
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 23, no. 2, pp. 191–226 (2019)
DOI: 10.7155/jgaa.00489

Time Windowed Data Structures for Graphs

Farah Chanchary 1 Anil Maheshwari 1

1School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6,
Canada

Abstract

We present data structures that can answer time windowed queries
for a set of timestamped events in a relational event graph. We study
the relational event graph as input to solve (a) time windowed decision
problems for monotone graph properties, such as disconnectedness and
bipartiteness, and (b) time windowed reporting problems such as reporting
the minimum spanning tree, the minimum time interval, and the graph
edit distance for obtaining spanning forests. We also present results of
window queries for counting subgraphs of a given pattern, such as paths
of length 2 (in general graphs) and paths of length 3 (in bipartite graphs),
quadrangles and complete subgraphs of a fixed order or of all orders ` ≥ 3
(i.e., cliques of size `). These query results can be used to compute graph
parameters that are important for social network analysis, e.g., clustering
coefficients, embeddedness and neighborhood overlapping.

Submitted:
December 2017

Reviewed:
May 2018

Revised:
July 2018

Reviewed:
October 2018

Revised:
October 2018

Accepted:
February 2019

Final:
February 2019

Published:
February 2019

Article type:
Regular paper

Communicated by:
A. Lubiw

This research work was supported by NSERC Research Grants and Ontario Graduate Schol-

arship. Preliminary results for the subgraph counting data structures in RE graphs appeared

in the 10th International Workshop on Algorithms and Computation (WALCOM 2016).

E-mail addresses: farah.chanchary@carleton.ca (Farah Chanchary) anil@scs.carleton.ca (Anil

Maheshwari)

http://dx.doi.org/10.7155/jgaa.00489
mailto:farah.chanchary@carleton.ca
mailto:anil@scs.carleton.ca

192 F. Chanchary and A. Maheshwari Time Windowed Data Structures

1 Introduction

A relational event (RE) graph G = (V,E = {e1, e2, . . . , em}) is an undirected
graph with a fixed set V of n vertices and a sequence of edges E between pairs
of vertices, where each edge has a unique positive timestamp [4]. Without
loss of generality, we assume that t(e1) < t(e2) < . . . < t(em), where t(ei)
is the timestamp of the edge ei. In a time windowed query we are given a
relational event graph G and a predicate P. We want to preprocess G into a
data structure such that given a query time interval q = [i, j] with 1 ≤ i < j ≤ n,
it can answer time windowed queries based on the graph slice Gi,j = (V,Ei,j =
{ei, ei+1, . . . , ej}) that matches P.

This paper follows an event based approach [3], where each relational event
(graph edge) appears at a specific instance in time, such that at some time k
there exists at most one event, i.e., the edge ek. Therefore, when we consider
an interval in time [i, j], we get a set of events {ei, . . . , ej} whose timestamps
fall in that interval. As mentioned above, given a query time interval our data
structures answer queries using only the set of events that exist in this time
interval.

In this paper, we present new results for time windowed decision problems
on monotone properties of relational graph events, such as disconnectedness
and bipartiteness, and problems on minimum spanning trees (MSTs) within
a given query interval, e.g., reporting the existence of an MST, the minimum
spanning interval (i.e., minimum time required to obtain an MST), and graph
edit distance (GED) to convert a graph slice into a spanning forest. We also
present window data structures for counting all occurrences of subgraphs that
match with a given pattern, e.g., paths of length 2 (2-paths), paths of length
3 (3-paths), quadrangles (cycles of length 4) and all complete subgraphs of a
given order `, where ` ≥ 3. The triangle counting problem is fundamental to
many graph applications. This problem has been studied in various contexts,
for example as a base case for counting complete subgraphs of given orders
[24], in minimum cycle detection problem [23], and as a special case of counting
given length cycles [2]. Counting the total number of triangles and quadrangles
are also essential for analyzing large networks (such as WWW, social networks,
bipartite graphs or two-mode networks) as they are used to compute impor-
tant network structures, such as clustering coefficients [32, 33] and transitivity
coefficients [19]. Complete subgraphs counting problems have applications in
combinatorics and network analysis (see e.g., [30, 31]). We also present some
applications to show how various graph parameters can be computed using sub-
graph counting data structures that are particularly useful for social network
analysis.

1.1 Previous Work

A relational event (RE) graph generally represents communication events be-
tween pairs of entities in an underlying network that occurred at some specific
times. In recent studies, RE graphs have been used to model social networks

JGAA, 23(2) 191–226 (2019) 193

for various computational analysis and are also named dyadic event data [7]
and contact sequences [22]. Bannister et al. [4] were the first to consider this
model for preprocessing into data structures that can answer time windowed
queries using timestamped events. They presented data structures that can
count number of connected components, number of components containing cy-
cles, number of vertices having degrees equals to some predefined value, and
number of influenced vertices on a time-increasing paths [4]. They showed tech-
niques to reduce time windowed problems into a matroid rank problem so that
ranks of the query graph slices can be answered by a dominance counting query.
Hence they obtained sub-logarithmic query times for time windowed problems.
However, the required preprocessing time and space for all problems presented
in [4] (see Table 1) are the time and space requirements for the reduction only,
and do not consider those of the dominance counting data structures.

Chanchary et al. [10] presented techniques for building time window data
structures for RE graphs by using a colored range searching approach [6, 16, 17].
Their results include reporting several graph parameters that are essential for
social network analysis, such as graph density, h-index, k-stars, embeddedness,
neighborhood overlap (for both general and bipartite graphs) and the total
number of influenced vertices in the queried graph slices (see Table 1).

Recently, window queries have been extended towards solving geometric
problems such as reporting skyline and proximity relations of point sets [3],
finding all maximal subsequences that hold some hereditary property for a set
of points [5], solving convex hull area decision problem, diameter and width
decision problem [9], intersection decision problems for objects (e.g., line seg-
ments, triangles and convex c-gons) and problems related to dominant points
and maximal layers [11].

1.2 New Results

The main contributions of this paper are listed below, and are also summarized
in Table 1. Let G be a (weighted) relational event graph consisting of m edges
and n vertices.

1. Decision problems on monotone graph properties: A graph property P is
called monotone if every subgraph of a graph with property P also has
property P. Given a dynamic algorithm D that maintains a monotone
graph property P (e.g., disconnectedness and bipartiteness) having update
time U(n), query time Q(n), and space S(n), the time windowed decision
problem can be reduced to a 2-dimensional range searching query in time
O(m · (U(n) + Q(n))) using space O(S(n) + m) that can answer queries
in time O(log n).

2. Problems on minimum spanning trees: Given a weighted RE graph G that
has an MST with weight ω∗:

• We can preprocessG into a data structure of sizeO(m log n) such that
given a query time interval [i, j] we can report whether there exists

194 F. Chanchary and A. Maheshwari Time Windowed Data Structures

Table 1: Summary of previous and new results using relational event graph
G = (V,E). Here n = |V |, m = |E|, W = j − i + 1 is the width of the query
window [i, j], r (respectively, f) is the number of past (respectively, future)
neighbors of an edge, h is the h-index (the largest number h such that the graph
contains at least h vertices of degree at least h), z is the size of the output, s
is the number of edges having neighboring edges, t is the number of edges that
are contained in some triangles, p is the number of vertex pairs having some
common neighbors, k is the number of vertices having some neighbors in Gi,j , ε
is a small positive constant, X and Y are set of output edges, a(G) = O(

√
m))

is the arboricity of G (the minimum number of edge-disjoint spanning forests
into which G can be partitioned), γ ≤ min{

(
n
2

)
, a(G)m}, ` is the order of a

complete subgraph, w is the number of a specific subgraph (i.e., 2-path, 3-path
(in bipartite graphs), quadrangle, or complete subgraph) in the query interval,
and K is the total number of the same subgraph in G. All results are in ’big-oh’
notations. Results of this paper are marked with (∗).

Problem Prep. time Space Query time Ref.

Number of (reciprocated)

edges, degree-k vertices, m+ n m+ n logW/ log logm [4]

Reachable vertices,

Connected components,

tree components m logn m+ n logW/ log logm [4]

Edges with bounded

number of neighbors (r + f)m m+ n logW/ log logm [4]

Triad closure hm m+ n logW/ log logm [4]

Number of vertices,

Graph density m+ n m+ n logn [10]

Degrees of vertices m+ n m+ n log2 n+ z [10]

k-stars m+ n m+ n logn+ z [10]

h-index (approx.) n log2 n n logn log2 n+ h logn [10]

Embeddedness a(G)m a(G)m log2 n+ t logn [10]

NOver(Gi,j) mn mn log2 n+ (t+ s) logn [10]

NOver(Gi,j)-bipartite a(G)m a(G)m log2 n+ p logn+ k [10]

Influenced vertices m logn m logn logn+ z [10]

Monotone properties∗

Bipartiteness∗ m log3 n m+ n logn logn Th. 1

Disconnectedness∗ m log2 n m+ n logn logn Th. 2

MST∗ m log4 n m logn logn Th. 6

Min spanning interval∗ m log4 n m logε n log logn Th. 7

GED (Forest)∗ m logn m logn logn+ |X| Th. 8

2-paths∗ m m n Th. 9

a(G)m m+ n+K log W/ log logK Th. 3

3-paths∗ m+ n m+ n m+ n Th. 9

n4 m+ n+K log W/ log logK Th. 3

Complete Subgraphs a(G)`−2m m+ n+K log W/ log logK Th. 10

(fixed ` ≥ 3)∗

Complete Subgraphs a(G)`−1m m+ n+ logK/ log log K)2 Th. 11

(all ` ≥ 3)∗ K logK/ log logK
Quadrangles∗ a(G)m logn a(G)m logn γ logn+ w Th. 12

JGAA, 23(2) 191–226 (2019) 195

an MST T = (V,E′) of G with weight ω∗ such that E′ ⊆ {ei, · · · , ej}
in O(log n) time. Preprocessing requires O(m log4 n) time.

• We can preprocess G into a data structure of size O(m logε n), where
ε is a small constant, such that given a query time interval [i, j] we
can report the minimum spanning interval (i.e., the smallest time
interval [α, β] such that i ≤ α, β ≤ j and β − α is the smallest
time required to obtain an MST of G) in Gi,j in O(log log n) time.
Preprocessing requires O(m log4 n) time.

• We can preprocess G into data structures of size O(n+m) such that
given a query time interval [i, j] we can report the graph edit distance
(GED) to convert Gi,j into a spanning forest of G in O(log n + |X|)
time, where X is the set of the minimum number of edges such that
Gi,j \X is a forest. Preprocessing requires O(m log n) time.

3. Problems on counting subgraphs: We can preprocess G into time windowed
data structures so that given a query time interval [i, j] we can count the
total number of the following subgraphs in Gi,j .

• Paths of length 2 (2-paths): Preprocessing takes O(n+m) time using
O(n+m) space, and queries can be answered in O(n) time.

• Paths of length 3 (3-paths) (in bipartite graphs): Preprocessing takes
O(n + m) time using O(n + m) space, and queries can be answered
in O(n+m) time.

• Complete subgraphs of a fixed order ` ≥ 3: Preprocessing takes
O(a(G)`−2m) time and O(m + n + K) space, and queries can be
answered in O(logW/ log logK) time, where W is the width of the
query window and K is the total number of complete subgraphs of a
fixed order in G.

