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Abstract

We show that the eccentricities of all vertices of a δ-hyperbolic graph
G = (V,E) can be computed in linear time with an additive one-sided
error of at most cδ, i.e., after a linear time preprocessing, for every ver-
tex v of G one can compute in O(1) time an estimate ê(v) of its eccen-
tricity eccG(v) := max{dG(u, v) : u ∈ V } such that eccG(v) ≤ ê(v) ≤
eccG(v) + cδ for a small constant c. We prove that every δ-hyperbolic
graph G has a shortest path tree T , constructible in linear time, such
that for every vertex v of G, eccG(v) ≤ eccT (v) ≤ eccG(v) + cδ, where
eccT (v) := max{dT (u, v) : u ∈ V }. These results are based on an in-
teresting monotonicity property of the eccentricity function of hyperbolic
graphs: the closer a vertex is to the center of G, the smaller its eccen-
tricity is. We also show that the distance matrix of G with an additive
one-sided error of at most c′δ can be computed in O(|V |2 log2 |V |) time,
where c′ < c is a small constant. Recent empirical studies show that many
real-world graphs (including Internet application networks, web networks,
collaboration networks, social networks, biological networks, and others)
have small hyperbolicity. So, we analyze the performance of our algo-
rithms for approximating eccentricities and distance matrix on a number
of real-world networks. Our experimental results show that the obtained
estimates are even better than the theoretical bounds.

1 Introduction
All graphs G = (V,E) occurring in this paper are finite, undirected, connected,
without loops or multiple edges. We use n and |V | interchangeably to denote
the number of vertices and m and |E| to denote the number of edges in G. The
length of a path from a vertex v to a vertex u is the number of edges in the path.
The distance dG(u, v) between vertices u and v is the length of a shortest path
connecting u and v in G. The eccentricity of a vertex v, denoted by eccG(v), is
the largest distance from v to any other vertex, i.e., eccG(v) = maxu∈V dG(v, u).
The radius rad(G) of a graph G is the minimum eccentricity of a vertex in G,
i.e., rad(G) = minv∈V eccG(v). The diameter diam(G) of a graph G is the
maximum eccentricity of a vertex in G, i.e., diam(G) = maxv∈V eccG(v). The
center C(G) = {c ∈ V : eccG(c) = rad(G)} of a graph G is the set of vertices
with minimum eccentricity.

The diameter diam(G) and the radius rad(G) of a graph G = (V,E) are two
fundamental metric parameters that have many important practical applications
in real world networks. The problem of finding the center C(G) of a graph G
is often studied as a facility location problem for networks where one needs to
select a single vertex to place a facility so that the maximum distance from any
demand vertex in the network is minimized. In the analysis of social networks
(e.g., citation networks or recommendation networks), biological systems (e.g.,
protein interaction networks), computer networks (e.g., the Internet or peer-
to-peer networks), transportation networks (e.g., public transportation or road
networks), etc., the eccentricity ecc(v) of a vertex v is used to measure the
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importance of v in the network: the (eccentricity) centrality index of v [68] is
defined as 1

ecc(v) .
Being able to compute efficiently the diameter, center, radius, and vertex

centralities of a given graph has become an increasingly important problem in
the analysis of large networks. The algorithmic complexity of the diameter and
radius problems is very well-studied. For some special classes of graphs there
are efficient algorithms [9, 18, 25, 29, 33, 38, 43, 53, 56, 62, 77]. However, for
general graphs, the only known algorithms computing the diameter and the
radius exactly compute the distance between every pair of vertices in the graph,
thus solving the all-pairs shortest paths problem (APSP) and hence computing
all eccentricities. In view of recent negative results [9, 21, 80], this seems to be
the best what one can do since even for graphs with m = O(n) (where m is the
number of edges and n is the number of vertices) the existence of a subquadratic
time (that is, O(n2−ε) time for some ε > 0) algorithm for the diameter or the
radius problem will refute the well known Strong Exponential Time Hypothesis
(SETH). Furthermore, recent work [8] shows that if the radius of a possibly
dense graph (m = O(n2)) can be computed in subcubic time (O(n3−ε) for some
ε > 0), then APSP also admits a subcubic algorithm. Such an algorithm for
APSP has long eluded researchers, and it is often conjectured that it does not
exist (see, e.g., [81, 92]).

