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Abstract

The chromatic polynomial gives the number of proper colourings of a graph
in terms of the number of available colours. In general, calculating chromatic
polynomials is #P-hard. Two graphs are chromatically equivalent if they have
the same chromatic polynomial. At present, determining if two graphs are chro-
matically equivalent involves computation and comparison of their chromatic
polynomials, or similar computational effort. In this paper we investigate a new
approach, certificates of chromatic equivalence, first proposed by Morgan and
Farr. These give proofs of chromatic equivalence, without directly computing
the polynomials. The lengths of these proofs may provide insight into the com-
putational complexity of chromatic equivalence and related problems including
chromatic factorisation and chromatic uniqueness. For example, if the lengths of
shortest certificates of chromatic equivalence are bounded above by a polynomial
in the size of the graphs, then chromatic equivalence belongs to NP. After es-
tablishing some links of this type between certificate length and computational
complexity, we give some theoretical and computational results on certificate
length. We prove that, if the number of different chromatic polynomials falls
well short of the number of different graphs, then for all sufficiently large n
there are pairs of chromatically equivalent graphs on n vertices with certificate
of chromatic equivalence of length Ω(n2/ logn). We give a linear upper bound on
shortest certificate length for trees. We designed and implemented a program for
finding short certificates of equivalence using a minimal set of certificate steps.
This program was used to find the shortest certificates of equivalence for all pairs
of chromatically equivalent graphs of order n ≤ 7.
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1 Introduction

The chromatic polynomial P (G;λ) of a graph G gives the number of λ-colourings
of G. It was first introduced by Birkhoff as a possible algebraic approach to a
proof for the Four Colour Theorem [1]. Calculating the chromatic polynomial
is #P-hard [11, 13], even when restricted to the family of subgraphs of square
lattices [9]. In general, for all λ > 2, determining if a graph is λ-colourable is
NP-complete [12].

Two graphs G and G′ are chromatically equivalent, written G ∼ G′, if they
have the same chromatic polynomial. It is possible to have chromatically equiva-
lent graphs that are not isomorphic. No good characterisation of chromatically
equivalent graphs is known, but there is a wealth of research on chromatic
equivalence, much of which is summarised in [5] and [7]. Research in this area
focuses on either small sets of graphs that have been found to be chromatically
equivalent or infinite families of chromatically equivalent graphs. A graph G is
chromatically unique if the only graphs which have the same chromatic poly-
nomial are also isomorphic to G. The idea of chromatically unique graphs was
introduced by Chao and Whitehead [4].

Certificates to verify instances of chromatic equivalence and other algebraic
properties of the chromatic polynomial were first introduced by Morgan and Farr
[20] in 2009. A certificate of this type is a sequence of algebraic transforma-
tions based on identities for the chromatic polynomial and algebraic properties.
As calculating the chromatic polynomial is #P-hard in general, any method
that can verify information about the chromatic polynomial of a graph without
needing to calculate it is of interest.

In this article we consider certificates that can be used to help verify that
two graphs are chromatically equivalent. We describe the relationship between
certificate length and computational complexity of chromatic equivalence, chro-
matic uniqueness and chromatic factorisation. We then show that, if the number
of different chromatic polynomials of degree n falls well short of the number of
non-isomorphic graphs on n vertices (a plausible hypothesis, given the data),
then for all sufficiently large n there are pairs of chromatically equivalent graphs
on n vertices with certificate of chromatic equivalence of length Ω(n2/ log n).

A program for finding short certificates of equivalence was designed and im-
plemented [3]. In order to produce computationally feasible software, it uses
a minimal set of certificate steps. This program was used to find the shortest
certificates for all chromatically equivalent graphs of order n ≤ 7. These certifi-
cates can be grouped into 15 classes which we call schemas. Although the best
known upper bound on length of certificates is exponential [20], the certificates
we found were all remarkably short. We give a linear bound on the lengths of
certificates of equivalence for trees.
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2 Definitions and fundamentals

Let G = (V,E) be an undirected graph with vertex set V = V (G) and edge set
E = E(G). In general we will use n and m for the size of V and E respectively.
The set of unordered pairs of elements of V is denoted V (2). The chromatic
number of a graph G, denoted χ(G), is the minimum number of colours required
to colour G so that no adjacent vertices are given the same colour. We refer the
reader to [6] for more information regarding common graph theory definitions.

We denote the disjoint union of two graphs G and H by G∪H. If G and H
share exactly one vertex, then the combined graph is denoted by G ∪1 H.

Let u and v be vertices in G. If uv is an edge of G, then G\uv is the graph
obtained by deleting the edge uv from G. We call this process edge deletion. If
uv is not an edge of G, then G + uv is the graph obtained by adding the edge
uv to G. We call this process edge addition. For any pair of vertices u and v
the graph G/uv is the graph obtained by identifying vertices u and v in G and
discarding any multiple edges or loops obtained in the identification. If u and v
are not adjacent in G, we call this process vertex identification. If u and v are
adjacent in G, we call it edge contraction.

If two disjoint graphs H1 and H2 both contain a clique of at least size r
then the graph G formed by identifying an r-clique in H1 with an r-clique in H2

is an r-gluing. The 0-gluing operation is just the disjoint union of the graphs.
A graph that can be obtained by an r-gluing of two graphs is said to be a
clique-separable graph.

The following two relations can be used to calculate the chromatic polyno-
mial recursively. For most graphs this will take exponential time.

The deletion-contraction relation states that for any edge e ∈ E

P (G;λ) = P (G\e;λ)− P (G/e;λ). (1)

The addition-identification relation states that for any vertices u, v ∈ V, uv /∈
E,

P (G;λ) = P (G+ uv;λ) + P (G/uv;λ). (2)

Whitney [22, §14] gives another method of evaluating the chromatic poly-
nomial of a clique-separable graph. If G is an r-gluing of some graphs H1 and
H2, then

P (G;λ) =
P (H1;λ)P (H2;λ)

P (Kr;λ)
. (3)

Note that P (K0;λ) = 1.
This result only helps evaluate P (G;λ) when G is clique-separable, which

does restrict it, but its divide-and-conquer nature means that under such cir-
cumstances it can offer a significant reduction in the complexity of calculating
a graph’s chromatic polynomial. It also gives a partial, initial link between
factorisation of the chromatic polynomial — an algebraic property of the poly-
nomial — and the structure of the corresponding graph. These considerations
led us, in previous work [20, 19], to identify other situations where chromatic
polynomials factorise in a similar way.



230 Bukovac, Farr, Morgan Short certificates for chromatic equivalence

The chromatic polynomial is said to have a chromatic factorisation if there
exist graphs H1 and H2 such that

P (G;λ) =
P (H1;λ)P (H2;λ)

P (Kr;λ)

where χ(Hi) ≥ r ≥ 0 and Hi � Kr for i = 1, 2 [20]. A graph G is said to
have a chromatic factorisation if P (G;λ) has a chromatic factorisation. It is
clear from (3) that any clique-separable graph has a chromatic factorisation.
Similarly any graph that is chromatically equivalent to a clique-separable graph
has a chromatic factorisation. A strongly non-clique-separable graph is a graph
that is not chromatically equivalent to any clique-separable graph. Morgan and
Farr [20] showed that there exist chromatic factorisations for some strongly non-
clique-separable graphs. They introduced the notion of a certificate to explain
these factorisations and other properties of chromatic polynomials.

3 Certificates

Certificates to verify instances of chromatic equivalence and chromatic factori-
sation were first introduced by Morgan and Farr [20] in 2009. A certificate of
this type is a sequence of transformations based on identities for the chromatic
polynomial and algebraic properties. Each of the individual transformations in
a certificate is called a certificate step.

The following is a description of each of the certificate steps used in [20].
Each new expression in a certificate is obtained by applying one of the following
certificate steps to the previous expression in the certificate:

CS1 G −→ (G\e)− (G/e) for some edge e ∈ E(G).

CS2 (G\e)− (G/e) −→ G for some edge e ∈ E(G).

CS3 G −→ (G+ uv) + (G/uv) where the vertices u, v ∈ V (G) and u, v are not
adjacent in G.

CS4 (G+ uv) + (G/uv) −→ G where the vertices u, v ∈ V (G).

CS5 (G\e) − G −→ (G/e) for some edge e ∈ E(G).

CS6 G −→ G1G2/Kr where G is isomorphic to the graph obtained by an
r-gluing of G1 and G2.

CS7 G1G2/Kr −→ G where G is isomorphic to the graph obtained by an
r-gluing of G1 and G2.

CS8 Applying field operations to an expression a finite number of times to
produce a different expression.
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Certificate steps (CS1), (CS2) and (CS5) are based on (1), certificate steps
(CS3) and (CS4) are based on (2) and certificate steps (CS6) and (CS7) are
based on (3).

Each application of a certificate step links a single expression to the next one
in the certificate. In a certificate that starts with a graph G, each expression
can be evaluated to a polynomial which is equal to the chromatic polynomial
of G. The certificate can be verified by checking, for each pair of consecutive
graph expressions in the certificate along with the nominated certificate step
linking them, that the nominated certificate step correctly transforms the first
expression of the pair to the second. Importantly, the actual chromatic polyno-
mial of G is not calculated or required at any point in the process of verifying
a certificate for G.