• Complete subgraphs of all orders ` ≥ 3: Preprocessing takesO(a(G)`−1m)
time and O(m+n+K logK/ log logK) space, and queries can be an-
swered in O((logK/ log logK)2) time, where K is the total number of
complete subgraphs in G of orders 3 and more.

• Quadrangles: Preprocessing takesO(a(G)m log n) time andO(a(G)m log n)
space. Queries can be answered in O(γ log n + w) time, where γ ≤
min{

(
n
2

)
, a(G)m} and w is the number of reported quadrangles.

1.3 Organization

The rest of this paper is organized as follows. Section 2 provides preliminaries
to the paper. Sections 3 and 4 present results of time windowed data struc-
tures for problems on monotone graph properties and on minimum spanning
trees, respectively. In section 5 we present window data structures for subgraph
counting problems for paths, complete subgraphs and quadrangles. In Section
6 we present some applications of window data structures. Section 7 concludes
the paper.

196 F. Chanchary and A. Maheshwari Time Windowed Data Structures

2 Preliminaries

2.1 Relational Event Graph

A relational event (RE) graph G is defined to be a simple graph with a set of
n vertices V and a set of m edges (or relational events) E = {ek | 1 ≤ k ≤ m}
between pairs of vertices. We assume that the graph is undirected so the pairs
are unordered. We also assume that each edge or relational event has a unique
timestamp. We denote the timestamp of an edge ek ∈ E by t(ek). Without
loss of generality, we assume that t(e1) < t(e2) < . . . < t(em), and that the
timestamps follow the sequence 1, 2, . . . ,m.

Given a relational event graph G, for a pair of integers 1 ≤ i < j ≤ m,
we define the graph slice Gi,j = (V,Ei,j = {ei, ei+1, . . . , ej}). Ni,j(v) denotes
the set of neighbors of vertex v in Gi,j and degi,j(u) is the number of edges
adjacent to vertex u in Gi,j . Figure 1(a) illustrates an RE graph G with 5
edges. Figures 1(b) and 1(c) represent, respectively, the graph slices G2,4 and
G2,5.

c d e

a b

1

5

3 4

2

(a)

c d e

a b2

43

(b)

c d e

a b

3 4

2

5

(c)

Figure 1: (a) An RE graph G with five edges (the integer numbers on the
edges are their timestamps), (b) a graph slice G2,4 and (c) a graph slice G2,5.
Examples of open triplets: 〈bd, de〉, 〈ad, de〉 in G and G2,5; 〈ca, ab〉, 〈ca, ad〉 in
G. Examples of closed triplets: 〈ab, bd, da〉 in G, G2,4 and G2,5.

A triplet is a connected subgraph consisting of three distinct vertices that
are connected by either three edges (closed triplet) or two edges (open triplet).
Note that any triangle consists of three closed triplets, one centered on each
of the vertices. Figure 1(a) shows a triangle (a, b, d) consisting of three open
triplets with time stamps 〈2, 3〉, 〈2, 4〉 and 〈3, 4〉 where each of these triplets are
closed by a third edge with timestamps 4, 3 and 2, respectively.

A high (respectively, low) event in any RE graph slice Gi,j is defined to be
the timestamp of an edge ek, where ek is the edge with the highest (respectively,
the lowest) timestamp among all edges that form a particular subgraph in Gi,j ,
such as paths of a fixed length, quadrangles or complete subgraphs. We refer
to Figure 2 and suppose we are interested in counting how many quadrangles
(C4) are in the query slice [i, j]. For a given slice G1,12, edges {e1, .., e12} do
not form any C4, thus no high or low event occurs in this slice. However, edges
e9, e10, e12 and e13 create a C4 = (e9, e10, e12, e13) in G1,13. Therefore, edges e9

and e13 become the low and the high event respectively for this C4. It is possible

JGAA, 23(2) 191–226 (2019) 197

a

e

n

g

ij

1

10
13

2

14

16

m
115

l

h19

d

9

126

3

8

74

18

b

k
c

f

15 17

Figure 2: An RE graph with 14 vertices and 19 edges. The timestamps are
mentioned as the integer numbers on the graphs edges.

that some edges participate in multiple subgraphs and thus become high or low
events for more than one subgraphs in the same slice. There are three C4’s in
G6,13, (e6, e9, e11, e13), (e6, e10, e11, e12) and (e9, e10, e12, e13). For two of these
subgraphs, e13 is the high event, though each of them have different low events.

Throughout the paper, adjacency linked lists are used to represent an RE
graph G. There will be two copies of each edge (u, v) for each endpoints u and
v. Each node of the linked list for u stores its neighbour v and the timestamp
of the edge (u, v).

Arboricity a(G) of a graph G = (V,E) having m = |E| edges and n = |V |
vertices is the minimum number of edge-disjoint spanning forests into which G
can be partitioned [18]. Chiba and Nishizeki [13] gave an upper bound on a(G)
for a general graph G as a(G) ≤ d(2m+ n)1/2/2e. Thus, for a connected graph
G, a(G) = O(

√
m). We state the following lemma from their paper as this result

will be used later in the section for subgraph counting.

Lemma 1 (Lemma 2.1 in [13]) If graph G = (V,E) has n vertices and m edges,
then

∑
(u,v)∈Emin{deg(u), deg(v)} ≤ 2a(G)m, where deg(x) denotes the degree

of vertex x in G.

2.2 Geometric Data Structures

The d-dimensional dominance counting problem for a set S of d-dimensional
points is to store S in a data structure such that given a query point q the
points in S that are dominated by q can be counted quickly. Let p = (px, py)
and q = (qx, qy) be two points in plane. We say q dominates p, if px ≤ qx
and qy ≤ py. Note that this is a non-traditional definition of dominance. The
standard dominance counting data structure considers dominance relationship
to be qx ≥ px and qy ≥ py, see Lemmas 1 and 2 in [1].

198 F. Chanchary and A. Maheshwari Time Windowed Data Structures

We can use this data structure to query for dominated points by mirroring
the coordinates of the points. Given a point set S with n points in plane,
the dominance counting query is to determine the total number of points of S
dominated by a query point q. See Figure 3(a) for an example.

x

y

q = (qx, qy)

x

y

q = (qx, qy)

(a) (b)

Figure 3: (a) All red points are dominated by a query point q. A red point
p = (px, py) is dominated by q = (qx, qy), where px ≤ qx and qy ≤ py. (b) A
special case where all points are below the main diagonal of a grid.

We state the following results from [14] and [1] on dominance counting, range
tree and interval tree data structures.

Theorem 1 [1, Theorem 2] Let S be a set of n d-dimensional points, where d ≥
2 is a constant. Then there exists a data structure for the d-dimensional domi-
nance counting problem using O(n(log n/ log log n)d−2) space such that queries
can be answered in O((log n/ log log n)d−1) time.

The following result is from [4] that presents a data structure for window
sensitive dominance queries on a set of n points, where the integer coordinates
of each point are in the range from 1 to n. Here, it is assumed that the points
are below the main diagonal, see Figure 3(b).

Theorem 2 [4, Theorem 9] Let S be a set of O(n) points below the main
diagonal of an n × n grid, then there exists a data structure of size O(n) that
can perform dominance queries for which the query point (i, j) is at distance
d = (j − 1)

√
2 from the main diagonal in time O(log d/ log log n) time, with

1 ≤ i < j ≤ n.

A d-dimensional range tree is a data structure for rectangular range queries,
where each query is composed of d 1-dimensional sub-queries respectively on
the x1, x2, . . . , xd - coordinates of the points.

Theorem 3 [14, Theorem 5.11] Let P be a set of n points in d-dimensional
space, where d ≥ 2. A range tree for P uses O(n logd−1 n) space and it can

JGAA, 23(2) 191–226 (2019) 199

be constructed in O(n logd−1 n) time. With this range tree one can report the
points in P that lie in a rectangular query range in O(logd−1 n+ k) time, where
k is the number of reported points.

An interval tree data structure stores a set of n axis-parallel line segments
or intervals on the line.

Theorem 4 [14, Theorem 10.4] An interval tree for a set I of n intervals uses
O(n) storage and can be built in O(n log n) time. Using the interval tree we can
report all intervals that contain a query point in O(log n + k) time, where k is
the number of reported intervals.

3 Monotone Graph Properties

In this section, we present data structures to solve time windowed decision
problems under some monotone graph property P.

Definition 1 A graph property P is monotone if every subgraph of a graph with
property P also has property P.

In other words, a graph property is monotone if it is closed under the removal
of edges. For example, every subgraph of a planar graph is planar. Other ex-
amples of monotone graph property includes disconnectedness and bipartiteness.

Problem statement: Given an RE graph G = (V,E) and a monotone graph prop-
erty P, we want to preprocess G so that for any query time interval [i, j] with
1 ≤ i < j ≤ n, we can answer quickly whether the graph slice Gi,j = (V,Ei,j)
satisfies P.

3.1 Overview of the Algorithm

We present a general approach to reduce time windowed decision problems un-
der monotone graph properties P to standard range searching problems using
dynamic data structures that maintain P. Suppose, there exists a dynamic
data structure D that maintains some monotone graph property P and requires
S(n) space, U(n) update time and Q(n) query time. We further assume that,
D accepts update operations such as edge insertions and deletions and allows
queries that test whether the current graph satisfies P. We preprocess edges
of G = (V,E = {e1, e2, . . . , em}) using D to find all the maximal subsequences
of edges that satisfy P. To be more specific, starting with e1, we insert edges
of E according to the increasing timestamps of edges to D and check whether
the subgraph formed by edges added so far satisfies property P . If it does, we
continue adding edges to D until for the first time we find a graph slice G1,b+1

that does not satisfy P for some b ≥ 1 (see Figure 4).
Now, for this first maximal subsequence of edges e1, e2, . . . , eb that satisfies

P, we store a point p = (1, b) ∈ R2. Next, we keep deleting edges from D
starting with e1 and following the same sequence of edges as they have been

200 F. Chanchary and A. Maheshwari Time Windowed Data Structures

1

2

3

4
5

6

7

8

1

2

3

4
5

(a) (b)

1

2

3

4
5

6

7

8

1

2

3

4
5

6

7

8

(c) (d)

Figure 4: (a) An RE graph G with eight edges. Timestamp of each edge is
mentioned as an integer value. G has three maximal subsequences of edges
that satisfy the disconnectedness monotone property; they are (b) e1, . . . , e4 (e5

connects G), (c) e2, . . . , e7 (e8 connects G), and (d) e4, . . . , e8 (preprocessing
ends).

inserted until we find some ea such that ea, ea+1, . . . , eb+1 satisfies P. To find
the next maximal subsequence, we start inserting edges from eb+2 and repeat
the process. We continue processing edges until we scan all m edges of G. At
the end of this process, we will have a set of points S in plane, where each
point (a, b) ∈ S represents a graph slice having a maximal contiguous edge set
{ea, ea+1, . . . , eb} that satisfies property P. During preprocessing, each edge of
G is updated (inserted and deleted) and queried exactly once using D. So the
total time required for this preprocessing step is O(m · (U(n) +Q(n))).