Motivated by these negative results, researches started devoting more at-
tention to development of fast approximation algorithms. In the analysis of
large-scale networks, for fast estimations of diameter, center, radius, and cen-
trality indices, linear or almost linear time algorithms are desirable. One hopes
also for the all-pairs shortest paths problem to have o(nm) time small-constant–
factor approximation algorithms. In general graphs, both diameter and radius
can be 2-approximated by a simple linear time algorithm which picks any node
and reports its eccentricity. A 3/2-approximation algorithm for the diameter
and the radius which runs in Õ(mn2/3)1 time was recently obtained in [32] (see
also [12] for an earlier Õ(n2 +m

√
n) time algorithm and [80] for a randomized

Õ(m
√
n) time algorithm). For the sparse graphs, this is an o(n2) time approxi-

mation algorithm. Furthermore, under plausible assumptions, no O(n2−ε) time
algorithm can exist that (3/2 − ε′)-approximates (for ε, ε′ > 0) the diameter
[80] and the radius [9] in sparse graphs. Similar results are known also for all
eccentricities: a 5/3-approximation to the eccentricities of all vertices can be
computed in Õ(m3/2) time [32] and, under plausible assumptions, no O(n2−ε)
time algorithm can exist that (5/3− ε′)-approximates (for ε, ε′ > 0) the eccen-
tricities of all vertices in sparse graphs [9]. Better approximation algorithms
are known for some special classes of graphs [26, 34, 35, 43, 44, 50, 52, 54, 89].
A number of heuristics for approximating diameters, radii and eccentricities in
real-world graphs were proposed and investigated in [10, 21, 22, 23, 68, 30, 48].

Approximability of APSP is also extensively investigated. An additive 2-
approximation for APSP in unweighted undirected graphs (the graphs we con-
sider in this paper) was presented in [46]. It runs in Õ(min{n3/2m1/2, n7/3})

1Õ hides a polylog factor.
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time and hence improves the runtime of an earlier algorithm from [12]. In [19],
an Õ(n2) time algorithm was designed which computes an approximation of
all distances with a multiplicative error of 2 and an additive error of 1. Fur-
thermore, [19] gives an O(n2.24+o(1)ε−3 log(n/ε)) time algorithm that computes
an approximation of all distances with a multiplicative error of (1 + ε) and an
additive error of 2. The latter improves an earlier algorithm from [58]. Better
algorithms are known for some special classes of graphs (see [25, 35, 51, 86] and
papers cited therein).

The need for fast approximation algorithms for estimating diameters, radii,
centrality indices, or all pairs shortest paths in large-scale complex networks
dictates to look for geometric and topological properties of those networks and
utilize them algorithmically. The classical relationships between the diameter,
radius, and center of trees and folklore linear time algorithms for their compu-
tation is one of the departing points of this research. A result from 1869 by
C. Jordan [66] asserts that the radius of a tree T is roughly equal to half of
its diameter and the center is either the middle vertex or the middle edge of
any diametral path. The diameter and a diametral pair of T can be computed
(in linear time) by a simple but elegant procedure: pick any vertex x, find any
vertex y furthest from x, and find once more a vertex z furthest from y; then
return {y, z} as a diametral pair. One computation of a furthest vertex is called
an FP scan; hence the diameter of a tree can be computed via two FP scans.
This two FP scans procedure can be extended to exact or approximate com-
putation of the diameter and radius in many classes of tree-like graphs. For
example, this approach was used to compute the radius and a central vertex of
a chordal graph in linear time [33]. In this case, the center of G is still close to
the middle of all (y, z)-shortest paths and dG(y, z) is not the diameter but is still
its good approximation: dG(y, z) ≥ diam(G)− 2. Even better, the diameter of
any chordal graph can be approximated in linear time with an additive error 1
[54]. But it turns out that the exact computation of diameters of chordal graphs
is as difficult as the general diameter problem: it is even difficult to decide if
the diameter of a split graph is 2 or 3.

The experience with chordal graphs shows that one have to abandon
the hope of having fast exact algorithms, even for very simple (from metric
point of view) graph-classes, and to search for fast algorithms approximating
diam(G), rad(G), C(G), eccG(v) with a small additive constant depending only
of the coarse geometry of the graph. Gromov hyperbolicity or the negative cur-
vature of a graph (and, more generally, of a metric space) is one such constant.
A graph G = (V,E) is δ-hyperbolic [14, 59, 27, 60] if for any four vertices
w, v, x, y of G, the two largest of the three distance sums dG(w, v) + dG(x, y),
dG(w, x) + dG(v, y), dG(w, y) + dG(v, x) differ by at most 2δ ≥ 0. The hyper-
bolicity δ(G) of a graph G is the smallest number δ such that G is δ-hyperbolic.
The hyperbolicity can be viewed as a local measure of how close a graph is
metrically to a tree: the smaller the hyperbolicity is, the closer its metric is to
a tree-metric (trees are 0-hyperbolic and chordal graphs are 1-hyperbolic).