3.1 Certificates of equivalence

A certificate of equivalence for G ∼ G′ consists of

• a sequence of expressions E0, E1, . . . , El where E0 is the graph G and El

is the graph G′;

• for each i ∈ {1, . . . , l}, a specification of a certificate step from {CS1,. . . ,CS8}
along with which graphs in Ei−1 and Ei it is applied to, such that the
specified step applied to these graphs does indeed transform Ei−1 to Ei.

We say the certificate is a certificate from G to G′. The length of the certificate
is number of certificate steps, l, applied to transform G into G′ (as distinct from
the number of expressions, l + 1, in the certificate).

An algebraic certificate of equivalence is obtained from a certificate of equiv-
alence by expanding each algebraic step Ei−1 −→ Ei (CS8) into a sequence of

expressions Ei−1 = E
(0)
i , . . . , E

(ki)
i = Ei where each E

(j−1)
i −→ E

(j)
i is obtained

by a single application of a field axiom.
The algebraic length of a certificate step is defined to be 1 for all steps

except the algebraic step (CS8), and the algebraic length of an application
of CS8 is defined to be the number of applications of field axioms needed to
carry it out. So an algebraic step Ei−1 −→ Ei (CS8) expanded into Ei−1 =

E
(0)
i , . . . , E

(ki)
i = Ei contributes ki to the algebraic length. For example, if H1

and H2 are graphs, then H1 −→ H1+H2−H2 is a valid application of (CS8), and
has algebraic length 2, since it has two applications of field axioms: x→ x+ 0
and 0→ y − y. In an algebraic certificate of equivalence, it would be expanded
into H1 −→ H1 + 0 −→ H1 + H2 − H2. We will see another example in the
next subsection. The algebraic length of a certificate is the sum of the algebraic
lengths of all its certificate steps, which is one less than the total number of
expressions in the algebraic certificate. Clearly the length of a certificate is at
most its algebraic length.

We mostly work just with certificates of equivalence and their (non-algebraic)
lengths. But it is sometimes important to do the more detailed accounting
required for algebraic lengths.
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Figure 1 gives a certificate of equivalence of length 2 steps. The certificate
steps performed in the certificate in Figure 1 are as follows:

G −→ (G\e)− (G/e) (CS1)

−→ (G\e+ f). (CS2)

=

=

_

Figure 1: A certificate of equivalence of length 2.

3.2 Certificates of factorisation

A certificate of factorisation for P (G;λ) = P (H1;λ)P (H2;λ)/P (Kr;λ) is de-
fined as for a certificate of equivalence, except that the final expression El is
H1H2/Kr.

Figure 2 gives a certificate of factorisation. The certificate steps performed
in the certificate in Figure 2 are as follows:

G −→ H3 −H4 (CS1)

−→ H1H5

K2
− H1H6

K2
2× (CS6)

−→ H1

K3

(
K3H5

K2
− K3H6

K2

)
(CS8)

−→ H1

K3
(H7 −H8) 2× (CS7)

−→ H1H2

K3
. (CS2)

This certificate has length 7. Its algebraic length is 9, since the sole algebraic
step CS8 involves three applications of field axioms: 1 −→ x/x twice and xy +
xz −→ x(y + z) once.

4 Certificate length

Certificates have been a powerful tool in proving results on chromatic factori-
sations [20, 19, 21] and chromatic equivalence [18]. Although the best known
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= _

= _

= _

=
_

=

Figure 2: A certificate of factorisation for a strongly non-clique-separable graph
from [17].

upper bound on certificate length is exponential, in practice certificates seem to
be very short. When they exist, short certificates enable results on chromatic
equivalence and chromatic factorisation to be easily verified while bypassing
the cost of computing the chromatic polynomial. As certificates are useful and
there was no existing software to find certificates in general, we hope that our
program to find certificates of equivalence may be a valuable tool in the study
of the chromatic polynomial, particularly for chromatic equivalence.

4.1 Certificate length and complexity

The lengths of certificates have potential implications for the computational
complexity of determining when two graphs are chromatically equivalent, of
determining when a graph is chromatically unique, and of determining when a
graph has a chromatic factorisation.

Consider the following problems.
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CHROMATIC EQUIVALENCE
Input: Graphs G and H.
Question: Is P (G;λ) = P (H;λ)?

CHROMATIC UNIQUENESS
Input: Graph G.
Question: Is there no other graph H 6∼= G such that P (G;λ) = P (H;λ)?

CHROMATIC FACTORISATION
Input: Graph G.
Question: Do there exist graphs H1 and H2, each having fewer vertices than
G, such that

P (G;λ) =
P (H1;λ)P (H2;λ)

P (Kr;λ)
,

for some nonnegative integer r such that H1 6∼= Kr and H2 6∼= Kr?

CHROMATIC EQUIVALENCE can be solved quickly once the chromatic
polynomials are known. It follows that it belongs to P#P, the class of sets
recognisable in polynomial time with the aid of a #P-oracle. Computation of
chromatic polynomials does not solve CHROMATIC UNIQUENESS, but can
be used to certify chromatic non-uniqueness, with the help of a guessed graph H
not isomorphic to the input graph G: use a #P-oracle to compute the chromatic
polynomials of G and H, check that they are equal, and use the #P-oracle again
to check that H 6∼= G (possible since GRAPH ISOMORPHISM ∈ NP ⊆ P#P).
It follows that CHROMATIC UNIQUENESS belongs to co-NP#P.

In similar vein, if we guess a factorisation — by specifying H1, H2 and r
— for an input to CHROMATIC FACTORISATION, then the guess is easy to
check if the chromatic polynomials of G, H1 and H2 are known. This means
that CHROMATIC FACTORISATION belongs to NP#P.

These complexity classes — relativisations of P, NP, and co-NP with re-
spect to a #P oracle — are very large, in the sense that they contain all the
power of #P and hence, by Toda’s Theorem, the entire Polynomial Hierarchy.
It is natural to ask whether CHROMATIC EQUIVALENCE, CHROMATIC
UNIQUENESS and CHROMATIC FACTORISATION belong to complexity
classes within the Polynomial Hierarchy, and especially whether they belong
to NP.

Certificates of chromatic equivalence, or chromatic factorisation, may pro-
vide a tool for attacking this question, because of the following.

Theorem 1 (a) If every pair of chromatically equivalent graphs has a certificate
of equivalence of algebraic length bounded by a polynomial in n, then CHRO-
MATIC EQUIVALENCE is in NP.
(b) If every pair of chromatically equivalent graphs has a certificate of equiv-
alence of algebraic length bounded by a polynomial in n, then CHROMATIC
UNIQUENESS is in the class co-NPGI of problems whose complements can be
solved nondeterministically in polynomial time with the aid of an oracle for the



JGAA, 23(2) 227–269 (2019) 235

GRAPH ISOMORPHISM problem.
(c) If every graph with a chromatic factorisation has a certificate of factori-
sation of algebraic length bounded by a polynomial in n, then CHROMATIC
FACTORISATION is in NP.

Proof:
(a)
Every instance of chromatic equivalence can be explained by a certificate of

equivalence [20]. If there always exists such a certificate that is polynomially
bounded in algebraic length, then it can be used as part of the guess, in a
nondeterministic polynomial-time algorithm for chromatic equivalence. In order
to enable efficient verification of the guess, it needs more than just a sequence of
expressions. The information required includes statements of which certificate
steps are used, nominations of which graphs in the expressions are “active”
in each certificate step, some mappings between vertex sets of various pairs of
graphs, and nominations of vertex pairs to be joined or unjoined or identified.
We now give details.

Suppose every pair of chromatically equivalent graphs has an algebraic cer-
tificate of equivalence of algebraic length ≤ cnk, where c and k are constants.
Given two chromatically equivalent graphs G and H, let C be such an algebraic
certificate of equivalence for them. Let the sequence of expressions in C be
E0, E1, . . . , El, where E0 = G, El = H and l ≤ cnk where n = |V (G)| = |V (H)|.
For each i ∈ {0, . . . , l − 1}, let si be the number of the certificate step used to
transform Ei to Ei+1, where 1 ≤ si ≤ 8 and si indicates that certificate step
CSsi is used. If an algebraic step is used (si = 8), then we also need to specify
which specific field axiom application is currently being used for this particular
step in the algebraic certificate; we denote this by Ai. This means specifying
the axiom together with the direction in which it is used. (For example, the
additive inverse axiom could be used either as 0 −→ Γ − Γ or as Γ − Γ → 0,
where Γ is a graph. These are two separate field axiom applications.)

For each i such that step i is not part of an algebraic step (i.e., si 6= 8), we
give the following information, which will enable the step to be verified. We
specify which graphs in Ei and Ei+1 are to play the roles of the graphs on each
side of the arrow “−→” in CSsi. Suppose CSsi has ai graphs on the left of
its arrow and bi graphs on the right (where {ai, bi} = {1, 2} when 1 ≤ i ≤ 5

and {ai, bi} = {1, 3} when i ∈ {6, 7}). Let L
(i)
1 , . . . , L

(i)
ai be the actual graphs

in Ei that are used as the graphs on the left side of the arrow in CSsi, and let

R
(i)
1 , . . . , R

(i)
bi

be the actual graphs in Ei+1 that are used as the graphs on the
right side of the arrow in CSsi. The root graph of step i is defined to be L1 if
1 ≤ si ≤ 6 and R1 if si = 7. The intention is simply that the vertex set of every
graph appearing in CSsi is a subset of the vertex set of the root graph, possibly
with relabelling.