Each point (a, b) ∈ S obtained from this preprocessing step represents a time
interval [a, b], where b > a, such that Ga,b satisfies P (see Figure 5(a)). Let IS
be the set of all intervals found from S in this way. A query time interval [i, j]
satisfies P if and only if [i, j] is contained in some interval [a, b] ∈ IS . We define
the North-West quadrant of the point (i, j) as NW (i, j) = (−∞, i]×[j,∞). Now
we reduce this problem to range emptiness problem as stated in the following
lemma.

Lemma 2 A query time interval [i, j] is contained in some interval [a, b] ∈ IS
if and only if NW (i, j) ∩ S 6= ∅.

Proof: For the ‘if ’ part, note that all points (a, b) ∈ S are above the main
diagonal as b > a. Therefore, when some query interval [i, j] is contained in
[a, b] ∈ SI , it implies that a ≤ i < j ≤ b and (a, b) ∈ NW (i, j) (see Figure 5(b)).

JGAA, 23(2) 191–226 (2019) 201

1 2 3 4 5 7 8 9 1061 2 3 4 5 7 8 9 106 11 12

1

2

4

3

5

6

7

8

10

9

11

12

q = [4, 7]

q = [2, 8]

(4, 7)

(2, 8)

Figure 5: (a) An example illustrating a set of time intervals representing graph
slices that satisfy some monotone property P, (b) Query: for q = [2, 8] (blue
line) there is no point in (−∞, 2]× [8,+∞), hence G2,8 does not satisfy P, and
for q = [4, 7] (red line) there are points in (−∞, 4]× [7,+∞), hence G4,7 satisfies
P.

(a) (b) (c)

t t t

pl pr

ql qr

sl sr

Ip

Iq

Is

Ip

Iq

Is

pl pr

ql qr

sl sr

Figure 6: (a) Subsequences cannot be contained in other maximal subsequences.
Permissible orientations of subsequences: (b) Non-overlapping subsequences, (c)
Partially overlapping subsequences.

Now we prove the ‘only if ’ part. First we observe that IS can never contain
two subsequences such that one is totally contained in another. See Figure 6(a).
Our algorithm will always keep the subsequence with the maximum length.
Moreover, there can be only two possible orderings of all subsequences of IS
where two maximal subsequences will either partially overlap each other or
they do not overlap at all, see Figures 6(b) and (c).

Suppose our algorithm does not identify a valid maximal subsequence Iq.
Two cases have to be verified here.

Case (a): when Iq = (eq` , . . . , eqr) does not overlap any other subsequences
and it is in between two subsequences Ip = (ep` , . . . , epr) and Ir = (er` , . . . , err).
I.e., the ordering of the timestamps of the edges are pr < q` < qr < r`. Note
that Ip is identified as a valid maximal subsequence because ep` , . . . , epr satisfies
some monotone property while ep` , . . . , epr+1

does not. So our algorithm will
keep deleting edges from ep` and check for satisfiability of the property. In this
process all edges from ep` to eq`−1

go through the insertion, verification and

202 F. Chanchary and A. Maheshwari Time Windowed Data Structures

deletion process. Finally edge eq` will be verified and if I ′ is valid then all edges
in the sequence (eq` , . . . , eqr) must be identified by our algorithm.

Case (b): when Iq partially overlaps Ip and Ir and suppose the ordering
of the timestamps of the edges are q` < pr < s` < qr < sr. As before
our algorithm identifies that ep` , . . . , epr satisfies some monotone property but
ep` , . . . , epr+1 does not. Now if Iq is valid, when edges ep` , . . . , eq`−1

are deleted
then eq` , . . . , epr+1 must satisfy the property and do not get deleted. In this
step our algorithm must keep adding next edges in the sequence and identifies
eq` , . . . , eqr as the valid maximal subsequence Iq. �

For any monotone property, this approach generates O(m) maximal subse-
quences. So for any RE G, this preprocessing step produces a point set S, with
|S| ≤ m. We build a 2-dimensional priority search tree (PST), see [25], on the
point set S. To answer queries of the form ‘Given a query time interval [i, j] s.t.
i ≤ j, does the graph slice Gi,j satisfy property P? ’, we query this data struc-
ture using a grounded query rectangle q = (−∞, i] × [j,+∞). We report that
Gi,j satisfies P if the query returns a positive count. Total space required by a
2-dimensional PST is linear. Thus the total space requirement of this approach
is O(S(n) + m). A 2-dimensional PST on m points can answer each grounded
query in time O(logm). If G is completely connected then m = O(n2) and
therefore O(logm) = O(log n). We will use this assumption through out the
paper. We summarize the result in the following theorem.

Theorem 5 Suppose, D is a dynamic algorithm that maintains a monotone
graph property P using S(n) space, and requires U(n) time per update and Q(n)
time per query. Given an RE graph with n vertices and m edges and an arbitrary
query time interval [i, j], we can reduce the time windowed decision problem for
reporting whether Gi,j satisfies a monotone property P to a 2-dimensional range
searching query in O(m · (U(n) +Q(n)) time using O(S(n) +m) space that can
answer queries in O(log n) time.

3.2 Bipartiteness

A graph is bipartite if the set of its vertices can be decomposed into two dis-
joint sets such that no two graph vertices within the same set are adjacent. We
directly use Henzinger and King’s [20] dynamic algorithm for maintaining bipar-
titeness of a graph that supports each update in O(log3 n) time and each query
can be answered in O(1) time. Their data structure uses S(n) = O(m+n log n)
space. Therefore we obtain the following result.

Corollary 1 We can preprocess an RE graph G with n vertices and m edges
into a data structure of size O(m+n log n) in O(m log3 n) time such that a time
windowed bipartiteness decision query can be answered in O(log n) time.

3.3 Disconnectedness

Let G = (V,E) be a graph such that G is not connected. Then observe that for
any subset E′ ⊆ E, G′ = (V,E′) is also disconnected. Thus the property of being

JGAA, 23(2) 191–226 (2019) 203

disconnected is monotone. Following our algorithm, as described in Section 3.1,
we first identify all maximal subsequences of edges ea, ea+1, . . . , eb−1, eb such
that G is not connected by the edges of Ga,b. We use the deterministic dynamic
connectivity algorithm by Holm et al. [21, Theorem 3] to answer connectivity
queries. This dynamic data structure D uses S = O(m + n log n) space, amor-
tized U(n) = O(log2 n) update time and worst case Q(n) = O(log n/ log log n)
query time to answer whether two vertices u and v are connected in a given
graph G.

However, our time windowed queries ask for the connectivity of the entire
graph and not just any two vertices. We describe here how to use the same data
structure D to answer the full connectivity query by executing an additional
check. We keep a count that stores the number of connected components of
G. Initially, count is equal to total number of vertices since no edges have been
inserted into the data structure so far, and thus each vertex represents one com-
ponent. Suppose at some time during preprocessing G, we finished processing
edge ek−1 and now we want to insert an edge ek = (u, v) into this structure.
Also assume that vertices u and v are not connected in D. Since inserting e
into D will connect two previously disconnected components containing vertices
u and v, respectively, into one component, the total number of components
maintained by D will be reduced by one. So count is decreased by 1. By a
similar argument, every time an edge e is deleted from D the total number of
components maintained by this structure will be increased by one. We update
count accordingly during processing each edge. Thus, we know that a graph
slice is connected only when count equals 1. Updating count takes O(1) time
per edge insertion and deletion.

In total, we can find at most O(m) maximal subsequences of edges that
satisfy the connectivity property, or equivalently, O(m) points to be stored in
the dominance counting structure. So, our windowed data structure for discon-
nectedness requires O(m+ n log n) space and O(m(log2 n+ logn/ log log n)) =
O(m log2 n) time for preprocessing. Using Theorem 5, we obtain the following
result for the windowed query for disconnectedness.

Corollary 2 We can preprocess an RE graph G with n vertices and m edges
into a data structure of size O(m+n log n) in O(m log2 n) time such that a time
windowed decision query for disconnectedness can be answered in O(log n) time.

4 Problems on Minimum Spanning Trees

In this section we solve three window query problems using the minimum span-
ning tree (MST) of a weighted RE graph. In particular, we first show an appli-
cation of dynamic algorithm to construct a data structure to report whether an
MST exists in the query time interval. Next we report the minimum spanning
interval of an MST for any query time interval. Then, we show how to report
the graph edit distance to transform a query graph slice into a spanning forest.

204 F. Chanchary and A. Maheshwari Time Windowed Data Structures

4.1 Weight of the MST

Suppose a weighted RE graph G = (V,E) is given where each edge of G has
a positive numerical weight. Let the weight of the MST of G be denoted by
ω∗. For a query time interval [i, j], we want to report whether there exists some
MST T = (V,E′) such that E′ ⊆ {ei, · · · , ej} with weight ω∗.

We utilize two dynamic data structures to preprocess the edges of G. The
first dynamic structure (due to Holm et al. [21]) is used to maintain the minimum
spanning forest (MSF) of G using the edges inserted so far. We call this data
structure D1. We require a second dynamic structure to verify whether the
MSF maintained by D1 is connected, i.e., it is also the MST of G. We use the
dynamic connectivity algorithm that we have used to solve the time windowed
problem for disconnectedness (see Section 3.3) as our second data structure,
namely D2.

Note that D1 maintains the MSF of G. We augment D1 so that every time
an edge e is inserted into D1, it reports which edge has been added to the MSF
and which edge (if any) has been deleted from the MSF. After each update, D1

also updates the total weight of the current MSF. We have the following cases
to consider.

1. The newly inserted edge e does not create any cycle with the existing tree
edges and therefore is added to the current MSF. D1 reports that e has
been added to the MSF.

2. The newly inserted edge e creates a cycle with the existing tree edges.
If the weight of e is less than that of any other edge of the cycle then e
replaces the edge with the highest weight in that cycle. Then D1 reports
that e has been added to the MSF and the edge with the highest weight
in the corresponding cycle has been deleted from MSF.

3. Otherwise, the MSF does not change and D1 does not report anything.

These simple augmentations can be done without making any changes to the
preprocessing and space time bounds of the original data structure.

Now we discuss the preprocessing. For k = 1 to m, we insert edge ek into
D1 according to their increasing timestamps and check whether ek becomes a
new tree edge in D1. We insert ek into D2 in two cases; (a) when ek becomes
a new tree edge and (b) when ek replaces an existing tree edge. Every time a
new tree edge ek is inserted into D2 we check the connectivity of the current
subgraph using D2. Every time a new tree edge ek replaces an old tree edge
ek′ in D1, we insert ek into D2 and delete ek′ from D2. We keep repeating this
process until for the first time we find a subsequence of edges e1, . . . , eq that
has the the MST of G with weight ω∗. Observe that in case where q > n − 1,
some of the edges in this subsequence with higher weights have been replaced
by some other lighter edges from the same subsequence. We start deleting from
edge e1 and check whether e2, . . . , eq still holds the MST of weight ω∗. We keep
deleting edges according to the same sequence of edge insertion until we find

JGAA, 23(2) 191–226 (2019) 205

the minimal subsequence I = ep, . . . , eq where the MST exists. We store a point
(p, q) ∈ R2 marking that there exists an MST of G in the interval [p, q]. Now
we delete edge ep, insert edge eq+1 and repeat the whole process until we finish
scanning all edges of G. At the end of the preprocessing we have a set of points
S′ ∈ R2, where each point (p.q) ∈ S′ represents a minimal subsequence in which
an MST with weight ω∗ exists. Let IS′ be the set of all intervals obtained by
this process. Now the following lemma holds.