Recent empirical studies showed that many real-world graphs (including In-
ternet application networks, web networks, collaboration networks, social net-
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works, biological networks, and others) are tree-like from a metric point of view
[10, 11, 20] or have small hyperbolicity [67, 76, 82]. It has been suggested in [76],
and recently formally proved in [39], that the property, observed in real-world
networks, in which traffic between nodes tends to go through a relatively small
core of the network, as if the shortest paths between them are curved inwards,
is due to the hyperbolicity of the network. Bending property of the eccentricity
function in hyperbolic graphs were used in [16, 15] to identify core-periphery
structures in biological networks. Small hyperbolicity in real-world graphs pro-
vides also many algorithmic advantages. Efficient approximate solutions are
attainable for a number of optimization problems [35, 36, 39, 40, 45, 57, 87].

In [35] we initiated the investigation of diameter, center, and radius problems
for δ-hyperbolic graphs and we showed that the existing approach for trees can
be extended to this general framework. Namely, it is shown in [35] that if G is
a δ-hyperbolic graph and {y, z} is the pair returned after two FP scans, then
dG(y, z) ≥ diam(G)− 2δ, diam(G) ≥ 2rad(G)− 4δ − 1, diam(C(G)) ≤ 4δ + 1,
and C(G) is contained in a small ball centered at a middle vertex of any shortest
(y, z)-path. Consequently, we obtained linear time algorithms for the diameter
and radius problems with additive errors linearly depending on the input graph’s
hyperbolicity.

In this paper, we advance this line of research and provide a linear time
algorithm for approximate computation of the eccentricities (and thus of cen-
trality indices) of all vertices of a δ-hyperbolic graph G, i.e., we compute the
approximate values of all eccentricities within the same time bounds as one com-
putes the approximation of the largest or the smallest eccentricity (diam(G) or
rad(G)). Namely, the algorithm outputs for every vertex v of G an estimate ê(v)
of eccG(v) such that eccG(v) ≤ ê(v) ≤ eccG(v) + cδ, where c > 0 is a small con-
stant. In fact, we demonstrate that G has a shortest path tree, constructible in
linear time, such that for every vertex v of G, eccG(v) ≤ eccT (v) ≤ eccG(v) + cδ
(a so-called eccentricity cδ-approximating spanning tree). This is our first main
result of this paper and the main ingredient in proving it is the following inter-
esting dependency between the eccentricities of vertices of G and their distances
to the center C(G): up to an additive error linearly depending on δ, eccG(v) is
equal to dG(v, C(G)) plus rad(G). To establish this new result, we have to re-
visit the results of [35] about diameters, radii, and centers, by simplifying their
proofs and extending them to all eccentricities.

Eccentricity k-approximating spanning trees were introduced by Prisner
in [79]. A spanning tree T of a graph G is called an eccentricity k-approximating
spanning tree if for every vertex v of G eccT (v) ≤ eccG(v) + k holds [79]. Pris-
ner observed that any graph admitting an additive tree k-spanner (that is, a
spanning tree T such that dT (v, u) ≤ dG(v, u) + k for every pair u, v) admits
also an eccentricity k-approximating spanning tree. Therefore, eccentricity k-
approximating spanning trees exist in interval graphs for k = 2 [69, 73, 78], in
asteroidal-triple–free graph [69], strongly chordal graphs [24] and dually chordal
graphs [24] for k = 3. On the other hand, although for every k there is a chordal
graph without an additive tree k-spanner [69, 78], yet as Prisner demonstrated
in [79], every chordal graph has an eccentricity 2-approximating spanning tree.
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Later this result was extended in [52] to a larger family of graphs which includes
all chordal graphs and all plane triangulations with inner vertices of degree at
least 7. Both those classes belong to the class of 1-hyperbolic graphs. Thus, our
result extends the result of [79] to all δ-hyperbolic graphs.

As our second main result, we show that in every δ-hyperbolic graph G
all distances with an additive one-sided error of at most c′δ can be found in
O(|V |2 log2 |V |) time, where c′ < c is a small constant. With a recent result
in [31], this demonstrates an equivalence between approximating the hyperbol-
icity and approximating the distances in graphs. Note that every δ-hyperbolic
graph G admits a distance approximating tree T [35, 36], that is, a tree T (which
is not necessarily a spanning tree) such that dT (v, u) ≤ dG(v, u) + O(δ logn)
for every pair u, v. Such a tree can be used to compute all distances in G with
an additive one-sided error of at most O(δ logn) in O(|V |2) time. Our new
result removes the dependency of the additive error from logn and has a much
smaller constant in front of δ. Note also that the tree T may use edges not
present in G (not a spanning tree of G) and thus cannot serve as an eccentric-
ity O(δ logn)-approximating spanning tree. Furthermore, as chordal graphs are
1-hyperbolic, for every k there is a 1-hyperbolic graph without an additive tree
k-spanner [69, 78].