For each i ∈ {0, . . . , l − 1}, we need two functions ρ
(i)
1 , ρ

(i)
2 that specify the

correspondences between the vertices in the graphs used in step i. For each

j = 1, 2, the function ρ
(i)
j maps the vertex set of the root graph for step i to the

vertex set of the j-th of the two or three non-root graphs used in CSsi for step
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i. These functions must respect adjacency in precisely the right way; they are
not isomorphisms but, informally speaking, they are as close to isomorphisms as
they can be or need to be under the circumstances. For example, consider CS1

(if si = 1), with root graph L
(i)
1 . The relation ρ

(i)
1 is a bijection from V (L

(i)
1 ) to

V (L
(i)
1 \e) that preserves adjacency except that the endpoints of e in L

(i)
1 are not

adjacent in L
(i)
1 \e. The relation ρ

(i)
2 is a surjection from V (L

(i)
1 ) to V (L

(i)
1 /e)

that preserves adjacency except that the endpoints of e in L
(i)
1 are mapped to

the same vertex in L
(i)
1 /e (and this vertex is not adjacent to itself in L

(i)
1 /e,

since loops are discarded in the version of contraction used when working with
chromatic polynomials). We omit the details of the precise adjacency-respecting
requirements for the other certificate steps; it is routine to work them out, based
on the operations used.

If 1 ≤ si ≤ 5, let u(i)v(i) be the vertex pair used in CSsi. These two vertices

are to be nominated in the vertex set of the root graph L
(i)
1 . They are adjacent

if si ∈ {1, 4} and nonadjacent if si ∈ {2, 3, 5}. Once nominated there, the

functions ρ
(i)
1 , ρ

(i)
2 enable the corresponding vertices in the other graphs used in

CSsi to be worked out.
If si ∈ {6, 7}, let Ui be the vertex set of the separating clique and let ri := |Ui|

be its size. This set is to be nominated as a subset of L
(i)
1 if si = 6 and R

(i)
1 if

si = 7. Once nominated there, the functions ρ
(i)
1 , ρ

(i)
2 enable the corresponding

subsets of vertices in the other graphs used in CSsi to be worked out.
This completes the description of the information required for nonalgebraic

steps.
For each i such that step i is part of an algebraic step (si = 8), involving

application of a field axiom Ai, the information we give is slightly different. The
field axiom applications may be represented as a list of rules of the form: left-

side −→ right-side. So we still need to nominate graphs L
(i)
1 , . . . , L

(i)
ai in Ei and

graphsR
(i)
1 , . . . , R

(i)
bi

in Ei+1 that are used in this field axiom application Ai. But
it is no longer the case that {ai, bi} is always either {1, 2} or {1, 3}. For example,
if we are applying the distributive law, A·(B+C) −→ A·B+A·C, then (ai, bi) =
(3, 4). We sometimes require an isomorphism between two graphs, which we

denote by ρ
(i)
1 , in order to enable verification that they are isomorphic and can

be cancelled (in an application of either the additive inverse or multiplicative
inverse axiom). But such mappings are mostly not needed. Furthermore, there
is no need to specify vertex pairs or subsets. Applications of field axioms do not
change any graphs, although they may introduce or remove graphs.

When giving all this information, some data representation decisions must
arise, although (within reason) these decisions make no difference to whether or
not the certificates can be verified in polynomial time. For example, each oc-
currence of a graph in an expression could be represented anew, by its own data
structure spelling out all its vertices and edges, regardless of how many times
graphs isomorphic to it have appeared previously (either earlier in the same
expression, or in a previous expression in this certificate). Then the certificate
would also have to specify many isomorphisms so that graphs which were the
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same could indeed be verified to be so. Alternatively, we could give a detailed
representation of a graph only the first time we use it, and thereafter just give an
appropriate reference back to that graph. This is simpler and more economical,
and we assume it is done this way, but our argument is easily adapted to the
former approach.

We are now in a position to show that, under the given hypothesis, CHRO-
MATIC EQUIVALENCE is in NP.

Given two chromatically equivalent graphs G and H, we use as our guess, or
certificate (using this term now in its broader complexity-theoretic sense, which
inspired but is not equivalent to our specific usage in “certificate of equivalence”
etc.), the following information:

∀i ∈ {0, . . . , l − 1} :(
si, Ei, (L

(i)
j : 1 ≤ j ≤ ai), (R(i)

j : 1 ≤ j ≤ bi), ρ(i)1 , ρ
(i)
2 , u(i)v(i), Ui, Ai

)
.

(4)
There will always be some missing items in this list, and some special symbol can
be used to represent them. For nonalgebraic steps (si ≤ 7), Ai is absent. The
vertex pair u(i)v(i) is only needed if si ≤ 5, and Ui is only needed if si ∈ {6, 7}.
For algebraic steps (si = 8), the function ρ

(i)
2 , vertex pairs u(i)v(i) and vertex

subsets Ui are not required, and the function ρ
(i)
1 may not be required.

For each i, the verification that Ei −→ Ei+1 requires us to verify that all
the rules we have laid down in the construction of (4) are satisfied. This can

be done in polynomial time. It includes: checking that the lists of the L
(i)
j and

R
(i)
j are consistent with the nominated certificate step CSsi (and field axiom

Ai, where applicable); checking that the portions of the expressions that are

not designated in the L
(i)
j and R

(i)
j for use by CSsi are just copied across; and

checking the appropriate adjacency-respecting properties of the maps ρ
(i)
1 , ρ

(i)
2 ,

taking into account the u(i)v(i) and Ui. The fact that this all takes polynomial
time depends on the facts that the number of graphs in each expression Ei is
bounded by a linear function of certificate length l, and that the numbers of
vertices of the graphs in the expressions may be restricted to some linear bound
(using steps CS1–CS7; some applications of field axioms in CS8 could introduce
much larger graphs in cancelling pairs, but for these to have any effect they
must interact, via one of CS1–CS7, with a graph that ultimately derives from
G or H using nonalgebraic steps, which constrains their size).

We must do this verification for each i, but this requires at most polyno-
mially many iterations by our initial assumption on certificate length. So the
entire verification procedure takes polynomial time. Therefore, if the lengths
of certificates of equivalence are polynomially bounded, then CHROMATIC
EQUIVALENCE is in NP.

We do not spell out the proofs of (b) and (c) in such detail, as they are
similar in essence. We just outline them and comment on the key points of
difference.
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(b)
Suppose again that every pair of chromatically equivalent graphs has an

algebraic certificate of equivalence of algebraic length ≤ cnk, where c and k are
constants. Under this hypothesis, we prove that the class of graphs that are not
chromatically unique belongs to NPGI.

Let G be a graph that is not chromatically unique. Let H be a graph that
is chromatically equivalent to G but not isomorphic to it. Our guess is now H
together with an algebraic certificate of chromatic equivalence for G and H of
algebraic length ≤ cnk, with all the associated information described in part
(a). In other words, the guess is H together with the information in (4). To
verify this guess, we first use the GRAPH ISOMORPHISM oracle to verify that
G 6∼= H, then we verify the information in (4) exactly as we did in part (a). The
verification takes polynomial time, because of the oracle use and the reasoning
given in (a). This completes the proof of (b).

(c)
Suppose now that every graph with a chromatic factorisation has an alge-

braic certificate of factorisation of algebraic length ≤ cnk, where c and k are
constants. Let G be a graph with chromatic factorisation P (G;λ) = P (H1;λ)
P (H2;λ)/P (Kr;λ) using graphs H1 and H2 and clique Kr where r ≥ 0.

Given a graph G which has a chromatic factorisation, our guess consists of
an algebraic certificate of factorisation of algebraic length ≤ cnk, together with
all the required associated information. This information is as in (4), except
that the final expression El is not a single graph but rather the expression
H1 ·H2/Kr. The verification is as in (a) above. �

4.2 Certificate length and the number of chromatic poly-
nomials

The numbers #CP(n) of different chromatic polynomials of connected graphs
on n vertices for n ≤ 10 is given by [20, Table 1] (for 8 ≤ n ≤ 10) and [10].
(Our Proposition 3, below, justifies the focus on connected graphs.)

n 1 2 3 4 5 6 7 8 9 10

#CP(n) 1 1 2 5 14 50 231 1650 21121 584432
n−2 log2 #CP(n) 0.000 0.000 0.111 0.145 0.152 0.157 0.160 0.167 0.177 0.192

The ultimate trend of #CP(n) is not clear from this data. We know that
it can be no more than the number of different connected unlabelled graphs
on n vertices, which is asymptotic to the number 2n(n−1)/2 of labelled graphs
on n vertices (since, asymptotically, almost all labelled graphs are connected
and have identity automorphism group). Does there exist b < 1

2 such that

#CP(n) ≤ 2bn
2

?
Although b = 0.2 would suffice for n ≤ 10, the numbers n−2 log2 #CP(n)

grow at an increasing rate over the range 6 ≤ n ≤ 10, suggesting strongly
that the true value of any such b is significantly greater. This growth cannot
continue forever, due to the upper bound 1

2 mentioned above. Does it flatten
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out strictly below this upper bound? It is impossible to tell; there is too little
data for any tentative extrapolation, let alone a persuasive one. By contrast,
for stability polynomials, the answer to the analogous question appears to be
affirmative [16]. Stability polynomials are essentially chromatic polynomials for
graphic 2-polymatroids, which are cousins of graphic matroids.