Lemma 3 A query time interval [i, j] contains some interval [p, q] ∈ IS′ if and
only if SE(i, j) ∩ S′ 6= ∅, where SE(i, j) = [i,+∞)× (−∞, j] is the South-East
quadrant of the point (p, q).

The proof is similar to the one presented for Lemma 2 and hence omitted.

Theorem 6 Suppose a weighted RE graph G is given with m edges and n
vertices, and let G has an MST of weight ω∗. Given a query time slice [i, j],
the problem of reporting whether Gi,j contains an MST of G with weight ω∗ can
be reduced to a 2-dimensional range searching query in O(m log4 n) time using
O(m log n) space. Queries can be answered in O(log n) time.

Proof: We observe that no two intervals in IS′ can have same start time.
Therefore, there can be at most one interval starting from any time k with
1 ≤ k ≤ n. So the number of MSTs that can possibly be generated over m
edge updates is at most O(m). Holm et al.’s algorithm maintains an MSF using
amortized O(log4 n) time per update and O(m log n) space [21, Theorem 8].
As mentioned before, the dynamic connectivity algorithm by the same authors
provides O(log2 n) update time using O(m+n log n) space. Similar to the data
structure of Section 3.1 we build a 2-dimensional PST on O(m) points using
linear space and query using a grounded query rectangle [i,+∞) × (−∞, j] in
O(log n) time. We report there exists an MST of G in Gi,j if the query returns
a positive count. �

4.2 Minimum Spanning Interval

We define a spanning interval as the time difference t(eq)− t(ep) such that there
exists an MST T = (V,E′ ⊆ {ep, · · · , eq}) of G. The motivation for solving this
problem is the fact that given a query time interval [i, j] multiple MSTs of
G can exist in the graph slice Gi,j , and we are interested to find a minimum
spanning interval that contains an MST. To solve this problem we change the
data structure described in Section 4.1 as follows. The length of the minimal
subsequence ep, . . . , eq that holds an MST is q − p + 1. So now we consider
each point a = (p, q) as a weighted point and initialize the weight of each point
to w(a) = q − p + 1. Therefore the problem of finding the minimum spanning
interval withinGi,j can be reduced to the orthogonal range minimum problem on
O(m) points. According to Chan et al. [8], orthogonal range minimum problem
can be solved in O(log log n) time using O(m logε n) space, where ε is a small
positive constant. We summarize the result here.

206 F. Chanchary and A. Maheshwari Time Windowed Data Structures

Theorem 7 Given an RE graph G with m edges and n vertices, and a query
time slice [i, j], the problem of reporting the minimum spanning interval in Gi,j
can be reduced to the orthogonal range minimum problem in O(m log4 n) time
using O(m logε n) space. Queries can be answered in O(log log n) time.

4.3 Graph Edit Distance for Target Class Forest

Definition 2 Given a set of graph edit operations (insertion or deletion of graph
edges), the graph edit distance GED(G,H) between a source graph G and a target
graph H is defined as follows.

GED(G,H) = min{c(S)|S is a sequence of operations transforming G into H}

In this definition, S = (s1, s2, . . . , sk) is a sequence of operations that trans-
forms G into H. The cost of a sequence S = (s1, s2, . . . , sk) is given by

c(S) =
∑k
i=1 c(si), where c(si) is the cost of the operation si. The goal of the

graph edit distance is to find the minimum cost of the operations that makes
the transformation possible. We consider edge deletion as the only permitted
graph edit operation to solve our problem. We assume that for unweighted
graphs, each edit operation has a unit cost. In this section, we want to solve
the following problem.

Given an RE graph G = (V,E) and a query time interval [i, j], we want to
compute the GED(Gi,j , H) where H = (V,E′) is a spanning forest of Gi,j and
E′ ⊆ {ei, ei+1, . . . , ej}. This is equivalent to saying that we want to find a set
of edges X such that Gi,j \X is a forest and |X| is minimum.

First we present the following observation.

Lemma 4 The total cost C of GED(Gi,j , H) is equivalent to the number of
chordless cycles in Gi,j, where H is the spanning forest of Gi,j.

Proof: Let C be a simple cycle without any chords. Observe that by deleting
any edge of C, we obtain a spanning forest (tree) of C. Also note that graph edit
distance must report the minimum cost of operations. Since one edge deletion
is required for every chordless cycle and every edge deletion operation has unit
cost, the total cost C of GED(Gi,j , H) is the same as the total number of edge
deletions in Gi,j . Therefore, reporting GED(Gi,j , H) is equal to the number of
chordless cycles in Gi,j . Therefore the lemma holds. �

Algorithm: We maintain a link-cut tree T , see [29], to store the vertices of G.
A link-cut tree allows edge insertions and deletions in amortized time O(log n).
This data structure also supports standard aggregate functions (e.g., max, min,
sum or increment) over all the edges from a vertex v to the root of T in time
O(log n) [29]. We store the timestamp of an edge as its weight so that we can
query T to find the edge with the minimum timestamp that is on the path from
v to the root.

JGAA, 23(2) 191–226 (2019) 207

For k = 1 to m, we process each edge ek in increasing order of the timestamp
and add ek to T unless it creates a cycle with the existing edges of T . Suppose
ek = (uk, vk) is an edge with uk and vk as its two end points, that creates a
cycle in T . Then there must be an existing path from uk to vk in T . We query
T to find the edge e` with the minimum timestamp t(e`) on this path. We store
a point (k, `) ∈ R2 with label `. We delete e` from T and insert ek to T . We
repeat these steps until we finish processing all edges in E. At the end of this
process we obtain a set of labelled points P with |P | = O(m) in R2. Figure 7
illustrates an example of our algorithm for computing GED for forests.

Lemma 5 The number of points in P ∩ ([i, j] × [i, j]) is equal to the GED of
Gi,j.

Proof: Note that every point (k, `) ∈ R2 that represents a chordless cycle in
the interval [`, k] lies below the main diagonal. The number of points |X| =
P ∩ ([i, j]× [i, j]) gives us the total number of chordless cycles that exist in time
interval [i, j]. By Lemma 4, the number of points in |X| is equal to the GED of
Gi,j . �

Theorem 8 Given an RE graph G with m edges and n vertices, and a query
time slice [i, j], the problem of reporting the GED for target class forest can be
reduced to the range searching problem in O(m log n) time using O(m+n) space.
Queries can be answered in O(log n + |X|) time using O(m log n) space, where
X is the set of edges such that Gi,j \X is a forest and |X| is minimum.

Proof: The preprocessing step ensures that when an edge ek creates a cycle
such that e` is an edge in that cycle with the smallest timestamp, the interval
[`, k] contains exactly one chordless cycle. According to Lemma 4 this chordless
cycle in G`,k must contribute a unit cost to the graph edit distance. So a point
(k, `) ∈ R2 with label ` represents that a cycle exists in time interval [`, k] and
e` is the edge that must be deleted to maintain the forest. It is also necessary to
delete e` physically from T to ensure that the next cycle found by the scanning
process is chordless. Labels are required only if we want to report the edges.
Otherwise if we want to report the value of GED only (i.e., the total number of
edges to be deleted) then we can ignore labels.

Every edge will be inserted and deleted from T at most once in this process.
Queries are also made at most once for each edge. Therefore, total preprocessing
time is O(m log n) using O(n+m) space [29]. As mentioned above P has O(m)
labelled points in R2. P can be stored using a standard range search tree that
can be built in O(m log n) time using O(m log n) space [14].

For a given query time interval [i, j], we count the number of points |X| =
P ∩ q that intersect with the query rectangle q = [i, j]× [i, j] in O(log n) time.
By Lemma 5 we report |X| as the GED for converting Gi,j to a forest, i.e., |X|
is the number of edges needed to be deleted from Gi,j such that the resulting
graph slice becomes a forest. If the query is to report the set of edges that
are needed to be deleted, we can answer in O(log n + |X|) time to report the
labels of the points (i.e., timestamps of the deleted edges), where X is the set
of deleted edges. �

208 F. Chanchary and A. Maheshwari Time Windowed Data Structures

b
d

c

g

e

a

1
4

5

2
f

3

(a) (b)

b
d

c

g

e

a

1
4

8

5

2

6

f

7

3

b
d

c

g

e

a

1
4

8
9

5

2

6

f

7

3

(c) (d)

b
d

c

g

e

a

1
4

8

5

2

6

f

7

3

(e)

9

b
d

c

g

e

a

1
4

8
9

5

2

6

f

7

3

Figure 7: (a) An RE graph G with seven vertices stored in a link-cut tree
T . Edges are not inserted yet. (b) Starting with e1 edges are inserted to T
according to the increasing timestamps until e5 creates a cycle C1 = 〈e2, e3, e5〉
(timestamp of each edge is mentioned as an integer value). (c) The edge with the
lowest timestamp in C1 is e2 and a point (5, 2) ∈ R2 with label 2 is stored. Edge
e2 is deleted and e6, . . . , e8 are inserted to T . (d) Edge e8 creates another cycle
C2 = 〈e4, e6, e8〉. Similarly the edge with the lowest timestamp e4 is deleted
from T and a point (8, 4) ∈ R2 with label 4 is stored. Edge e9 is inserted to T .
(e) e9 creates cycle C3 = 〈e1, e5, e9〉. Again the edge with the lowest timestamp
e1 in C3 is deleted from T and a point (9, 1) ∈ R2 with label 1 is stored. (e)
GED(G1,9, H) = 3, where H is a spanning forest of G. Reported edges are 1, 2
and 4. Bold blue edges create cycles, solid black edges are part of H and dashed
grey edges are deleted from G1,9.

JGAA, 23(2) 191–226 (2019) 209

5 Problems on Counting Subgraphs

In this section we consider the problems of counting subgraphs of some fixed
patterns in a queried graph slice Gi,j . The patterns for which we present data
structures are 2-paths (paths of length two in general graphs), 3-paths (paths
of length three in bipartite graphs), all complete subgraphs of size 3 and more,
and quadrangles (C4) or simple cycles of length 4.

5.1 Counting 2-paths and 3-paths

First, we consider the case of counting 2-paths. Let G = (V,E) be an RE graph
with n vertices and m edges. We maintain a set of n lists, one for each vertex
vk ∈ V , where 1 ≤ k ≤ n. The list Lvk stores timestamps of vk’s incident edges,
sorted in increasing order. The length of this list is deg(vk), where deg(vk) is
the degree of vk in G. Therefore, the total space over all the lists is at most∑
vk∈V deg(vk) ≤ 2m = O(m).
Next we analyze the complexity of computing all 2-paths in G. For a query

time slice [i, j], suppose, i′ and j′ are the indices of the elements in Lvk such
that Lvk [i′] is the smallest element ≥ i, and Lvk [j′] is the largest element ≤ j.

Then the total number of 2-paths centering vk in Gi,j will be
(
j′−i′+1

2

)
. For

each vertex vk, the number of 2-paths where vk is the ‘center’ vertex can be
computed by performing a binary search in the list Lvk to locate i′ and j′

as discussed above. This requires O(log deg(vk)) time. Thus we can report
all 2-paths in Gi,j in O(

∑n
k=1 log deg(vk)) = O(n log n) time. Using fractional

cascading data structure, see [12], we can improve the query time to O(n) time
without incurring any increase in space as follows.