At the conclusion of this paper, we analyze the performance of our algo-
rithms for approximating eccentricities and distances on a number of real-world
networks. Our experimental results show that the estimates on eccentricities
and distances obtained are even better than the theoretical bounds proved.

2 Preliminaries

2.1 Additional notions and notations

In what follows, we will need few more notions and notations. Let G = (V,E)
be a graph. By [x, y] we denote a shortest path connecting vertices x and y in
G; we call [x, y] a geodesic between x and y. A ball B(s, r) of G centered at
vertex s ∈ V and with radius r is the set of all vertices with distance no more
than r from s (i.e., B(s, r) := {v ∈ V : dG(v, s) ≤ r}). The kth-power of a
graph G = (V,E) is the graph Gk = (V,E′) such that xy ∈ E′ if and only if
0 < dG(x, y) ≤ k. Denote by F (x) := {y ∈ V : dG(x, y) = eccG(x)} the set of
all vertices of G that are most distant from x. Vertices x and y of G are called
mutually distant if x ∈ F (y) and y ∈ F (x), i.e., eccG(x) = eccG(y) = dG(x, y).

2.2 Gromov hyperbolicity and thin geodesic triangles

Let (X, d) be a metric space. The Gromov product of y, z ∈ X with respect to
w is defined to be

(y|z)w = 1
2(d(y, w) + d(z, w)− d(y, z)).



JGAA, 23(2) 393–433 (2019) 399

A metric space (X, d) is said to be δ-hyperbolic [60] for δ ≥ 0 if

(x|y)w ≥ min{(x|z)w, (y|z)w} − δ

for all w, x, y, z ∈ X. Equivalently, (X, d) is δ-hyperbolic if for any four points
u, v, x, y of X, the two largest of the three distance sums d(u, v) + d(x, y),
d(u, x) + d(v, y), d(u, y) + d(v, x) differ by at most 2δ ≥ 0. A connected graph
G = (V,E) is δ-hyperbolic (or of hyperbolicity δ) if the metric space (V, dG) is
δ-hyperbolic, where dG is the standard shortest path metric defined on G.

δ-Hyperbolic graphs generalize k-chordal graphs and graphs of bounded tree-
length: each k-chordal graph has the tree-length at most bk2 c [47] and each tree-
length λ graph has hyperbolicity at most λ [35]. Recall that a graph is k-chordal
if its induced cycles are of length at most k, and it is of tree-length λ if it has a
Robertson-Seymour tree-decomposition into bags of diameter at most λ [47].

For geodesic metric spaces and graphs there exist several equivalent def-
initions of δ-hyperbolicity involving different but comparable values of δ
[14, 27, 59, 60]. In this paper, we will use the definition via thin geodesic trian-
gles. Let (X, d) be a metric space. A geodesic joining two points x and y from X
is a (continuous) map f from the segment [a, b] of R1 of length |a− b| = d(x, y)
to X such that f(a) = x, f(b) = y, and d(f(s), f(t)) = |s− t| for all s, t ∈ [a, b].
A metric space (X, d) is geodesic if every pair of points in X can be joined by
a geodesic. Every unweighted graph G = (V,E) equipped with its standard
distance dG can be transformed into a geodesic (network-like) space (X, d) by
replacing every edge e = uv by a segment [u, v] of length 1; the segments may
intersect only at common ends. Then (V, dG) is isometrically embedded in a
natural way in (X, d). The restrictions of geodesics of X to the vertices V of G
are the shortest paths of G.