Such a b < 1
2 exists if and only if Bollobás, Pebody and Riordan’s second

conjecture, that asymptotically almost all graphs are chromatically unique [2],
is false. That conjecture still seems to be wide open. The authors at the time
wrote that they “do not have much evidence” for it, although “the simplest
approach to disproving [it] fails” [2, p. 344]. There has been little progress
since, at least for general graphs.

As we have just seen, the data gives no reason for taking a position either
way on the conjecture, and the analogous conjecture for graphic 2-polymatroids
actually seems likely to be false. We argue that, in exploring connections be-
tween the conjecture and certificate length, both possibilities (true/false) for
the conjecture deserve consideration. There seems to be little optimism in the
community that it will be resolved in the near future.

This question about b has implications for lengths of certificates of chromatic
equivalence.

Theorem 2 If #CP(n) ≤ 2bn
2

for some fixed b < 1
2 , then for sufficiently large

n, there exists a pair of chromatically equivalent graphs for which every certifi-
cate of equivalence has algebraic length Ω(n2/ log n).

Proof: Assume #CP(n) ≤ 2bn
2

for some fixed b < 1
2 .

The number of connected unlabelled graphs on n vertices is at least 2(
1
2−ε)n

2

,
for some fixed ε > 0. So the average size of a chromatic equivalence class is
≥ 2(

1
2−ε)n

2

/2bn
2

= 2(
1
2−ε−b)n

2

. Therefore there exists a chromatic equivalence
class consisting of at least this many graphs. Let G be one of these graphs.

Suppose that, for sufficiently large n, every pair of chromatically equivalent
graphs on n vertices has a certificate of chromatic equivalence of algebraic length
≤ L.

Each expression in the algebraic certificate must have ≤ 2L terms, since
the greatest possible increase in expression size, due to application of a single
certificate step CS1–CS7 or a single application of a field axiom as part of CS8,
is two. (The length might be unchanged, or decrease, instead.) It also has
≤ 2L instances of arithmetic operations from the standard set {+,−,×, /}, for
similar reasons. For each expression in the certificate, we apply one of CS1–CS7
or we apply a field axiom (and each field axiom might be applied in one of two
directions). The total number of options here is constant, but we must then
choose where in the expression to apply them. This involves choosing one or
two graphs in the expression (for a non-algebraic certificate step, or for some
field axiom applications) or one of the instances of an arithmetic operation (for
other field axiom applications), so the number of choices of these is ≤ 4L2 + 2L.
The upshot of this is that, for each expression, there are ≤ c0L2 expressions that
may be obtained from it in a single non-algebraic certificate step or application
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of a field axiom, where c0 is a constant. Since there are ≤ 2L expressions in
the certificate, the total number of certificates is ≤ Lc1L, for some constant c1.
This implies that the size of the chromatic equivalence class of G has this same
upper bound. So we have

2(
1
2−ε−b)n

2

≤ Lc1L,

giving
n2 ≤ c2L logL

for some constant c2. If for every constant ε1 > 0 we have L ≤ ε1n2/ log n, then

n2 ≤ c2
ε1n

2

log n
(2 log n− log log n+ log ε1),

giving 1 ≤ c2ε1 for all ε1 > 0, a contradiction. So, for some ε1 > 0, we must
have L > ε1n

2/ log n. It follows that L = Ω(n2/ log n). �

Our focus in this section on connected graphs is justified by the following
remark, which tells us that disconnected graphs give us nothing really new.

Proposition 3 If G1 and G2 are disconnected and chromatically equivalent,
then there exist two connected chromatically equivalent graphs G−1 and G−2 whose
chromatic polynomial is the same as that of G1 and G2 except for a factor λl.

Proof: Suppose two disconnected graphs G1 and G2 have the same chromatic
polynomial. They must have the same number of components, since this number
is given by the multiplicity of zero as a chromatic root. Call this number k.
Suppose we do the following to each graph: mark one vertex in each nonempty
component, identify all these marked vertices (so combining all the components
into a single component), and add new isolated vertices if necessary to ensure
that the total number of isolated vertices is k − 1. Let G′1 and G′2 be the
graphs formed from G1 and G2 by this construction, and let G−1 and G−2 be the
connected graphs formed from G′1 and G′2 by deleting all isolated vertices.

It is routine to show that the above construction Gi 7→ G′i leaves the chro-
matic polynomial unchanged, using the fact that P (H1 ∪ H2;λ) = P ((H1 ∪1
H2) ∪ K1;λ) for any disjoint graphs H1 and H2 (see, e.g., [8, p. 56]). We
therefore have

λk−1P (G−1 ;λ) = P (G′1;λ) = P (G1;λ) = P (G2;λ) = P (G′2;λ) = λk−1P (G−2 ;λ).

�

4.3 Certificate length and trees

All trees of a given order are chromatically equivalent. In investigating the
relationship between chromatic equivalence and certificate length, it is natural
to take a look at trees.
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Theorem 4 For each pair of trees of order n ≥ 3, there is a certificate of
chromatic equivalence for the pair, using only steps CS1 and CS2, of length
≤ 2(n− 3).

Proof: We use induction on n.

If n = 3, then there is only one tree on n vertices (up to isomorphism), which
has a trivial certificate of chromatic equivalence with itself, consisting just of
itself, which has length 0.

Now suppose n > 3. Suppose T1 and T2 are any two trees on n vertices.
Now, any tree can be obtained from some tree with one fewer vertices by adding
a leaf at an appropriate vertex. So, for i = 1, 2, we suppose Ti is obtained by
adding, to a tree T−i on n − 1 vertices, a leaf viwi to some vertex vi of T−i ,
with wi being a new vertex of degree 1 not in T−i . Since T−1 and T−2 have < n
vertices, the inductive hypothesis applies, and there is a certificate of chromatic
equivalence between them which only uses CS1 and CS2 and has length at
most 2((n − 1) − 3) = 2n − 8. Modify this certificate as follows. Every graph
in it, starting with T−1 at the beginning, has a copy of v1 (possibly identified
with other vertices as well). Attach a new leaf v1w1 at every such copy of v1,
throughout the certificate. This gives a new certificate of equivalence, since
all the certification steps remain valid after addition of the leaves. This new
certificate starts with T1 and demonstrates its equivalence to T−2 + v1w1, which
is obtained by adding the leaf v1w1 to T−2 . We append two more certificate
steps, certifying the chromatic equivalence of T−2 + v1w1 and T2:

T−2 + v1w1 −→ (T−2 + v1w1)\v1w1 − (T−2 + v1w1)/v1w1 (CS1)

= (T−2 ∪K1)− T−2
= (T−2 + v2w2)\v2w2 − (T−2 + v2w2)/v2w2

−→ T−2 + v2w2 (CS2)

= T2.

Altogether, this gives a certificate of chromatic equivalence for T1 and T2 of
total length ≤ 2(n− 3). �

This upper bound is attained by the certificate of equivalence between the
path Pn and the star Sn, each on n vertices.

For computation of certificate lengths for trees of order ≤ 7, see §6.1.2.

5 Software information

This section provides some information about the certsearch software pro-
duced in this project. For more detailed information about the finer points of
the program implementation, we refer the reader to the source files available at
http://users.monash.edu/~kmorgan/Zoe/.

http://users.monash.edu/~kmorgan/Zoe/
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5.1 Building the software

The certsearch software was written in the C programming language and
was compiled with gcc. A makefile is included with the source code at http:

//users.monash.edu/~kmorgan/Zoe/.
The program certsearch uses nauty version 2.4, developed by Brendan

McKay [14, 15] and available at http://cs.anu.edu.au/~bdm/nauty. In the
software, nauty is used for the graph isomorphism checks performed during the
search. The program also uses a function from some work by Kerri Morgan
[17], which is used as an interface to nauty. This function was modified during
this research to make it compatible with the graph data structures used by
certsearch. The source code files for nauty and the modified code from Morgan
are included along with the other source files required to build the certsearch

program.
Also provided are the n_polys files, which contain lists of all of the chromatic

equivalence classes for all non-chromatically unique graphs of order 4, 5, 6 and
7. These files were provided by Kerri Morgan. The graphs* files are also
included. They give the adjacency matrices of all graphs of orders 4, 5, 6
and 7. These files are provided by Brendan McKay and are made available at
http://cs.anu.edu.au/~bdm/data/graphs.html. Both the n_polys and the
graphs* files are required by the automated exhaustive search functions.