Fractional cascading data structure is generally used to solve iterated search
problem, where many search problems can be solved by first solving a subprob-
lem whose size is a constant fraction of the original problem size and then using
this solution to obtain the solution of the original problem. We provide a brief
description of how this data structure can be built and used in our case. We
define Yvn = Lvn . Suppose we take a sample of size bn/2c from Yvn by selecting
every alternate elements. Then elements from this sample list are merged with
Lvn−1

to obtain Yvn−1
. For each element k, with 1 ≤ k ≤ n, in Yvn−1

we use two
pointers that points respectively to the smallest integer p such that Yvn [p] ≥ k
and to the first element of Yvn−1

that comes from Lvn−1
and appears after k.

We repeat this process of using Lvn−2 and Yvn−1 to obtain Yvn−2 until we obtain
Yv1 . Total space required is O(n). Now the iterative query can be answered by
first using a binary search in some Lvk with keys i′ and j′, where 1 ≤ k ≤ n.
For the subsequent steps we can find each pair of Lvk+1

[i′′] and Lvk+1
[j′′] from

the information of Lvk [i′] and Lvk [j′] in constant time. Therefore queries can
be answered in O(n+ log n) = O(n) time.

Now we present data structure for counting all 3-paths in a bipartite RE
graph G = (V = {A ∪ B}, E = {(u, v) : u ∈ A, v ∈ B}). We maintain two
cascading structures. The first structure D1 maintains all 2-paths centering
each vertex uk ∈ A with 1 ≤ k ≤ |A|. D2 is a similar structure for each vertex

210 F. Chanchary and A. Maheshwari Time Windowed Data Structures

v` ∈ B with 1 ≤ ` ≤ |B|. We also maintain an array, namely count[1. . |A|], that
initially stores zero in each count[k] with 1 ≤ k ≤ |A|. We update this array
during the query with the following information. For query interval [i, j], each
count[k] will store degi,j(uk), i.e., the number of edges adjacent to uk in Gi,j ,
for all uk ∈ A, see Figure 8.

The data structures D1 and D2 are adjacency linked lists. In D1, every
node on uk’s list contains two fields, a vertex v and the timestamp t(uk, v) such
that (uk, v) ∈ E, uk ∈ A and v ∈ B (see Figure 8(b)). In D2’s structure,
every node on v`’s list also has two similar fields and an extra pointer field that
points to count[k], if the edge (v`, uk) appears in Gi,j (see Figure 8(c)). Total
preprocessing takes O(m+ n) time.

The query is processed in two steps. Given a query time interval [i, j], we
first perform a binary search on D1 using key values i and j. This process is
same as counting 2-paths. For every uk ∈ A, with 1 ≤ k ≤ |A|, we store the
number of edges adjacent to uk within time interval [i, j] in position count[k].
This step takes O(n) time using fractional cascading.

Next, we do a similar binary search on D2, and similar to the process de-
scribed above for 2-paths, let i′ and j′ be the indices of the elements in Lv` such
that Lv` [i

′] is the smallest element ≥ Lv` [i], and Lv` [j
′] is the largest element

≤ Lv` [j]. This time, we walk along each element from Lv` [i
′] to Lv` [j

′] for every
v` ∈ B, and follow the pointer of each uk ∈ N(v`) to reach count[k].

The number of 3-paths in Gi,j of the form 〈a, v`, uk, b〉, such that v` ∈ B is
a fixed vertex and uk ∈ A is a fixed neighbour of v`, are equal to (degi,j(v`) −
1) × (count[k] − 1), given that degi,j(v`) > 1 and count[k] > 1. Otherwise no
3-path exists of this form. So, the total number of 3-paths passing through all
the neighbours uk ∈ N(v`) of a fixed v` in Gi,j will be

(degi,j(v`)− 1)×
∑

∀k:uk∈Ni,j(v`)

(count[k]− 1).

Where Ni,j(v`) denotes neighbors of v` in [i, j]. Therefore, the count of all
3-paths in Gi,j will be

|B|∑
`=1

(
(degi,j(v`)− 1)×

∑
∀k:uk∈Ni,j(v`)

(count[k]− 1)
)
.

We can find the number of adjacent edges of all uk ∈ A with i ≤ k ≤ j, and
of all v` ∈ B with i ≤ ` ≤ j, in O(n) time using fractional cascading on D1

and D2. Since scanning neighbours of all v`, with 1 ≤ ` ≤ |B|, requires at most
O(m) time, total query time to find all 3-paths in Gi,j is O(n + m). We have
used an array of size at most n, and two copies of the similar data structure
that has been used for counting 2-paths. Thus the total space requirement is
O(m+ n).

Theorem 9 (a) Let G = (V,E) be an RE graph with n vertices and m edges.
G can be preprocessed into a data structure in O(n + m) time using O(n + m)

JGAA, 23(2) 191–226 (2019) 211

v1

v2

u1

u2

u3

3

v5

u4

u5

2

(a)

u1
1

v1
5

v2

2

v3
3

v1u2

4

v4
6

v2

10

v5
11

v3

8

v5
9

v3
u5

u4

u3

7

v2

13

v3

12

v4

(b)

u1

u2

u3

u4

u5

1

3

2

1

2

count

u1

1v1

u2

3

u1

v2

u2

7

u2

2v3

u3

6

u3

4v4

u5

12

u5

8v5

u4

10

5
u3

13

u5

9

u4

11
v3

v4

1

5

7

13

6

4
9

8

11

12
10

D1 D2

(c)

Figure 8: (a) A bipartite RE graph G, (b) Fractional cascading structure D1,
(c) Fractional cascading structure D2. An example illustrating how D1 and D2

are queried with time interval [2,10].

space such that the total number of 2-paths in Gi,j can be counted in O(n) time.
(b) Let G = (V,E) be a bipartite RE graph with n vertices and m edges. G can
be preprocessed into a data structure in O(n + m) time using O(n + m) space
such that the total number of 3-paths in Gi,j can be counted in O(n+m) time.

5.2 Counting Complete Subgraphs of a Fixed Order ` ≥ 3

In this section we present the general overview of the technique to count all
complete subgraphs of order ` ≥ 3 in an RE graph G = (V,E). The order of
G is the number of vertices in G. A complete subgraph K` of G is a subgraph
induced by a subset of the vertices V such that every two distinct vertices are
adjacent in K`, where ` is the order of K`.

Preprocessing step: We modify the edge-scanning algorithm presented by Chiba
and Nishizeki [13] that originally reports all complete subgraphs of a fixed order
` ≥ 3 in a graph as follows. Vertices of G are sorted in non-increasing order
of their degrees and without loss of generality, let deg(v1) ≥ deg(v2) ≥ · · · ≥
deg(vn), where deg(v) is the degree of a vertex v in graphG. Starting with vertex
v1 the algorithm marks the subgraph induced by the neighbours N(v1) of v1,
and finds all instances of a specified complete subgraph that contains v1. For
each of these instances, we compute the high and the low values by comparing
the timestamps of participating edges. Recall that high (or low) is the highest

212 F. Chanchary and A. Maheshwari Time Windowed Data Structures

(or the lowest) timestamp of all the edges involved in a subgraph. The interval
[low, high] represents the timespan of that subgraph in G. Each subgraph is
then represented by a point (high, low) in R2. Once all subgraphs containing
v1 are stored as a set of points, v1 is deleted from G to avoid duplication and
the process continues with the next vertex in the sequence. At the end of the
process a set of point P ∈ R2 representing all complete subgraphs of order ` is
obtained.

In [13], the algorithm finds a complete subgraph K` containing a vertex v by
detecting K`−1 in the subgraph induced by the neighbours of v. We modify their
algorithm (see modified Algorithms 1 and 2 as follows. An initially empty global
stack S is used that now stores (`− k) elements of the form (vi,minvi ,maxvi)
at the recursion level (` − k). All vertices vi stored in S are pairwise adjacent
in G.

Algorithm 2 (procedure CS(k,Gk)) finds all complete subgraph of order k in
Gk. Each of these complete subgraphs forms a K` together with (`−k) vertices
stored in S. When procedure CS(k,Gk) is executed, at a recursive call of depth
(` − k), we compute low and high events (denoted with minvi and maxvi , re-
spectively) that are respectively the minimum and the maximum timestamps
within the complete subgraph consisting vertices (v1 . . . vi). When k becomes 2,
for each edge (x, y) left in G2, we list vertices {x, y} ∪ S that form K`. At this
stage, we use the timestamps of edges formed by connecting x and y with each
vertex z ∈ S to update the low and the high events of K`. A point (high, low)
is stored in R2 that represents a K` in the time interval [low, high]. The graph
representation requires linear space using adjacency lists data structure. The
linear space implementation of counting complete subgraphs of fixed order us-
ing the same data structure is available in [13]. Thus total space requirement
becomes O(m + n + K), where K is the number of complete subgraphs of the
fixed order `. We obtain the following results.

Theorem 10 Given an RE graph G = (V,E) with m edges and K complete
subgraphs of a fixed order ` (≥ 3), the problem of determining the number of
complete subgraphs of order ` in the query time interval [i, j] can be reduced to
dominance counting in O(a(G)`−2m) time using O(m+n+K) space. The query
takes O(logW/ log logK) time to count the total number of complete subgraphs
of order ` in Gi,j, where W is the width of the query window.

Proof: We follow the proof technique used in [13]. Let n = |V | and m = |E|.
The function PreprocessCS(`,G) recursively calls procedure CS(k,Gk) with k =
` and Gk = G. Let T (k,m, n) be the time required by procedure CS(k,Gk) to
find all Kk’s in Gk.

When k = 2: for each edge in G2 we update low and high values of Kk

by comparing timestamps of edges connecting at most ` vertices. This time is
upper bounded by O(m+ n). So, T (2,m, n) = O(m+ n).

Next, for k ≥ 3: in the i’th iteration of the for loop (lines 4 to 16), we
find the subgraph Gk−1 induced by the neighbours of the vertex with the cur-
rent highest degree vi in O

(
dk(vi) +

∑
u∈N(vi)

dk(u)
)

time (line 5). Line 13

JGAA, 23(2) 191–226 (2019) 213

is a recursive call that requires T
(
k − 1, (

∑
u∈N(vi)

dk(u))/2, dk(vi)
)

time to
find and store all complete subgraphs containing vi. All updates of minvi and
maxvi values with respect to the timestamps of edges connecting vi with (`−k)
vertices stored in stack S, is again upper bounded by the time required to com-
pute Gk−1 in line 5. All stack operations (lines 12 and 14) require constant time.

Thus, the total time required for each vi is,

O
(
dk(vi) +

∑
u∈N(vi)

dk(u)
)

+O(1) + T
(
k − 1,

(∑
u∈N(vi)

dk(u)
)
/2, dk(vi)

)
which is the same as was obtained in [13]. Then following the analysis of [13,
Theorem 3] we obtain T (k,m, n) = O(a(Gk)`−2m+n) with k ≥ 3. Note that we
do not explicitly report the complete subgraphs. Therefore, when k = ` finding
all K`’s in G requires at most O(a(G)`−2m) time.

Points in P = p1, . . . , pK can be stored in a window sensitive dominance
data structure D of linear size, see [4]. Given a query interval q = [i, j] we query
D using (−∞, j] × [i,+∞). Since high > low for every point (high, low) ∈ P ,
all points of P lie below the main diagonal, (see Figure 3(b)). This condition
is required by the window sensitive dominance structure D. Thus D can report
the number of points dominated by our query in O(logW/ log logK) time, where
W = j − i + 1 is the width of the query interval and K is the total number of
complete subgraphs of order `. �

Algorithm 1: PreprocessCS(`,G)

Input : Relational event graph G and the order of complete subgraph
`.