Let (X, d) be a geodesic metric space. A geodesic triangle ∆(x, y, z) with
x, y, z ∈ X is the union [x, y]∪[x, z]∪[y, z] of three geodesic segments connecting
these vertices. Let mx be the point of the geodesic segment [y, z] located at
distance αy := (x|z)y = (d(y, x) + d(y, z) − d(x, z))/2 from y. Then mx is
located at distance αz := (y|x)z = (d(z, y) + d(z, x)− d(y, x))/2 from z because
αy + αz = d(y, z). Analogously, define the points my ∈ [x, z] and mz ∈ [x, y]
both located at distance αx := (y|z)x = (d(x, y)+d(x, z)−d(y, z))/2 from x; see
Fig. 1 for an illustration. There exists a unique isometry ϕ which maps ∆(x, y, z)
to a tripod T (x, y, z) consisting of three solid segments [x,m], [y,m], and [z,m]
of lengths αx, αy, and αz, respectively. This isometry maps the vertices x, y, z of
∆(x, y, z) to the respective leaves of T (x, y, z) and the points mx,my, and mz to
the center m of this tripod. Any other point of T (x, y, z) is the image of exactly
two points of ∆(x, y, z). A geodesic triangle ∆(x, y, z) is called δ-thin if for all
points u, v ∈ ∆(x, y, z), ϕ(u) = ϕ(v) implies d(u, v) ≤ δ. A graph G = (V,E)
whose all geodesic triangles ∆(u, v, w), u, v, w ∈ V , are δ-thin is called a graph
with δ-thin triangles, and δ is called the thinness parameter of G.

The following result shows that hyperbolicity of a geodesic space or a graph
is equivalent to having thin geodesic triangles.
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Figure 1: A geodesic triangle ∆(x, y, z), the points mx,my,mz, and the tripod
T (x, y, z)

Proposition 1 ([14, 27, 59, 60]) Geodesic triangles of geodesic δ-hyperbolic
spaces or graphs are 4δ-thin. Conversely, geodesic spaces or graphs with δ-thin
triangles are δ-hyperbolic.

3 Fast approximation of eccentricities
In this section, we give linear and almost linear time algorithms for sharp es-
timation of the diameters, the radii, the centers and the eccentricities of all
vertices in graphs with δ-thin triangles. Before presenting those algorithms,
we establish some conditional lower bounds on complexities of computing the
diameters and the radii in those graphs.

3.1 Conditional lower bounds on complexities
Recent work has revealed convincing evidence that solving the diameter problem
in subquadratic time might not be possible, even in very special classes of graphs.
Roditty and Vassilevska W. [80] showed that an algorithm that can distinguish
between diameter 2 and 3 in a sparse graph in subquadratic time refutes the
following widely believed conjecture.

The Orthogonal Vectors Conjecture: There is no ε > 0 such that for all c ≥ 1,
there is an algorithm that given two lists of n binary vectors A,B ⊆ {0, 1}d
where d = c logn can determine if there is an orthogonal pair a ∈ A, b ∈ B, in
O(n2−e) time.

Williams [90] showed that the Orthogonal Vectors (OV) Conjecture is im-
plied by the well-known Strong Exponential Time Hypothesis (SETH) of Im-
pagliazzo, Paturi, and Zane [64, 63]. Nowadays many papers base the hardness
of problems on SETH and the OV conjecture (see, e.g., [9, 21, 91] and papers
cited therein).

Since all geodesic triangles of a graph constructed in the reduction in [80]
are 2-thin, we can rephrase the result from [80] as follows.

Statement 1 If for some ε > 0, there is an algorithm that can determine if a
given graph with 2-thin triangles, n vertices and m = O(n) edges has diameter
2 or 3 in O(n2−ε) time, then the Orthogonal Vector Conjecture is false.
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To prove a similar lower bound result for the radius problem, recently Ab-
boud et al. [9] suggested to use the following natural and plausible variant of
the OV conjecture.

The Hitting Set Conjecture: There is no ε > 0 such that for all c ≥ 1, there
is an algorithm that given two lists A,B of n subsets of a universe U of size
c logn, can decide in O(n2−e) time if there is a set in the first list that intersects
every set in the second list, i.e. a hitting set.

Abboud et al. [9] showed that an algorithm that can distinguish between
radius 2 and 3 in a sparse graph in subquadratic time refutes the Hitting Set
Conjecture. Since all geodesic triangles of a graph constructed in the reduction
in [9] are 2-thin, rephrasing that result from [9], we have.

Statement 2 If for some ε > 0, there is an algorithm that can determine if a
given graph with 2-thin triangles, n vertices, and m = O(n) edges has radius 2
or 3 in O(n2−ε) time, then the Hitting Set Conjecture is false.

3.2 Fast additive approximations
In this subsection, we show that in a graph G with δ-thin triangles the eccentric-
ities of all vertices can be computed in total linear time with an additive error
depending on δ. We establish that the eccentricity of a vertex is determined
(up-to a small error) by how far the vertex is from the center C(G) of G. Finally,
we show how to construct a spanning tree T of G in which the eccentricity of
any vertex is its eccentricity in G up to an additive error depending only on
δ. For these purposes, we revisit and extend several results from our previous
paper [35] concerning the linear time approximation of diameter, radius, and
centers of δ-hyperbolic graphs. For these particular cases, we provide simplified
proofs, leading to better additive errors due to the use of thinness of triangles
instead of the four point condition and to the computation in O(δ|E|) time of
a pair of mutually distant vertices.