5.2 Using the software

When running certsearch the user is presented with a number of options.
Option 2 runs the batch experiments for all of the pairs of graphs of order
4 ≤ n ≤ 7 and was used to find all of the computational results in this the-
sis. The certificates found during this search option are written out to the
order_*_certificates files in the graphs directory.

5.3 Interpreting output certificates

This section contains information about interpreting the data output to file by
certsearch. Please note that in the certificates in the order * certificates

files and Appendix B, the graphs G and G0 are the same graph.
In the software, order n graphs are always defined over the set of vertices

{0, . . . , n− 1}. The only graph operations that the software performs are edge
deletion, edge addition and vertex identification. Edge contraction is imple-
mented by removing the edge and then performing a vertex identification. Ver-
tex identification alters the order of the resulting graph, and thus the labelling
of the vertex set and the edge set. It is important to understand how this change
is implemented in order to interpret the output of the program correctly. We
use the following map to relabel our vertices and edges when identifying vertices
vi and vj , i < j.

φ(vk, j) =

{
vk if k < j

vk−1 if k ≥ j.

http://users.monash.edu/~kmorgan/Zoe/
http://users.monash.edu/~kmorgan/Zoe/
http://cs.anu.edu.au/~bdm/nauty
http://cs.anu.edu.au/~bdm/data/graphs.html
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The graph obtained by identifying vertices vi and vj , i < j, in G has vertex set
{0, 1, . . . , n− 2} and edge set {φ(vk, j)φ(vl, j) : vkvl ∈ E(G)} .

With this information, together with the adjacency matrices in the graphs*

files, it is possible to interpret the certificates in Appendix B. Note that the
certificates listed in the order_*_certificates files, which are available at
http://users.monash.edu/~kmorgan/Zoe/, are preceded by the edge lists of
the two graphs involved for which the certificate shows chromatic equivalence.
The first of the two graphs listed is G in the certificate. The second is the graph
found in the final expression of the certificate.

6 Experiments

The experiments were carried out as follows. For each chromatic equivalence
class, a list of all unordered pairs of these graphs was created. Each of these
pairs were given as an input to the program which used a bounded depth first
search algorithm. Each node in the search tree represents an expression E =∑l

i=0 sign(i)Gi, l ≥ 0, where the Gi are graphs and sign(i)∈ {±1}. At each
node we branch on all possible steps. First we branch on steps of type (CS1)
and (CS3), that is deletion/contraction on edges in Gi or addition/identification
for non-adjacent pairs of vertices in Gi, and then we branch on steps of type
(CS2) and (CS4), that is, where the inverse of either an addition/identification
or deletion/contraction operation can be applied to some pair of graphs in E.
In order to reduce the search time, a second input to the program gave an upper
bound M on the length of certificate to be found. If no certificate of length at
most M was found, the bound was increased so a certificate could be found. If
a certificate of length M is found during the search we record the certificate and
decrement M , backtrack to the previous level of the search tree and continue the
search for a shorter certificate. This algorithm found a shortest certificate for
each pair and wrote this certificate out to the file of results for the corresponding
graph order. This procedure was performed for graph orders 4, 5, 6, and 7.

In order to reduce the search space, our program only uses certificate steps
(CS1)–(CS4). This was a natural choice as these steps are based on the
fundamental operations used to compute the chromatic polynomial (see (1) and
(2)). The program finds the shortest certificates that use only these types of
certificate step. The lengths of these certificates give an upper bound on the
shortest lengths of all certificates of equivalence for graphs of these orders.

A list of the chromatic equivalence classes for graphs of order 4 ≤ n ≤ 7
was provided by Kerri Morgan. These lists contain lists of the graphs, in-
dexed by certain integers and arranged by equivalence class. The indices corre-
spond to graph data provided by Brendan McKay, which is available at http:

//cs.anu.edu.au/~bdm/data/graphs.html. The program also uses nauty ver-
sion 2.4, available at http://cs.anu.edu.au/~bdm/nauty, also developed by
McKay [14, 15] to perform isomorphism checking during the running of the
search algorithm. There were a total of 3821 pairs of chromatically equivalent
graphs from 157 equivalence classes.

http://users.monash.edu/~kmorgan/Zoe/
http://cs.anu.edu.au/~bdm/data/graphs.html
http://cs.anu.edu.au/~bdm/data/graphs.html
http://cs.anu.edu.au/~bdm/nauty
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All of the experimental runs using certsearch were completed on a com-
puter with the following specifications.

Computer: Lenovo ThinkPad X1
Processor: Intel(R) Core(TM) i5–2520M CPU @ 2.50GHz
Speed: 800.00 MHz
Memory (RAM): 3.8 GB
Operating System: Linux openSUSE 12.2

6.1 Results

One of the main reasons for conducting the experiments was to find information
about the length of shortest certificates of chromatic equivalence. Table 1 lists
the certificate length data from the experiments. For each graph order, it lists
the number of shortest certificates found of each length. Although the exper-
iments considered only graphs of order at most 7, the certificate lengths that
they found are, relative to corresponding graph order, very short. All but seven
of the certificates found have length bounded by the order of the graphs. The
remaining seven certificates have length 8 and were for graphs of order 7. All
certificate lengths are ≤ 2n−6. While these experiments only consider graphs of
very small order, it is encouraging that so far the shortest certificates produced
have been very short indeed, especially since the best known upper bound on
the length of certificates is < 2n

2/2, which is exponential in the order of the pair
of graphs.

Figure 3 is an example of a certificate found using certsearch. All cer-
tificates found during the experiments for orders 4 ≤ n ≤ 6 can be found in
Appendix B. These certificates, as well as those for the graphs of order 7, are
available at http://users.monash.edu/~kmorgan/Zoe/.

6.1.1 Schemas

A schema is a template for a certificate [20]. It represents a class of certificates
that all share certain common subsequences of steps. A certificate which follows
the pattern of certificate steps given in a schema is said to belong to the schema.
Appendix A lists the schemas to which the certificates of equivalence found for
graphs of order 4 ≤ n ≤ 6 belong. These schemas were obtained by analysing
the certificate data produced from the experiments.

Table 2 details the lengths of these schemas and the number of shortest
certificates found by our program belonging to these schemas. Schemas given
in Appendix A are not all of the possible schemas for certificates up to length
6, they are only those to which at least one certificate in the results belongs.

The program finds just one of potentially many shortest certificates for each
input pair of graphs. The set of schemas to which the resulting certificates
belong to are in part artefacts of how the graphs are labelled, as the labelling
of edges affects the order of edge selection by the program. The order in which
possible certificate steps are attempted will also affect which of the shortest

http://users.monash.edu/~kmorgan/Zoe/
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Graph Order Length 2 Length 4 Length 6 Length 8 Total

4 1 1
5 8 1 9
6 113 48 2 163
7 1610 1759 272 7 3648

Table 1: The lengths of shortest certificates found for chromatically equivalent
pairs of graphs of order ≤ 7.

=

=

=

=

=

=

Figure 3: A certificate of equivalence for two graphs of order 6, belonging to
Schema 14.
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Length 2 4 6
Schema S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

4 1
Order 5 4 4 1

6 62 51 3 6 11 1 2 2 9 5 6 1 2 1 1

Table 2: The distribution of encountered shortest certificates amongst the
schemas for graphs of order ≤ 6.

certificates is found for a given graph. Consequently, the schemas to which the
certificates from our results belong are not necessarily the only ones for which
certificates of the same length for each pair could be produced, although they
are as short as any. There may exist other certificates of the same length for a
given pair of graphs that belong to some other schema; either one of the others
listed in Appendix A, or another schema altogether.

Nevertheless, we are still able to draw some important conclusions from
the information we do have. Since all the shortest certificates that were found
belong to a small set of only 15 schemas, and there certainly exist other possible
schemas of these lengths, we can say that the entire set of possible schemas may
not need to be considered when searching for shortest certificates.

The vast majority of the certificates found belong to Schemas 1 and 2. This
is not unexpected, as these two schemas describe the only two sequences of
certificate steps (when restricted to certificate steps of type (CS1)–(CS4)) that
can produce a certificate of length 2. Schemas 14 and 15 both describe length
6 certificates, and the remaining schemas describe certificates with length 4.

The edge difference of graphs G and G′ is the smallest d ∈ N such that
there exists A ⊆ E(G) and B ⊆ V (2) \ E(G), |A| + |B| = d where G − A + B
is isomorphic to G′. If G ∼ G′, then |A| = |B| and d is even. In each of
the schemas for G ∼ G′, the final expression gives a graph, isomorphic to G′,
obtained by deleting and adding some edge. For example, the final expression
in Schema 3 is the graph (G+e\f+g\h). The edge difference of pairs of graphs
with certificates that belong to this schema is 4. Schemas 1 to 12 and 15 give
certificates with length equal to the edge difference of the pair of graphs.

However, in Schemas 13 and 14, the edge difference for them both is two
less than their respective certificate lengths. Our program only uses certificate
steps (CS1–CS4). It is possible that the use of all the types of certificate steps
listed in Section 3 may produce certificates for these pairs of graphs that have
a length less than or equal to their edge difference.

6.1.2 Certificates for trees

Table 3 gives the lengths of the shortest certificates of equivalence found for
pairs of trees of order n, for the range 4 ≤ n ≤ 7.