Output: A set of points P in R2.
1 Set stack S ← ∅.
2 Set mt← maximum timestamp in G.
3 Set min← mt+ 1, and max← −1.
4 Let G` = G.
5 Call CS(`,G`).

5.3 Counting All Complete Subgraphs of Orders ` ≥ 3

We extend our algorithm for computing all complete subgraphs of orders be-
tween 3 to `. That is, if we are given an order `, we can find all complete
subgraphs Kk in Gi,j , where 3 ≤ k ≤ `. For each order 3 ≤ k ≤ `, the previous

algorithm of a fixed order k can be run once in total O
(
m
∑`
k=3 a(G)k−2

)
=

O(a(G)`−1m) time to obtain corresponding timespans [low, high] of all com-
plete subgraphs. To represent complete subgraphs of all orders, we modify our
algorithm so that, for each complete subgraph of order k, we store a point

214 F. Chanchary and A. Maheshwari Time Windowed Data Structures

Algorithm 2: CS(k,Gk)

Input : Graph slice Gk and parameter k.
Output: A set of points P in R2.

1 if k > 2 then
2 Set j ← order of Gk.
3 Sort vertices v1, v2, . . . , vj in non-increasing order of degrees.

Without loss of generality, let d(v1) ≥ d(v2) ≥ · · · ≥ d(vj).
4 for i = 1 to j do
5 Let Gk−1 ⊆ Gk be the subgraph induced by the neighbours of vi.
6 if stack S 6= NIL then
7 Update minvi and maxvi with respect to t(vi, z) where z ∈ S.
8 else
9 Set (minvi ← min) and (maxvi ← max).

10 end

11 end
12 Add (vi,minvi ,maxvi) to stack S.
13 Call CS(k − 1, Gk−1).
14 Delete (vi,minvi ,maxvi) from stack S.
15 Delete vi from Gk and without loss of generality, let Gk be the

resulting graph.

16 end

17 end
18 else
19 if k = 2 then
20 for each edge (x, y) of G2 do
21 Set (low ← minvi) and (high← maxvi).
22 Update low and high with t(x, y).
23 Update low and high with respect to t(x, z) and t(y, z) where

z ∈ S.

24 end

25 end

26 end

p = (a, b, k) in R3 where a = high, b = low and k = order in any standard dom-
inance counting data structure, for example see [1]. This results in the following
theorem.

Theorem 11 Given an RE graph G with m edges and an integer ` ≥ 3 , the
problem of determining the total number of complete subgraphs Kk of all orders
3 ≤ k ≤ ` in the query interval [i, j] can be reduced to dominance counting in
O(a(G)`−1m) time using O(m + n + K logK/ log logK) space, where K is the

total number of complete subgraphs in G. The query takes O((logK/ log logK)
2
)

time to report the total number of complete subgraphs in Gi,j.

JGAA, 23(2) 191–226 (2019) 215

Remarks. We can also reduce the problem of finding all 2-paths and 3-paths in
Gi,j to dominance counting as follows. For each vertex u ∈ V , we find its neigh-
bours v ∈ N(u), and successively find all neighbours of v, denoted as w ∈ N(v).
For each 2-path starting at u, that is 〈uv, vw〉, we store a point (high, low) in
R2, where high and low are respectively the maximum and minimum times-
tamps between t(u, v) and t(v, w). During this search, we will also find a path
〈wv, vu〉 starting from vertex w while exploring neighbours of w, which is the
same path as 〈uv, vw〉. Since each 2-path will be identified exactly twice during
the preprocessing, we keep only one point per 2-path to avoid duplication. The
time taken to find all 2-paths in G will be upper bounded by a(G)m, which is
the time needed to identify all triangles in G (see Theorem 10). Now, we can
count the number of 2-paths in Gi,j using our dominance counting structure.

Let G = (V = {A∪B}, E = {(u, v) : u ∈ A, v ∈ B}) be a bipartite RE graph.
A complete bipartite graph can have at most O(n4) 3-paths. Each vertex u ∈ A
in a 3-path shares edges with two neighbours v1 and v2 such that v1, v2 ∈ B,
and vice versa. Thus, reducing the problem of counting all 3-paths in G to the
problem of dominance counting requires an exhaustive search for all alternating
edge adjacency between the vertices of A and the vertices of B. To find a 3-path
〈u1, v1, u2, v2〉, we start from each vertex u1 ∈ A, and find its neighbour v1 ∈ B.
Successively, we find v1’s neighbour u2 ∈ A, and u2’s neighbour v2 ∈ B. For
every new edge added to the path, we update (high, low) so that each 3-path
can be stored as a point in R2. Thus, preprocessing all 3-paths in G requires
O(n4) time in the worst case.

Corollary 3 Given an RE graph G with m edges, the problems of counting 2-
paths can be reduced to window sensitive dominance counting in O(a(G)m) time.
Given a bipartite RE graph G = (V = A ∪ B,E) with n vertices, the problems
of counting 3-paths can be reduced to window sensitive dominance counting in
O(n4) time. Each query can be answered in O(logW/ log logK) time, where W

is the width of the query window and K is the number of paths in and G.

5.4 Counting Quadrangles

In this section we present an algorithm for counting quadrangles, i.e., cycles
of length 4, in an RE graph G. An edge searching algorithm is presented
in [13] where a set of quadrangles can be implicitly represented by a tuple
(y, z, {a1, a2, a3, ...}) in O(a(G)m) time and space, where y and z are vertices on
two opposite sides of all quadrangles of this set and each vertex v ∈ {a1, a2, a3, ..}
shares edges with both y and z. Within this setting, any two vertices from
{a1, a2, a3, ..} together with y and z represent a quadrangle.

Figure 9(c) illustrates a relational event graph with eight quadrangles. The
search algorithm represents these quadrangles using four tuples, (a, b, {e, f, g}),
(a, d, {c, e, h}), (b, n, {m, `}) and (e, i, {j, k}). We can see that the first tuple
(a, b, {e, f, g}) contains three quadrangles (a, e, b, f), (a, f, b, g) and (a, e, b, g).

We can use the dominance counting data structure to count the total number
of quadrangles using a similar algorithm presented in Section 5.2 by explicitly

216 F. Chanchary and A. Maheshwari Time Windowed Data Structures

a

e

n

g

ij

1

10
13

2

14

16

m
115

l

h19

d

9

126
3

8

74

18
b

k
cf

15 17

Interval

Tuple

Pointset

(a, b, {e, f, g})

[1− 19]

(1, 3)

(6, 5)

(19, 18)

(a, d, {c, e, h})

[6− 13]

(9, 13)

(8, 12)

(6, 11)

(b, n, {m, l})

[14− 17]

(14, 15)

(17, 16)

(e, i, {j, k})

(4, 2)

(8, 7)

[2− 8](xi)

(P)

1 4 8 16 18 20

[6− 17]

12 0 4 8 12 2016

4

8

12

16

20

(a)

(b)

(c) (d)

Figure 9: Counting quadrangles in an RE graph. The integer numbers on the
graphs edges are their timestamps. (a) Quadrangles in G are highlighted. (b)
Tuple representation for each of the quadrangles, and their corresponding time
intervals and point sets in R2. (c) Querying the interval tree for the valid
intervals in q = [6− 17]. (d) Querying the range tree for the valid quadrangles.

JGAA, 23(2) 191–226 (2019) 217

representing all quadrangles and computing the corresponding high and low
values for each quadrangle. This requires O(n2) time and space as there can
potentially be O(n) vertices in a tuple (y, z, {a1, a2, a3, ..., an−2}) such that each
vertex in {a1, a2, a3, .., an−2} shares edges with both y and z. To improve the
overall space requirement we now present an output sensitive range searching
data structure for counting quadrangles in G. We still use the tuple represen-
tation of quadrangles discussed above and modify the algorithm as follows (see
Algorithm 3).

We need the following additional data structures.

• For each tuple (y, z, {a1, a2, a3, ...}), we use two linked lists to store edges
adjacent to y and z, respectively, i.e., E = {(y, a1), (y, a2), (y, a3), ..} and
E′ = {(z, a1), (z, a2), (z, a3), ..}. Each node in E points to a node in E′

that contains the edge having one common endpoint, i.e., (y, a1) points to
(z, a1), (y, a2) points to (z, a2), and so on.

• For each tuple, we use a 2-dimensional range tree to store a set of points
{(t(e1), t(e′1)), (t(e2), t(e′2)), ..., (t(ep), t(e

′
p))}, where t(ei) is the timestamp

of the edge ei, and ei ∈ E, e′i ∈ E′.

• We store the timespan of each tuple using an interval x of the form
[min(t(e1), t(e′1)),max(t(ep), t(e

′
p))]. For the given graph G, we use an in-

terval tree to store the set of horizontal intervals I = {x1, x2, · · · }, where
each interval represents the timespan of a tuple.

The quadrangle counting algorithm consists of a preprocessing step (Algorithm 3)
and a query step (Algorithm 4). We describe these steps below.

Preprocessing Step: The preprocessing step takes an RE graph G consisting
of n vertices and m edges as input. G is processed by starting with the vertex
having the highest degree. So, the vertices are first sorted in non-increasing order
of their degrees and without loss of generality, let d(v1) ≥ d(v2) ≥ · · · ≥ d(vn).
Following our search process, once all quadrangles containing vi are identified
correctly, where 1 ≤ i ≤ n, vi is deleted from G to avoid duplication and the
loop continues with the next vertex in the sequence. We first describe two major
components of this procedure.

a) Finding Quadrangles: For each vertex y ∈ V , we apply the following tech-
nique to find all quadrangles containing y. For each vertex z ∈ V at distance
2 from y, we find all the vertices that are adjacent to both y and z. We store
these vertices in a set U [z]. Thus, the tuple (y, z, U [z]) represents the set of
quadrangles, where every quadrangle has vertices y and z as two opposite cor-
ner points.

b) Finding Intervals: Recall that we want to count the number of quadrangles
within a query time slice [i, j], but all we have is the representation of a set

218 F. Chanchary and A. Maheshwari Time Windowed Data Structures

Algorithm 3: PreprocessQuad(G)

Input : A relational event graph G = (V,E).
Output: 2D range trees for each tuple of G and an interval tree for G.

1 Sort the vertices according to their degrees in non-increasing order.
Without loss of generality, let d(v1) ≥ d(v2) ≥ · · · ≥ d(vn).

2 Create an empty interval tree I = ∅.
3 for each vertex v ∈ V do
4 Set U [v]← ∅.
5 end
6 for each vertex vi do
7 Set y ← vi.
8 for each vertex u adjacent to y do
9 for each vertex z 6= y adjacent to u do

10 Set U [z]← U [z] ∪ {u}.
11 end
12 for each vertex z with |U [z]| ≥ 2 do
13 Let U [z] stores vertices {a1, a2, · · · , ap}.
14 Store (y, z, {a1, a2, · · · , ap}) using linked lists

E = {(y, a1), (y, a2), · · · , (y, ap)} and
E′ = {(z, a1), (z, a2), · · · , (z, ap)}.