Define the eccentricity layers of a graph G as follows: for k =
0, . . . , diam(G)− rad(G) set

Ck(G) := {v ∈ V : eccG(v) = rad(G) + k}.

With this notation, the center of a graph is C(G) = C0(G). In what follows, it
will be convenient to define also the eccentricity of the middle point m of any
edge xy of G; set eccG(m) = min{eccG(x), eccG(y)}+ 1/2.

We start with a proposition showing that, in a graph G with δ-thin triangles,
a middle vertex c of any geodesic between two mutually distant vertices has the
eccentricity close to rad(G) (eccG(c) ≤ rad(G) + δ) and is not too far from the
center C(G) of G (all central vertices of G are within distance at most 2δ + 1
from c). See Fig. 2 for an illustration. Furthermore, the distance between any
mutually distant vertices u and v (and, hence, the diameter of G) is at least
2rad(G)− 2δ − 1.
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Figure 2: Illustration to Proposition 2.

Proposition 2 Let G be a graph with δ-thin triangles, u, v be a pair of mutually
distant vertices of G.

(a) If c∗ is the middle point of any (u, v)-geodesic, then eccG(c∗) ≤ dG(u,v)
2 +

δ ≤ rad(G) + δ.

(b) If c is a middle vertex of any (u, v)-geodesic, then eccG(c) ≤ ddG(u,v)
2 e+δ ≤

rad(G) + δ.

(c) dG(u, v) ≥ 2rad(G)− 2δ− 1. In particular, diam(G) ≥ 2rad(G)− 2δ− 1.

(d) If c is a middle vertex of any (u, v)-geodesic and x ∈ Ck(G), then k− δ ≤
dG(x, c) ≤ k + 2δ + 1. In particular, C(G) ⊆ B(c, 2δ + 1).

Proof: Let x be an arbitrary vertex of G and ∆(u, v, x) := [u, v]∪ [v, x]∪ [x, u]
be a geodesic triangle, where [v, x], [x, u] are arbitrary geodesics connect-
ing x with v and u. Let mx be a point on [u, v] which is at distance
(x|u)v = 1

2 (dG(x, v) + dG(v, u) − dG(x, u)) from v and hence at distance
(x|v)u = 1

2 (dG(x, u) + dG(v, u) − dG(x, v)) from u (see Fig. 3). Since u and
v are mutually distant, we can assume, without loss of generality, that c∗ is
located on [u, v] between v and mx, i.e., dG(v, c∗) ≤ dG(v,mx) = (x|u)v, and
hence (x|v)u ≤ (x|u)v. Since dG(v, x) ≤ dG(v, u), we also get (u|v)x ≤ (x|v)u.

Figure 3: Illustration to the proof of Proposition 2(a).
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(a) By the triangle inequality and since dG(u, v) ≤ diam(G) ≤ 2rad(G), we
get (see Fig. 3)

dG(x, c∗) ≤ (u|v)x + δ + dG(u, c∗)− (x|v)u

≤ dG(u, c∗) + δ = dG(u, v)
2 + δ ≤ rad(G) + δ.

(b) Since c∗ = c when dG(u, v) is even and dG(c∗, c) = 1
2 when dG(u, v)

is odd, we have eccG(c) ≤ eccG(c∗) + 1
2 . Additionally to the proof of (a), one

needs only to consider the case when dG(u, v) is odd. We know that the middle
point c∗ sees all vertices of G within distance at most dG(u,v)

2 + δ. Hence, both
ends of the edge of (u, v)-geodesic, containing the point c∗ in the middle, have
eccentricities at most

dG(u, v)
2 + 1

2 + δ = ddG(u, v)
2 e+ δ ≤ d2rad(G)− 1

2 e+ δ = rad(G) + δ.

(c) Since a middle vertex c of any (u, v)-geodesic sees all vertices of G within
distance at most ddG(u,v)

2 e+ δ, if dG(u, v) ≤ 2rad(G)− 2δ − 2, then

eccG(c) ≤ ddG(u, v)
2 e+ δ ≤ d2rad(G)− 2δ − 2

2 e+ δ < rad(G),

which is impossible.
(d) In the proof of (a), instead of an arbitrary vertex x, consider any vertex

x from Ck(G). By the triangle inequality and since dG(u, v) ≥ 2rad(G)−2δ−1
and both dG(u, x), dG(x, v) are at most rad(G) + k, we get

dG(x, c∗) ≤ (u|v)x + δ + (x|u)v − dG(v, c∗) = dG(v, x)− dG(v, c∗) + δ

≤ rad(G) + k − dG(u, v)
2 + δ ≤ k + 2δ + 1

2 .