The bound on certificate length suggested by the table aligns with Theorem 4.
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Tree Order Length 2 Length 4 Length 6 Length 8

4 1
5 2 1
6 9 5 1
7 27 20 7 1

Table 3: The lengths of shortest certificates found for chromatically equivalent
trees of order ≤ 7.

7 Conclusions and future work

The certificates found using the certsearch software tool are all very short.
They also belong to only a small number of schemas. We give an upper bound
of 2(n − 3) on the lengths of certificates of equivalence for trees. This class of
graph includes the star and path graphs, which were subsequently shown for
orders 4 ≤ n ≤ 7 to have the longest certificates amongst all graphs of the same
order in the experimental results.

In general, the certificates that have been found so far are significantly
shorter than the upper bounds on their length known at this time, so it is
possible that further research could uncover tighter upper bounds. Although
the chromatic polynomial has been investigated in considerable depth, there has
been little research into its algebraic theory. Chromatic equivalence has been
the topic of much research, but knowledge about the characterisation of chro-
matically equivalent graphs in general is far from complete. The certificates of
equivalence that have been found so far provide some tantalising hints as to how
they may behave generally, but there remain a great number of things about
them that are unknown. Consequently, there is a wealth of potential directions
for further research into certificates for properties of the chromatic polynomial.
Some of these avenues are outlined below.

The schemas found in this research could be used to reduce the time taken
to find certificates. By first searching for certificates between pairs of graphs
using the schemas found in this research, it may be possible to find certificates
for larger orders of graph. Attempting to find certificates that belong to the
more common schemas may improve the time taken to find certificates.

Our program finds a shortest certificate for a given pair of graphs. However,
there may be other certificates for such a pair that have the same length. A
search for all of the certificates of shortest length for a pair of chromatically
equivalent graphs could be implemented. This may give a wider range of possible
schemas which could be used in our search for short certificates. The search
algorithm could be expanded to include the complete set of certificate steps
studied by Morgan and Farr [20]. It is quite possible that shorter certificates of
equivalence could be found for some of the certificates found in this project. It
is also possible that such a method would find shorter certificates, in general.

Certificates of factorisation use the same certificate steps as certificates of
equivalence. Extending the search capabilities of our algorithms to include
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searching for certificates of factorisation is an avenue for further work.
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Appendices

A Schemas

All of the certificates found for pairs of chromatically equivalent graphs of order
4 ≤ n ≤ 6 belong to one of the following schemas.

Schema 1:

G = (G+ e) + (G/e) (CS3)

= (G+ e\f). (CS4)

Schema 2:

G = (G\e) − (G/e) (CS1)

= (G\e+ f). (CS2)

Schema 3:

G = (G+ e) + (G/e) (CS3)

= (G+ e\f) − (G+ e/f) + (G/e) (CS1)

= (G+ e\f + g) + (G/e) (CS2)

= (G+ e\f + g\h). (CS4)

Schema 4:

G = (G\e) − (G/e) (CS1)

= (G\e+ f) (CS2)

= (G\e+ f\g) − (G\e+ f/g) (CS1)

= (G\e+ f\g + h). (CS2)
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Schema 5:

G = (G+ e) + (G/e) (CS3)

= (G+ e+ f) + (G+ e/f) + (G/e) (CS3)

= (G+ e+ f\g) + (G/e) (CS4)

= (G+ e+ f\g\h). (CS4)

Schema 6:

G = (G+ e) + (G/e) (CS3)

= (G+ e) + (G/e\f) + (G/e/f) (CS1)

= (G+ e) + (G/e\f\g) (CS4)

= (G+ e\h). (CS4)

Schema 7:

G = (G+ e) + (G/e) (CS3)

= (G+ e+ f) + (G+ e/f) + (G/e) (CS3)

= (G+ e+ f\g) + (G+ e/f) (CS4)

= (G+ e+ f\g\h). (CS4)

Schema 8:

G = (G\e) − (G/e) (CS1)

= (G\e+ f) (CS2)

= (G\e+ f + g) + (G\e+ f/g) (CS3)

= (G\e+ f + g\h). (CS4)
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Schema 9:

G = (G+ e) + (G/e) (CS3)

= (G+ e\f) (CS4)

= (G+ e\f + g) + (G+ e\f/g) (CS3)

= (G+ e\f + g\h). (CS4)

Schema 10:

G = (G+ e) + (G/e) (CS3)

= (G+ e\f) − (G+ e/f) + (G/e) (CS1)

= (G+ e\f\g) − (G+ e/f) (CS4)

= (G+ e\f\g + h). (CS2)

Schema 11:

G = (G+ e) + (G/e) (CS3)

= (G+ e\f) (CS4)

= (G+ e\f\g) − (G+ e\f/g) (CS1)

= (G+ e\f\g + h). (CS2)

Schema 12:

G = (G\e) − (G/e) (CS1)

= (G\e+ f) + (G\e/f) − (G/e) (CS3)

= (G\e+ f\g) − (G/e) (CS4)

= (G\e+ f\g + h). (CS2)
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Schema 13:

G = (G+ e) + (G/e) (CS3)

= (G+ e) + (G/e\f) − (G/e/f) (CS1)

= (G+ e) + (G/e\f + g) (CS2)

= (G+ e\h). (CS4)

Schema 14:

G = (G+ e) + (G/e) (CS3)

= (G+ e+ f) + (G+ e/f) + (G/e) (CS3)

= (G+ e+ f) + (G+ e/f + g) + (G+ e/f/g) + (G/e) (CS3)

= (G+ e+ f) + (G+ e/f + g\h) + (G/e) (CS4)

= (G+ e+ f\i) + (G+ e/f + g\h) (CS4)

= (G+ e+ f\i\j). (CS4)

Schema 15:

G = (G+ e) + (G/e) (CS3)

= (G+ e+ f) + (G+ e/f) + (G/e) (CS3)

= (G+ e+ f\g) + (G/e) (CS4)

= (G+ e+ f\g\h) (CS4)

= (G+ e+ f\g\h+ i) + (G+ e+ f\g\h/i) (CS3)

= (G+ e+ f\g\h+ i\j). (CS4)

B Certificates

The following are the certificates found for pairs of chromatically equivalent
graphs of order 4 ≤ n ≤ 6. A somewhat more verbose version of these cer-
tificates, along with all of the certificates for the graphs of order 7, can be
found in the files labelled order_*_certificates available at http://users.

http://users.monash.edu/~kmorgan/Zoe/
http://users.monash.edu/~kmorgan/Zoe/
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monash.edu/~kmorgan/Zoe/. The numbers given to denote which graphs each
certificate corresponds to are those listed in the graphs* files, also found at
http://users.monash.edu/~kmorgan/Zoe/. These files give the adjacency
matrices of the graphs.

B.1 Order 4

Graph Pair Certificate

2 & 1 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

Table 4: Certificates belonging to Schema 1.

B.2 Order 5

Graph Pair Certificate

10 & 4 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(2,0)}

11 & 6 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(2,0)}

12 & 6 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,2)}

12 & 11 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,2)}

Table 5: Certificates belonging to Schema 1.

Graph Pair Certificate

2 & 1 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(4,3)}

9 & 2 G = G1{G0-(2,0)} - G2{G0/(2,0)}

= G3{G1+(2,1)}

4 & 3 G = G1{G0-(3,1)} - G2{G0/(3,1)}

= G3{G1+(4,1)}

10 & 3 G = G1{G0-(3,1)} - G2{G0/(3,1)}

= G3{G1+(4,3)}

Table 6: Certificates belonging to Schema 2.

http://users.monash.edu/~kmorgan/Zoe/
http://users.monash.edu/~kmorgan/Zoe/
http://users.monash.edu/~kmorgan/Zoe/
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Graph Pair Certificate

9 & 1

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(2,0)} - G4{G1/(2,0)} + G2{G0/(1,0)}

= G5{G3+(2,1)} + G2{G0/(1,0)}

= G6{G5-(4,0)}

Table 7: Certificates belonging to Schema 3.