15 Let e1 = (y, a1), e2 = (y, a2), · · · , ep = (y, ap).
16 Let e′1 = (z, a1), e′2 = (z, a2), · · · , e′p = (z, ap).

17 Create a 2D range tree with point set
P = {(t(e1), t(e′1)), (t(e2), t(e′2)), · · · , (t(ep), t(e′p))}.

18 Sort E = (e1, e2, · · · , ep) and E′ = (e′1, e
′
2, · · · , e′p) according

to increasing order of timestamps. Without loss of
generality, let t(e1) < t(e2) < · · · < t(ep) and
t(e′1) < t(e′2) < · · · < t(e′p).

19 Create an interval segment
x = [min(t(e1), t(e′1)),max(t(ep), t(e

′
p))].

20 Insert x into interval tree T .

21 end
22 for each vertex z with U [z] 6= ∅ do
23 Set U [z]← ∅.
24 end

25 end
26 Delete y from G and let G be the resulting graph.

27 end

JGAA, 23(2) 191–226 (2019) 219

Algorithm 4: QueryQuad(T , [i, j])
Input : Interval tree T , query interval [i, j].
Output: Total number of quadrangles #Quad within the given query

interval.
1 Query T using [i, j] horizontal segment and find interval set I ′ within

the query range.
2 Set #Quad ← 0.
3 for each segment x ∈ I ′ do
4 Query 2D range tree with query rectangle [i, i]x[j, j] to find valid set

S of edges.
5 if |S| ≥ 2 then

6 Set #Quad ←
(|S|

2

)
+ #Quad.

7 end

8 end

of quadrangles as tuples. So, for each such tuple we mark its timespan and
maintain some geometric data structures so that we can answer the query.

First, we store each tuple (y, z, U [z] = {a1, a2, a3, . . .}) using two linked lists
E = {(y, a1), (y, a2), (y, a3), ..} and E′ = {(z, a1), (z, a2), (z, a3), ..} according
to the order of the vertices in {a1, a2, a3, ..}. We also represent each tuple
with a point set P = {(t(y, a1), t(z, a1)), (t(y, a2), t(z, a2)), ..}, where t(y, ai)
is the timestamp of the edge (y, ai) for all i = 1, 2, .. . We store P using a
2-dimensional range tree.

Next, we compute the timespan of each tuple and store it as an interval
using an interval tree. We sort linked lists E and E′ according to the times-
tamps of their edges in non-decreasing order. Without loss of generality, let
E = (e1, e2, . . . , ep) and E′ = (e′1, e

′
2, . . . , e

′
p), where t(e1) ≤ t(e2) ≤ . . . ≤ t(ep)

and t(e′1) ≤ t(e′2) ≤ . . . ≤ t(e′p). Now we can create an interval segment
x = [min(t(e1), t(e′1)),max(t(ep), t(e

′
p))] for each tuple to mark its timespan.

Following this technique, we compute segments for all tuples and store them in
an interval tree T .

For an illustration, see the example presented in Figure 9(a). It shows an
RE graph G with four tuples, each tuple is highlighted with a different color.
We first store the tuple (a, b, {e, f, g}) using linked lists E = (ae, af, ag) and
E′ = (be, bf, bg). Then we create a point set P = {(6, 5), (1, 3), (19, 18)} and
store it in a two-dimensional range tree. Next, we sort edges in E = (af, ae, ag)
and E′ = (bf, be, bg) according to their timestamps in increasing order. Thus,
we store an interval segment [min{1, 3},max{19, 18}] = [1, 19] for this tuple in
the interval tree. Interval segments and point sets for all tuples are shown in
Figure 9(b).

Query Step: We query the interval tree T with a horizontal query segment [i, j]
and obtain a set of valid interval segments I ′ ⊆ I. We consider each segment
xi ∈ I ′ valid, if it intersects with the query slice indicating that xi might contain

220 F. Chanchary and A. Maheshwari Time Windowed Data Structures

quadrangles that exist within the query slice. To obtain the exact number of
quadrangles (#Quad), we need to know which of these valid segments contain at
least two sets of paired edges {(y, v′), (z, v′)} and {(y, v′′), (z, v′′)} such that it
makes a quadrangle (y, v′, z, v′′). Recall that for each segment we have already
stored a set of points P that contain information of these paired edges. So for
each valid segment, we perform a 2-D rectangular range query on P using a
query rectangle with four corner points (i, i), (i, j), (j, j) and (j, i). It returns a

set of edges S. If |S| ≥ 2 we add
(|S|

2

)
to #Quad.

Continuing with the same example, Figure 9(c) shows all the valid segments
after querying an interval tree with query point q = [6, 17]. Finally a rectangular
query shows that tuples (a, d, {c, e, h}) and (b, n, {m, `}) have sets of edges that
fall within the query range (Figure 9(d)). Therefore, we obtain

(
3
2

)
+
(

2
2

)
= 4

quadrangles (#Quad) within the query time interval [6,17].

Preprocessing Analysis. In lines 1-5, sorting vertices with respect to their
degrees and setting up the lists for all vertices take O(m+n) time. The outer for
loop (starting from line 6) identifies all quadrangles containing vi by traversing
its neighbours in O(

∑
vi∈V O(d(vi) +

∑
u∈N(vi)

d(u)) time, where N(vi) is the
set of neighbours of vi. So, except for the time needed to construct the range
trees and the interval tree, total time required is O(m+ n) +

∑
vi∈V O(d(vi) +∑

u∈N(vi)
d(u)). This can be bounded by O(a(G)m) by Lemma 1.

Since we can have at most a(G)m tuples in G, there can be at most a(G)m
intervals to store in the interval tree. This is a weak upper bound on the number
of intervals. For example, for any complete graph a(G) = dn/2e, whereas for
planar graphs a(G) = O(1). Since, each interval considers unique pair of vertices
on opposite sides of a quadrangle, there can be at most

(
n
2

)
quadrangles in G.

So the number of intervals can be bounded as α = min{a(G)m,
(
n
2

)
} ≤ a(G)m.

We maintain 2-dimensional range trees for every tuple identified in G (line
16). We observe that, the total number of points that can be stored in these
range trees can be O(

∑
vi∈V O(d(vi)+

∑
u∈N(vi)

d(u))) = O(a(G)m). Therefore,

by Theorem 3, total time required to build these range trees is O(α logα +
a(G)m log(a(G)m)) = O(a(G)m log n).

Using similar reasoning, in lines 18-19, the interval tree for α intervals can
be created in time, O(α logα) = O(α log n) (by Theorem 4). Therefore, the
total time required by Algorithm 3 is O

(
a(G)m + a(G)m log n + α log n

)
=

O(a(G)m log n).

Query Analysis. Suppose given a query time interval q = [i, j], we find I ′

as the set of all valid interval segments that intersects with q (line 1 of Algo-
rithm 4). Let γ = |I ′|, where γ ≤ min{

(
n
2

)
, a(G)m}. Reporting all γ segments

from the interval tree requires O(log(min{
(
n
2

)
, a(G)m}) + γ) = O(log n + γ)

time [14]. Rectangular range queries on γ range trees (line 3-8) take time
O
(∑γ

i=1 log n+ ki
)

= O(γ log n+w), where ki is the number of reported quad-
rangles in segment i and w is #Quad in Gi,j .

JGAA, 23(2) 191–226 (2019) 221

Space: Total number of intervals in our problem is bounded by O(a(G)m). By
Theorem 4, the interval tree uses O(a(G)m) space. Therefore, total required
space is dominated by the space required by range trees, i.e., O(a(G)m log(a(G)m)) =
O(a(G)m log n) (Theorem 3). The following theorem summarizes the results for
quadrangle counting in a relational event graph.

Theorem 12 Given an RE graph G with m edges, the number of quadrangles
in the query time slice [i, j] can be determined in O(γ log n+w) time, where γ ≤
min{

(
n
2

)
, a(G)m} and w is the number of reported quadrangles. Preprocessing

takes O(a(G)m log n) time and O(a(G)m log n) space.

6 Applications

We now discuss some of the applications of these data structures. The problem
of finding whether an MST exists in a queried graph slice can be directly applied
in the design of any type of connected networks in a query time interval, such
as, telecommunication, transportation, computer networks or electrical grids.
The problem of graph edit distance for spanning forests provides a cost effective
measure (i.e., the number of operations required) to maintain the connectivity
within the connected components of a network. We find that the applications
of subgraph counting data structures are specifically pertinent to some useful
social network analyses. So we further elaborate them below.

6.1 Clustering Coefficient

Clustering coefficient is also known as network transitivity and is an important
model for extracting community structure from social networks [27]. Multiple
definitions are available for clustering coefficient depending on the context in
which it is being used and the type of network is being studied. In this paper
we define the clustering coefficient of a graph G as the measure of the degree to
which vertices in G tend to cluster together [28]. It is formulated as follows,

CC(G) =
total number of closed triplets

total number of triplets
=

3× total number of triangles

total number of 2-paths

Since clustering coefficient of any graph is the ratio of total number of closed
triplets over all the open and closed triplets, its value ranges between 0 and 1.
For an illustration, see Figure 1. The clustering coefficient of G1,5 in Figure 1
(a) is CC(G1,5) = 3×1

7 = 0.43. Similarly, CC(G2,4) = 3×1
3 = 1 and CC(G2,5) =

3×1
5 = 0.6. For bipartite graphs, the clustering coefficient is based on the number

of quadrangles (C4). More formally, the clustering coefficient of a bipartite graph
is the ratio of the number of quadrangles to the number of 3-paths [28], i.e.,

CCB(G) =
4× total number of quadrangles (C4)

total number of 3-paths

Thus, for general graphs we obtain the following results.

222 F. Chanchary and A. Maheshwari Time Windowed Data Structures

Corollary 4 Let G be an RE graph consisting of m edges. Let K be the total
number of 2-paths in G. The problem of computing the clustering coefficient of
Gi,j can be reduced to dominance counting in (a(G)m) time using O(m+n+K)
space and each query can be answered in O(logW/ log logK) time, where W is
the width of the query window.

For clustering coefficient of a bipartite graph slice Gi,j , we can count the
total number of 3-paths in O(m + n) time and the number of quadrangles in
O(γ log n + w) time, where w is the number of total quadrangles in Gi,j and
γ ≤ min{

(
n
2

)
, (a(G)m)}. Note that the total preprocessing time is dominated by

the quadrangle processing time. The following corollary summarizes the result.

Corollary 5 Let G = (V,E) be a bipartite RE graph with n vertices and m
edges. The graph G can be preprocessed in O(a(G)m log n) time and the clus-
tering coefficient of a bipartite graph slice Gi,j can be computed in O(γ log n+w)
time, where w is the total number of quadrangles in Gi,j and γ ≤ min{

(
n
2

)
, (a(G)m)}.

6.2 Embeddedness and Neighborhood Overlapping

Embeddedness of an edge (u, v), denoted as emb(u, v), in a graph G is the
number of common neighbors the two endpoints u and v have, i.e., emb(u, v) =
|N(u) ∩ N(v)|[15]. Embeddedness of an edge (u, v) in a graph represents the
trustworthiness of its neighbors, and the confidence level in the integrity of
the transactions that take place between two vertices u and v. Note that the
embeddedness of an edge (u, v) represents the number of triangles that share
(u, v).