Consequently, dG(x, c) ≤ dG(x, c∗) + 1
2 ≤ k + 2δ + 1. On the other hand, since

eccG(x) ≤ eccG(c) + dG(x, c) and eccG(c) ≤ rad(G) + δ, by statement (a), we
get

dG(x, c) ≥ eccG(x)− eccG(c) = k + rad(G)− eccG(c)
≥ (k + rad(G))− (rad(G) + δ) = k − δ.

2

As an easy consequence of Proposition 2(d), we get that the eccentricity
eccG(x) of any vertex x is equal, up to an additive one-sided error of at most
4δ + 2, to dG(x,C(G)) plus rad(G).

Corollary 1 For every vertex x of a graph G with δ-thin triangles,

dG(x,C(G)) + rad(G)− 4δ − 2 ≤ eccG(x) ≤ dG(x,C(G)) + rad(G).
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Proof: Consider an arbitrary vertex x in G and assume that eccG(x) =
rad(G) + k. Let cx be a vertex from C(G) closest to x. By Proposition 2(d),
dG(c, cx) ≤ 2δ+1 and dG(x, c) ≤ k+2δ+1 = eccG(x)−rad(G)+2δ+1. Hence,

dG(x,C(G)) = dG(x, cx) ≤ dG(x, c) + dG(c, cx) ≤ dG(x, c) + 2δ + 1

and
eccG(x) ≥ dG(x, c) + rad(G)− 2δ − 1.

Combining both inequalities, we get

eccG(x) ≥ dG(x,C(G)) + rad(G)− 4δ − 2.

Note also that, by the triangle inequality, eccG(x) ≤ dG(x, cx) + eccG(cx) =
dG(x,C(G)) + rad(G) (that is, the right-hand inequality holds for all graphs).

2

It is interesting to note that the equality eccG(x) = dG(x,C(G)) + rad(G)
holds for every vertex of a graph G if and only if the eccentricity function eccG(·)
on G is unimodal (that is, every local minimum is a global minimum)[49]. In
particular, for every tree T and every its vertex x, eccT (x) = dT (x,C(T )) +
rad(T ) holds. A slightly weaker condition holds for all chordal graphs [52]: for
every vertex x of a chordal graph G, dG(x,C(G)) + rad(G) − 1 ≤ eccG(x) ≤
dG(x,C(G)) + rad(G).

As we show later, Proposition 2 can be used to compute in O(δ|E|) time
sharp approximations of radius, diameter and all eccentricities in a graph G with
δ-thin triangles. To get pure linear-time sharp approximations, we will need the
following proposition. It states that the eccentricity of a vertex v which is most
distant from an arbitrary vertex u is at least diam(G) − 2δ. Furthermore, if t
is a vertex most distant from v, then a vertex c of any (v, t)-geodesic that is at
distance ddG(v,t)

2 e from t has the eccentricity at most rad(G) + 3δ and contains
the center C(G) of G in B(c, 3δ + 1) (i.e., C(G) ⊆ B(c, 3δ + 1)).

Proposition 3 Let G be a graph with δ-thin triangles and u, v be a pair of
vertices of G such that v ∈ F (u).

(a) If w is a vertex of a (u, v)-geodesic at distance rad(G) from v, then
eccG(w) ≤ rad(G) + δ.

(b) For every pair of vertices x, y ∈ V , max{dG(v, x), dG(v, y)} ≥ dG(x, y) −
2δ.

(c) eccG(v) ≥ diam(G)− 2δ ≥ 2rad(G)− 4δ − 1.

(d) If t ∈ F (v), c is a vertex of a (v, t)-geodesic at distance ddG(v,t)
2 e from t and

x ∈ Ck(G), then eccG(c) ≤ rad(G)+3δ and k−3δ ≤ dG(x, c) ≤ k+3δ+1.
In particular, C(G) ⊆ B(c, 3δ + 1).
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Proof: (a) Let x be a vertex of G with dG(w, x) = eccG(w). Let ∆(u, v, x) :=
[u, v] ∪ [v, x] ∪ [x, u] be a geodesic triangle, where [v, x], [x, u] are arbitrary
geodesics connecting x with v and u. Let mx be a point on [u, v] which is at
distance (x|u)v = 1

2 (dG(x, v)+dG(v, u)−dG(x, u)) from v and hence at distance
(x|v)u = 1

2 (dG(x, u) + dG(v, u)− dG(x, v)) from u. We distinguish between two
cases: w is between u and mx or w is between v and mx in [u, v].

