseudoline arrangement A has an aligned drawing.

Proof: Let (G,A) be an arbitrary aligned graph, such that A is a stretchable
pseudoline arrangement, let us denote by A the corresponding line arrangement.
By Lemma 5, we obtain a proper k-aligned triangulation (GT ,A) that contains
a rigid subdivision of G as a subgraph. Assume that (GT ,A) has an aligned
drawing (ΓT , A). Let (Γ′, A) be the drawing obtained from (ΓT , A) by removing
all subdivision vertices v and merging the two edges incident to v at the common
endpoint. Recall that a subdivision vertex in a rigid subdivision of (G,A) lies
on an intersection in A. Hence the drawing (Γ′, A) is a straight-line aligned
drawing and contains an aligned drawing (Γ, A) of (G,A).

We now show that (GT ,A) indeed has an aligned drawing. We prove this
by induction on the size of the instance (GT ,A). If (GT ,A) neither contains
a free edge, nor a 0-anchored aligned edge, nor a separating triangle, then, by
Lemma 10 there is an aligned drawing (ΓT , A).

If G contains a separating triangle T , let Gin and Gout be the respective
split components with Gin ∩ Gout = T . Since the alignment complexity of
(G,A) is (1, 0,⊥), triangle T is intersected by at most one pseudoline L. It
follows that (Gout,A) is a k-aligned triangulation and that (Gin,L) is a 1-aligned
triangulation. By the induction hypothesis there exists an aligned drawing
(Γout, A) of (Gout,A). Let Γout[T ] be the drawing of T in Γout. By Theorem 7,
we obtain an aligned drawing (Γin, L) with T drawn as Γout[T ]. Moreover,
since the drawing of T is fixed and is intersected only by line L, (Γin, A) is an
aligned drawing. Thus, according to Lemma 6, there exists an aligned drawing
of (G,A).

If GT does not contain separating triangles but contains either a free edge
or a 0-anchored aligned edge e, let GT /e be the graph after the contraction of e.
Observe that, since (GT ,A) is proper, every edge on the outer face is 1-crossed,
and therefore every chord is `-crossed, ` ≥ 1. Thus, e is an interior edge of
(GT ,A) and is not a chord. Therefore, by Lemma 7, (GT /e,A) is a proper
aligned triangulation. By induction hypothesis, there exists an aligned drawing
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of (GT /e,A), and thus, by the same lemma, there exists an aligned drawing of
(GT ,A). �

Figure 16: Placement of subdivision vertex to obtain a 2-aligned graph of align-
ment complexity (1, 0,⊥).

Theorem 9 Every 2-aligned graph has an aligned drawing with at most one
bend per edge.

Proof: We subdivide 2-crossed, 2-anchored or 1-crossed 1-anchored edges as
depicted in Fig. 16. Thus, we obtain a 2-aligned graph (G′,A) of alignment
complexity (1, 0,⊥). Applying Theorem 8 to (G′,A) yields a one bend drawing
of (G,A). �

5 Conclusion

In this paper, we showed that if A is stretchable, then every k-aligned graph
(G,A) of alignment complexity (1, 0,⊥) has a straight-line aligned drawing. As
an intermediate result, we showed that a 1-aligned graph (G,R) has an aligned
drawing with a fixed convex drawing of the outer face. We showed that the less
restricted version of this problem, where we are only given a set of vertices to
be aligned, is NP-hard but fixed-parameter tractable.

The case of more general alignment complexities is wide open; refer to Ta-
ble 1. Our techniques imply the existence of one-bend aligned drawings of gen-
eral 2-aligned graphs as Theorem 9 shows. However, the existence of straight-
line aligned drawings are unknown even if in addition to 1-crossed edges, we
only allow 2-anchored edges, i.e., in the case of alignment complexity (1, 0, 0).
In particular, there exist 2-aligned graphs that neither contain a free edge nor
an aligned edge but their size is unbounded in the size of the arrangement; see
Fig. 17. It seems that further reductions are necessary to arrive at a base case
that can easily be drawn. This motivates the following questions.
1) What are all the combinations of line numbers k and alignment complexities

C such that for every k-aligned graph (G,A) of alignment complexity C
there exists a straight-line aligned drawing provided A is stretchable?

2) Given a k-aligned graph (G,A) and a line arrangement A homeomorphic to
A, what is the computational complexity of deciding whether (G,A) admits
a straight-line aligned drawing (Γ, A)?
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Figure 17: Sketch of a 2-aligned triangulation without aligned or free edges. The
green edges are 2-anchored. The triangulation can be completed as indicated
by the black edges.
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