B.3 Order 6

59 & 11 G = G1{G0+(2,0)} + G2{G0/(2,0)}

= G3{G1-(5,2)}

31 & 7 G = G1{G0+(2,0)} + G2{G0/(2,0)}

= G3{G1-(5,2)}

31 & 9 G = G1{G0+(2,1)} + G2{G0/(2,1)}

= G3{G1-(5,2)}

5 & 4 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,1)}

19 & 5 G = G1{G0+(2,0)} + G2{G0/(2,0)}

= G3{G1-(4,2)}

19 & 15 G = G1{G0+(2,0)} + G2{G0/(2,0)}

= G3{G1-(4,1)}

107 & 74 G = G1{G0+(3,2)} + G2{G0/(3,2)

= G3{G1-(5,3)}

51 & 25 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(5,3)}

Table 8: Certificates belonging to Schema 1.
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51 & 33 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

51 & 46 G = G1{G0+(2,1)} + G2{G0/(2,1)}

= G3{G1-(3,1)}

60 & 36 G = G1{G0+(2,0)} + G2{G0/(2,0)}

= G3{G1-(5,2)}

65 & 36 G = G1{G0+(2,0)} + G2{G0/(2,0)}

= G3{G1-(4,2)}

65 & 60 G = G1{G0+(3,2)} + G2{G0/(3,2)}

= G3{G1-(4,2)}

63 & 61 G = G1{G0+(3,2)} + G2{G0/(3,2)}

= G3{G1-(5,2)}

15 & 5 G = G1{G0+(2,0)} + G2{G0/(2,0)}

= G3{G1-(5,2)}

16 & 6 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,0)}

20 & 18 G = G1{G0+(2,0)} + G2{G0/(2,0)}

= G3{G1-(4,2)}

21 & 18 G = G1{G0+(2,1)} + G2{G0/(2,1)}

= G3{G1-(3,0)}

21 & 20 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,0)}

30 & 6 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,1)}

30 & 16 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(5,4)}

30 & 20 G = G1{G0+(2,1)} + G2{G0/(2,1)}

= G3{G1-(4,1)}

54 & 39 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

54 & 49 G = G1{G0+(2,1)} + G2{G0/(2,1)}

= G3{G1-(3,1)}

67 & 57 G = G1{G0+(2,0)} + G2{G0/(2,0)}

= G3{G1-(4,2)}

85 & 57 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(2,0)}

Table 9: Certificates belonging to Schema 1 (Continued).
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100 & 69 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(5,1)}

87 & 71 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(2,0)}

17 & 8 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,0)}

24 & 22 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,1)}

32 & 10 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,1)}

32 & 17 G = G1{G0+(5,3)} + G2{G0/(5,3)}

= G3{G1-(4,0)}

32 & 22 G = G1{G0+(2,1)} + G2{G0/(2,1)}

= G3{G1-(4,1)}

32 & 24 G = G1{G0+(2,1)} + G2{G0/(2,1)}

= G3{G1-(4,0)}

32 & 27 G = G1{G0+(2,0)} + G2{G0/(2,0)}

= G3{G1-(5,2)}

50 & 22 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(5,3)}

50 & 24 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(5,4)}

50 & 32 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

76 & 22 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

77 & 24 G = G1{G0+(3,0)} + G2{G0/(3,0)}

= G3{G1-(5,1)}

77 & 32 G = G1{G0+(3,0)} + G2{G0/(3,0)}

= G3{G1-(3,1)}

34 & 12 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,1)}

34 & 26 G = G1{G0+(2,1)} + G2{G0/(2,1)}

= G3{G1-(4,0)}

41 & 40 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,1)}

Table 10: Certificates belonging to Schema 1 (Continued).
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52 & 26 G = G1{G0+(5,2)} + G2{G0/(5,2)}

= G3{G1-(3,0)}

52 & 40 G = G1{G0+(2,0)} + G2{G0/(2,0)}

= G3{G1-(3,1)}

52 & 41 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

79 & 40 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

79 & 52 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,0)}

55 & 43 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

98 & 92 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(5,2)}

78 & 35 G = G1{G0+(3,0)} + G2{G0/(3,0)}

= G3{G1-(3,1)}

80 & 37 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

84 & 62 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(2,0)}

91 & 58 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,1)}

91 & 86 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,2)}

89 & 64 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(5,1)}

88 & 70 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(2,0)}

93 & 70 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,2)}

93 & 88 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,2)}

103 & 75 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

86 & 58 G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(2,0)}

Table 11: Certificates belonging to Schema 1 (Continued).
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9 & 7 G = G1{G0-(4,2)} - G2{G0/(4,2)}

= G3{G1+(5,2)}

23 & 7 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(5,3)}

23 & 9 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(4,3)}

31 & 23 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(3,2)}

2 & 1 G = G1{G0-(4,0)} - G2{G0/(4,0)}

= G3{G1+(5,4)}

4 & 2 G = G1{G0-(4,0)} - G2{G0/(4,0)}

= G3{G1+(5,0)}

5 & 2 G = G1{G0-(4,1)} - G2{G0/(4,1)}

= G3{G1+(5,1)}

15 & 2 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(5,3)}

15 & 4 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(3,1)}

33 & 25 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(3,2)}

46 & 33 G = G1{G0-(3,1)} - G2{G0/(3,1)}

= G3{G1+(4,1)}

6 & 3 G = G1{G0-(4,1)} - G2{G0/(4,1)}

= G3{G1+(5,1)}

16 & 3 G = G1{G0-(4,1)} - G2{G0/(4,1)}

= G3{G1+(5,4)}

18 & 6 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(4,0)}

18 & 16 G = G1{G0-(4,1)} - G2{G0/(4,1)}

= G3{G1+(5,1)}

20 & 6 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(4,3)}

20 & 16 G = G1{G0-(4,2)} - G2{G0/(4,2)}

= G3{G1+(5,2)}

21 & 16 G = G1{G0-(4,2)} - G2{G0/(4,2)}

= G3{G1+(5,2)}

Table 12: Certificates belonging to Schema 2.
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49 & 39 G = G1{G0-(3,1)} - G2{G0/(3,1)}

= G3{G1+(4,1)}

82 & 49 G = G1{G0-(2,0)} - G2{G0/(2,0)}

= G3{G1+(2,1)}

10 & 8 G = G1{G0-(4,2)} - G2{G0/(4,2)}

= G3{G1+(5,2)}

22 & 10 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(4,0)}

22 & 17 G = G1{G0-(4,2)} - G2{G0/(4,2)}

= G3{G1+(5,2)}

24 & 8 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(5,3)}

24 & 10 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(4,3)}

27 & 8 G = G1{G0-(4,0)} - G2{G0/(4,0)}

= G3{G1+(5,4)}

32 & 8 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(5,3)}

50 & 27 G = G1{G0-(3,1)} - G2{G0/(3,1)}

= G3{G1+(4,1)}

77 & 27 G = G1{G0-(3,1)} - G2{G0/(3,1)}

= G3{G1+(5,3)}

77 & 50 G = G1{G0-(3,1)} - G2{G0/(3,1)}

= G3{G1+(4,3)}

77 & 76 G = G1{G0-(5,0)} - G2{G0/(5,0)}

= G3{G1+(5,3)}

26 & 12 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(4,0)}

40 & 12 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(4,3)}

40 & 34 G = G1{G0-(4,2)} - G2{G0/(4,2)}

= G3{G1+(5,2)}

41 & 12 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(4,3)}

41 & 26 G = G1{G0-(4,0)} - G2{G0/(4,0)}

= G3{G1+(5,3)}

Table 13: Certificates belonging to Schema 2 (Continued).
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52 & 34 G = G1{G0-(4,2)} - G2{G0/(4,2)}

= G3{G1+(5,2)}

79 & 26 G = G1{G0-(4,0)} - G2{G0/(4,0)}

= G3{G1+(5,4)}

43 & 14 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(4,3)}

56 & 43 G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(5,0)}

83 & 43 G = G1{G0-(2,0)} - G2{G0/(2,0)}

= G3{G1+(5,2)}

83 & 55 G = G1{G0-(4,2)} - G2{G0/(4,2)}

= G3{G1+(5,2)}

83 & 56 G = G1{G0-(2,0)} - G2{G0/(2,0)}

= G3{G1+(2,1)}

106 & 102 G = G1{G0-(2,0)} - G2{G0/(2,0)}

= G3{G1+(4,3)}

35 & 28 G = G1{G0-(4,1)} - G2{G0/(4,1)}

= G3{G1+(5,1)}

78 & 28 G = G1{G0-(3,1)} - G2{G0/(3,1)}

= G3{G1+(5,3)}

62 & 37 G = G1{G0-(3,1)} - G2{G0/(3,1)}

= G3{G1+(4,2)}

84 & 37 G = G1{G0-(3,1)} - G2{G0/(3,1)}

= G3{G1+(4,3)}

84 & 80 G = G1{G0-(4,1)} - G2{G0/(4,1)}

= G3{G1+(5,3)}

58 & 45 G = G1{G0-(3,1)} - G2{G0/(3,1)}

= G3{G1+(4,1)}

86 & 45 G = G1{G0-(3,1)} - G2{G0/(3,1)}

= G3{G1+(4,3)}

Table 14: Certificates belonging to Schema 2 (Continued).