The value of embeddedness is also used to compute the neighborhood overlap
of an edge (u, v), denoted as NOver(u, v), and defined as the ratio of the number
of vertices who are neighbors of both u and v, and the number of vertices who
are neighbors of only one of them [15].

NOver(u, v) =
emb(u, v)

|N(u) ∪N(v)| − emb(u, v)− 2

Neighborhood overlap of an edge represents the strength (in terms of connec-
tivity) of that edge in its neighborhood. The neighborhood overlap of an entire
graph G is defined as the average of the neighborhood overlap values of all the

edges of G, i.e., NOver(G) = 1
|E|
∑|E|
k=1NOver(ek) [26].

The result for computing the neighborhood overlap of a query graph slice
has been presented in [10] and is also stated below. These results use the time
windowed data structures presented in this paper and also include colored range
searching data structures [6, 16, 17].

Theorem 13 (Theorem 6 in [10]) Given an RE graph G = (V,E) the problem
of computing the average neighborhood overlap of Gi,j can be reduced to the
colored range counting in O(mn) time. For a query time slice [i, j], NOver(Gi,j)

JGAA, 23(2) 191–226 (2019) 223

can be computed in O(log2 n+ (t+ s) log n) time, where t is the number of edges
in Gi,j with positive embeddedness and s is the number of edges having some
neighboring edges in Ei,j.

7 Conclusion

In this paper, we present time window data structures to answer various queries
involving both decision and reporting problems based on relational event graphs.
In the first part of the paper, we provide dynamic algorithm based data struc-
tures that can answer time windowed decision problems under monotone graph
properties, such as disconnectedness and bipartiteness, and can report the weight
of a minimum spanning tree, the minimum spanning interval and the graph edit
distance for obtaining a spanning forest for a query graph slice. In the second
part of the paper, we present window data structures for counting subgraphs
of a given pattern. We consider 2-paths (for general graphs), 3-paths (for bi-
partite graphs), complete subgraphs of order ` ≥ 3 and quadrangles as valid
patterns. We also show some applications of our subgraph counting results
for computing graph parameters that are important for social network analy-
sis, such as clustering coefficients, embeddedness and neighborhood overlapping.

Acknowledgements. We would like to thank the reviewers sincerely for their
insightful comments.

224 F. Chanchary and A. Maheshwari Time Windowed Data Structures

References

[1] Algorithms and computation, 15th international symposium, ISAAC 2004,
hong kong, china, december 20-22, 2004, proceedings. volume 3341 of Lec-
ture Notes in Computer Science. Springer, 2004. doi:10.1007/b104582.

[2] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length
cycles. Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

[3] M. J. Bannister, W. E. Devanny, M. T. Goodrich, J. A. Simons, and
L. Trott. Windows into geometric events: Data structures for time-
windowed querying of temporal point sets. In Proceedings of the 26th Cana-
dian Conference on Computational Geometry, CCCG 2014, Halifax, Nova
Scotia, Canada, 2014, 2014. URL: http://www.cccg.ca/proceedings/
2014/papers/paper02.pdf.

[4] M. J. Bannister, C. DuBois, D. Eppstein, and P. Smyth. Windows into
relational events: Data structures for contiguous subsequences of edges.
In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January
6-8, 2013, pages 856–864, 2013. doi:10.1137/1.9781611973105.61.

[5] D. Bokal, S. Cabello, and D. Eppstein. Finding all maximal subsequences
with hereditary properties. In 31st International Symposium on Computa-
tional Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The Nether-
lands, volume 34 of LIPIcs, pages 240–254. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.SOCG.2015.240.

[6] P. Bozanis, N. Kitsios, C. Makris, and A. K. Tsakalidis. New upper
bounds for generalized intersection searching problems. In Automata,
Languages and Programming, 22nd International Colloquium, ICALP95,
Szeged, Hungary, July 10-14, 1995, Proceedings, pages 464–474. 1995.
doi:10.1007/3-540-60084-1_97.

[7] U. Brandes, J. Lerner, and T. A. B. Snijders. Networks evolving step
by step: Statistical analysis of dyadic event data. In 2009 International
Conference on Advances in Social Network Analysis and Mining, ASONAM
2009, 20-22 July 2009, Athens, Greece, pages 200–205, 2009. doi:10.1109/
ASONAM.2009.28.

[8] T. M. Chan, K. G. Larsen, and M. Patrascu. Orthogonal range searching
on the ram, revisited. In Proceedings of the 27th ACM Symposium on
Computational Geometry, Paris, France, June 13-15, 2011, pages 1–10,
2011. doi:10.1145/1998196.1998198.

[9] T. M. Chan and S. Pratt. Two approaches to building time-windowed
geometric data structures. In 32nd International Symposium on Computa-
tional Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA, vol-
ume 51 of LIPIcs, pages 28:1–28:15. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016. doi:10.4230/LIPIcs.SoCG.2016.28.

http://dx.doi.org/10.1007/b104582
http://dx.doi.org/10.1007/BF02523189
http://www.cccg.ca/proceedings/2014/papers/paper02.pdf
http://www.cccg.ca/proceedings/2014/papers/paper02.pdf
http://dx.doi.org/10.1137/1.9781611973105.61
http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.240
http://dx.doi.org/10.1007/3-540-60084-1_97
http://dx.doi.org/10.1109/ASONAM.2009.28
http://dx.doi.org/10.1109/ASONAM.2009.28
http://dx.doi.org/10.1145/1998196.1998198
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.28

JGAA, 23(2) 191–226 (2019) 225

[10] F. Chanchary, A. Maheshwari, and M. H. M. Smid. Querying relational
event graphs using colored range searching data structures. In Algorithms
and Discrete Applied Mathematics - Third International Conference, CAL-
DAM 2017, Sancoale, Goa, India, February 16-18, 2017, Proceedings, vol-
ume 10156 of Lecture Notes in Computer Science, pages 83–95. Springer,
2017. doi:10.1007/978-3-319-53007-9_8.

[11] F. Chanchary, A. Maheshwari, and M. H. M. Smid. Window queries for
problems on intersecting objects and maximal points. In Algorithms and
Discrete Applied Mathematics - 4th International Conference, CALDAM
2018, Guwahati, India, February 15-17, 2018, Proceedings, volume 10743
of Lecture Notes in Computer Science, pages 199–213. Springer, 2018. doi:
10.1007/978-3-319-74180-2_17.

[12] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring
technique. Algorithmica, 1(2):133–162, 1986. doi:10.1007/BF01840440.

[13] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms.
SIAM J. Comput., 14(1):210–223, 1985. doi:10.1137/0214017.

[14] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars. Com-
putational geometry: algorithms and applications, 3rd Edition. Springer,
2008. URL: http://www.worldcat.org/oclc/227584184.

[15] D. A. Easley and J. M. Kleinberg. Networks, Crowds, and Markets
- Reasoning About a Highly Connected World. Cambridge University
Press, 2010. URL: http://www.cambridge.org/gb/knowledge/isbn/

item2705443/?site_locale=en_GB.

[16] P. Gupta, R. Janardan, S. Rahul, and M. Smid. Computational geom-
etry: Generalized (or colored) intersection searching. Handbook of Data
Structures and Applications, 2nd Edition, (Dinesh Mehta and Sartaj Sahni,
editors), CRC Press, Boca Raton, Chapter 67, pages 1042–1057, 2018.

[17] P. Gupta, R. Janardan, and M. H. M. Smid. Further results on generalized
intersection searching problems: Counting, reporting, and dynamization.
J. Algorithms, 19(2):282–317, 1995. doi:10.1006/jagm.1995.1038.

[18] F. Harary. Graph theory. Addison-Wesley, 1991.

[19] F. Harary and H. J. Kommel. Matrix measures for transitivity and balance.
Journal of Mathematical Sociology, 6(2):199–210, 1979.

[20] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999.
doi:10.1145/320211.320215.

[21] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.

502095.

http://dx.doi.org/10.1007/978-3-319-53007-9_8
http://dx.doi.org/10.1007/978-3-319-74180-2_17
http://dx.doi.org/10.1007/978-3-319-74180-2_17
http://dx.doi.org/10.1007/BF01840440
http://dx.doi.org/10.1137/0214017
http://www.worldcat.org/oclc/227584184
http://www.cambridge.org/gb/knowledge/isbn/item2705443/?site_locale=en_GB
http://www.cambridge.org/gb/knowledge/isbn/item2705443/?site_locale=en_GB
http://dx.doi.org/10.1006/jagm.1995.1038
http://dx.doi.org/10.1145/320211.320215
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1145/502090.502095

226 F. Chanchary and A. Maheshwari Time Windowed Data Structures

[22] P. Holme. Network reachability of real-world contact sequences. Physical
Review E, 71(4):046119, 2005.

[23] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM J.
Comput., 7(4):413–423, 1978. doi:10.1137/0207033.

[24] T. Kloks, D. Kratsch, and H. Müller. Finding and counting small induced
subgraphs efficiently. Inf. Process. Lett., 74(3-4):115–121, 2000. doi:10.

1016/S0020-0190(00)00047-8.

[25] E. M. McCreight. Priority search trees. SIAM J. Comput., 14(2):257–276,
1985. doi:10.1137/0214021.

[26] N. Meghanathan. A greedy algorithm for neighborhood overlap-based com-
munity detection. Algorithms, 9(1):8, 2016. doi:10.3390/a9010008.

[27] M. E. J. Newman. The structure and function of complex networks. SIAM
Review, 45(2):167–256, 2003. doi:10.1137/S003614450342480.

[28] T. Opsahl. Triadic closure in two-mode networks: Redefining the global
and local clustering coefficients. Social Networks, 35(2):159–167, 2013. doi:
10.1016/j.socnet.2011.07.001.

[29] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)

90006-5.

[30] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–
42, 1976. doi:10.1145/321921.321925.

[31] L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM J. Comput., 8(3):410–421, 1979. doi:10.1137/0208032.

[32] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-
world’networks. Nature, 393(6684):440–442, 1998.

[33] P. Zhang, J. Wang, X. Li, M. Li, Z. Di, and Y. Fan. Clustering coefficient
and community structure of bipartite networks. Physica A: Statistical Me-
chanics and its Applications, 387(27):6869–6875, 2008.

http://dx.doi.org/10.1137/0207033
http://dx.doi.org/10.1016/S0020-0190(00)00047-8
http://dx.doi.org/10.1016/S0020-0190(00)00047-8
http://dx.doi.org/10.1137/0214021
http://dx.doi.org/10.3390/a9010008
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1016/j.socnet.2011.07.001
http://dx.doi.org/10.1016/j.socnet.2011.07.001
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1145/321921.321925
http://dx.doi.org/10.1137/0208032

	Introduction
	Previous Work
	New Results
	Organization

	Preliminaries
	Relational Event Graph
	Geometric Data Structures

	Monotone Graph Properties
	Overview of the Algorithm
	Bipartiteness
	Disconnectedness

	Problems on Minimum Spanning Trees
	Weight of the MST
	Minimum Spanning Interval
	Graph Edit Distance for Target Class Forest

	Problems on Counting Subgraphs
	Counting 2-paths and 3-paths
	Counting Complete Subgraphs of a Fixed Order 3
	Counting All Complete Subgraphs of Orders 3
	Counting Quadrangles

	Applications
	Clustering Coefficient
	Embeddedness and Neighborhood Overlapping

	Conclusion