77 & 10

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)} - G4{G1/(3,1)} + G2{G0/(1,0)}

= G5{G3+(3,2)} + G2{G0/(1,0)}

= G6{G5-(5,1)}

77 & 22

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)} - G4{G1/(3,1)} + G2{G0/(1,0)}

= G5{G3+(3,2)} + G2{G0/(1,0)}

= G6{G5-(5,2)}

56 & 55

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,0)} - G4{G1/(3,0)} + G2{G0/(1,0)}

= G5{G3+(5,0)} + G2{G0/(1,0)}

= G6{G5-(4,0)}

Table 15: Certificates belonging to Schema 3.
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4 & 1

G = G1{G0-(4,0)} - G2{G0/(4,0)}

= G3{G1+(5,0)}

= G4{G3-(4,1)} - G5{G3/(4,1)}

= G6{G4+(5,1)}

5 & 1

G = G1{G0-(4,1)} - G2{G0/(4,1)}

= G3{G1+(5,1)}

= G4{G3-(4,0)} - G5{G3/(4,0)}

= G6{G4+(5,4)}

15 & 1

G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(5,3)}

= G4{G3-(4,1)} - G5{G3/(4,1)}

= G6{G4+(5,4)}

21 & 3

G = G1{G0-(4,2)} - G2{G0/(4,2)}

= G3{G1+(5,2)}

= G4{G3-(4,1)} - G5{G3/(4,1)}

= G6{G4+(5,4)}

56 & 14

G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(5,0)}

= G4{G3-(3,1)} - G5{G3/(3,1)}

= G6{G4+(4,1)}

83 & 14

G = G1{G0-(2,0)} - G2{G0/(2,0)}

= G3{G1+(5,2)}

= G4{G3-(3,1)} - G5{G3/(3,1)}

= G6{G4+(4,3)}

Table 16: Certificates belonging to Schema 4.
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19 & 2

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(2,0)} + G4{G1/(2,0)} + G2{G0/(1,0)}

= G5{G3-(4,1)} + G2{G0/(1,0)}

= G6{G5-(5,1)}

19 & 4

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(2,0)} + G4{G1/(2,0)} + G2{G0/(1,0)}

= G5{G3-(4,2)} + G2{G0/(1,0)}

= G6{G5-(5,0)}

17 & 10

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(2,0)} + G4{G1/(2,0)} + G2{G0/(1,0)}

= G5{G3-(5,2)} + G2{G0/(1,0)}

= G6{G5-(4,1)}

27 & 22

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(2,1)} + G4{G1/(2,1)} + G2{G0/(1,0)}

= G5{G3-(4,0)} + G2{G0/(1,0)}

= G6{G5-(1,0)}

27 & 24

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(2,1)} + G4{G1/(2,1)} + G2{G0/(1,0)}

= G5{G3-(4,0)} + G2{G0/(1,0)}

= G6{G5-(3,0)}

76 & 17

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(3,0)} + G4{G1/(3,0)} + G2{G0/(1,0)}

= G5{G3-(3,1)} + G2{G0/(1,0)}

= G6{G5-(5,1)}

77 & 8

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(3,0)} + G4{G1/(3,0)} + G2{G0/(1,0)}

= G5{G3-(3,1)} + G2{G0/(1,0)}

= G6{G5-(4,2)}

77 & 17

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(3,0)} + G4{G1/(3,0)} + G2{G0/(1,0)}

= G5{G3-(3,1)} + G2{G0/(1,0)}

= G6{G5-(5,2)}

79 & 34

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(3,0)} + G4{G1/(3,0)} + G2{G0/(1,0)}

= G5{G3-(3,1)} + G2{G0/(1,0)}

= G6{G5-(5,1)}

91 & 45

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(2,1)} + G4{G1/(2,1)} + G2{G0/(1,0)}

= G5{G3-(4,1)} + G2{G0/(1,0)}

= G6{G5-(5,1)}

80 & 62

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(2,1)} + G4{G1/(2,1)} + G2{G0/(1,0)}

= G5{G3-(4,0)} + G2{G0/(1,0)}

= G6{G5-(5,3)}

Table 17: Certificates belonging to Schema 5.
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27 & 10

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G1{G0+(1,0)} + G3{G2+(1,0)} + G4{G2/(1,0)}

= G1{G0+(1,0)} + G5{G3-(3,2)}

= G6{G1-(4,3)}

Table 18: Certificates belonging to Schema 6.

46 & 25

G = G1{G0+(2,1)} + G2{G0/(2,1)}

= G3{G1+(5,0)} + G4{G1/(5,0)} + G2{G0/(2,1)}

= G4{G1/(5,0)} + G5{G3-(3,1)}

= G6{G5-(4,0)}

50 & 10

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(4,3)} + G4{G1/(4,3)} + G2{G0/(1,0)}

= G4{G1/(4,3)} + G5{G3-(5,0)}

= G6{G5-(1,0)}

Table 19: Certificates belonging to Schema 7.

18 & 3

G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(4,0)}

= G4{G3+(4,3)} + G5{G3/(4,3)}

= G6{G4-(5,0)}

20 & 3

G = G1{G0-(3,0)} - G2{G0/(3,0)}

= G3{G1+(4,3)}

= G4{G3+(4,0)} + G5{G3/(4,0)}

= G6{G4-(5,0)}

Table 20: Certificates belonging to Schema 8.
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21 & 6

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,0)}

= G4{G3+(2,1)} + G5{G3/(2,1)}

= G6{G4-(4,2)}

30 & 3

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,1)}

= G4{G3+(2,0)} + G5{G3/(2,0)}

= G6{G4-(5,2)}

85 & 67

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(2,0)}

= G4{G3+(3,0)} + G5{G3/(3,0)}

= G6{G4-(5,3)}

27 & 17

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(5,1)}

= G4{G3+(2,0)} + G5{G3/(2,0)}

= G6{G4-(5,3)}

50 & 8

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

= G4{G3+(2,0)} + G5{G3/(2,0)}

= G6{G4-(4,2)}

50 & 17

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

= G4{G3+(2,0)} + G5{G3/(2,0)}

= G6{G4-(5,4)}

76 & 32

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

= G4{G3+(2,1)} + G5{G3/(2,1)}

= G6{G4-(4,2)}

52 & 12

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

= G4{G3+(2,0)} + G5{G3/(2,0)}

= G6{G4-(4,2)}

55 & 14

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

= G4{G3+(2,0)} + G5{G3/(2,0)}

= G6{G4-(4,2)}

Table 21: Certificates belonging to Schema 9.
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30 & 18

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,0)} - G4{G1/(4,0)} + G2{G0/(1,0)}

= - G4{G1/(4,0)} + G5{G3-(4,1)}

= G6{G5+(3,1)}

76 & 24

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(5,1)} - G4{G1/(5,1)} + G2{G0/(1,0)}

= - G4{G1/(5,1)} + G5{G3-(3,1)}

= G6{G5+(2,1)}

40 & 26

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,0)} - G4{G1/(4,0)} + G2{G0/(1,0)}

= - G4{G1/(4,0)} + G5{G3-(4,1)}

= G6{G5+(5,2)}

41 & 34

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,0)} - G4{G1/(4,0)} + G2{G0/(1,0)}

= - G4{G1/(4,0)} + G5{G3-(4,2)}

= G6{G5+(5,3)}

79 & 41

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(2,0)} - G4{G1/(2,0)} + G2{G0/(1,0)}

= - G4{G1/(2,0)} + G5{G3-(4,2)}

= G6{G5+(2,1)}

Table 22: Certificates belonging to Schema 10.
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30 & 21

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(5,4)}

= G4{G3-(3,0)} - G5{G3/(3,0)}

= G6{G4+(3,2)}

22 & 8

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,0)}

= G4{G3-(4,2)} - G5{G3/(4,2)}

= G6{G4+(5,2)}

24 & 17

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(4,1)}

= G4{G3-(3,0)} - G5{G3/(3,0)}

= G6{G4+(5,3)}

76 & 10

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

= G4{G3-(4,2)} - G5{G3/(4,2)}

= G6{G4+(5,2)}

79 & 12

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

= G4{G3-(4,2)} - G5{G3/(4,2)}

= G6{G4+(3,0)}

76 & 50

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1-(3,1)}

= G4{G3-(2,0)} - G5{G3/(2,0)}

= G6{G4+(4,1)}

Table 23: Certificates belonging to Schema 11.

82 & 39

G = G1{G0-(2,0)} - G2{G0/(2,0)}

= G3{G1+(2,1)} + G4{G1/(2,1)} - G2{G0/(2,0)}

= G5{G3-(4,2)} - G2{G0/(2,0)}

= G6{G5+(5,2)}

Table 24: Certificates belonging to Schema 12.

82 & 54

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G1{G0+(1,0)} + G3{G2-(1,0)} - G4{G2/(1,0)}

= G1{G0+(1,0)} + G5{G3+(3,2)}

= G6{G1-(4,0)}

76 & 27

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G1{G0+(1,0)} + G3{G2-(1,0)} - G4{G2/(1,0)}

= G1{G0+(1,0)} + G5{G3+(3,2)}

= G6{G1-(4,2)}

Table 25: Certificates belonging to Schema 13.
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76 & 8

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(3,0)} + G4{G1/(3,0)} + G2{G0/(1,0)}

= G3{G1+(3,0)} + G5{G4+(2,1)} + G6{G4/(2,1)} + G2{G0/(1,0)}

= G3{G1+(3,0)} + G7{G5-(3,2)} + G2{G0/(1,0)}

= G7{G5-(3,2)} + G8{G3-(3,1)}

= G9{G8-(4,2)}

Table 26: Certificates belonging to Schema 14.

19 & 1

G = G1{G0+(1,0)} + G2{G0/(1,0)}

= G3{G1+(2,0)} + G4{G1/(2,0)} + G2{G0/(1,0)}

= G5{G3-(4,1)} + G2{G0/(1,0)}

= G6{G5-(5,1)}

= G7{G6+(4,0)} + G8{G6/(4,0)}

= G9{G7-(4,2)}

Table 27: Certificates belonging to Schema 15.
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