Figure 4: Illustration to the proof of Proposition 3(a).
In the first case, by the triangle inequality and dG(u, x) ≤ dG(u, v) (and

hence, (u|x)v ≥ (u|v)x), we get (see Fig. 4)

dG(w, x) ≤ rad(G)− (u|x)v + δ + (u|v)x ≤ rad(G) + δ.

In the second case, by the triangle inequality and since dG(v, x) ≤
diam(G) ≤ 2rad(G), we get

dG(w, x) ≤ (u|x)v − rad(G) + δ + (u|v)x
≤ dG(x, v)− rad(G) + δ

≤ 2rad(G)− rad(G) + δ = rad(G) + δ.

(b) Consider an arbitrary (u, v)-geodesic [u, v]. Let ∆(u, v, x) := [u, v] ∪
[v, x] ∪ [x, u] be a geodesic triangle, where [v, x], [x, u] are arbitrary geodesics
connecting x with v and u. Let ∆(u, v, y) := [u, v] ∪ [v, y] ∪ [y, u] be a geodesic
triangle, where [v, y], [y, u] are arbitrary geodesics connecting y with v and u.

Let mx be a point on [u, v] which is at distance (x|u)v =
1
2 (dG(x, v) + dG(v, u) − dG(x, u)) from v and hence at distance
(x|v)u = 1

2 (dG(x, u) + dG(v, u)− dG(x, v)) from u. Let my be a point on
[u, v] which is at distance (y|u)v = 1

2 (dG(y, v) + dG(v, u)− dG(y, u)) from v and
hence at distance (y|v)u = 1

2 (dG(y, u) + dG(v, u)− dG(y, v)) from u. Without
loss of generality, assume that mx is on [u, v] between v and my (see Fig. 5).

Since dG(u, v) ≥ dG(u, x) (as v ∈ F (u)), we have (u|v)x ≤ (u|x)v. By the
triangle inequality, we get

dG(x, y) ≤ (u|v)x + δ + ((y|u)v − (u|x)v) + δ + (u|v)y
≤ (u|x)v − (u|x)v + 2δ + (y|u)v + (u|v)y
= dG(v, y) + 2δ.



406 Chepoi et al. Eccentricities and distances in hyperbolic graphs

Figure 5: Illustration to the proof of Proposition 3(b).

Consequently, max{dG(v, x), dG(v, y)} ≥ dG(v, y) ≥ dG(x, y)− 2δ.
(c) Now, if x, y is a diametral pair, i.e., dG(x, y) = diam(G), then, by (b)

and Proposition 2(c),

eccG(v) ≥ max{dG(v, x), dG(v, y)}
≥ dG(x, y)− 2δ = diam(G)− 2δ
≥ 2rad(G)− 4δ − 1.

(d) Consider any (v, t)-geodesic [v, t] and let c∗ be the middle point of it,
w be a vertex of [v, t] at distance rad(G) from t, and c be a vertex of [v, t]
at distance ddG(v,t)

2 e from t. We know by (a) that eccG(w) ≤ rad(G) +
δ. Furthermore, since 2rad(G) ≥ dG(v, t) ≥ 2rad(G) − 4δ − 1 (by (c)),
rad(G) ≥ dG(t, c) = ddG(v,t)

2 e ≥ rad(G)− 2δ. Hence,

dG(w, c) = dG(w, t)− dG(c, t) ≤ rad(G)− rad(G) + 2δ = 2δ,

implying
eccG(c) ≤ dG(w, c) + eccG(w) ≤ rad(G) + 3δ.

Let now x be an arbitrary vertex from Ck(G), i.e., eccG(x) ≤ rad(G)+k, for
some integer k ≥ 0. Consider a geodesic triangle ∆(t, v, x) := [t, v]∪[v, x]∪[x, t],
where [v, x], [x, t] are arbitrary geodesics connecting x with v and t. Let mx be
a point on [t, v] which is at distance (x|t)v = 1

2 (dG(x, v) + dG(v, t) − dG(x, t))
from v and hence at distance (x|v)t = 1

2 (dG(x, t) + dG(v, t) − dG(x, v)) from t.
Since, in what follows, we will use only the fact that dG(v, t) ≥ 2rad(G)−4δ−1,
we can assume, without loss of generality, that c∗ is located on [t, v] between v
and mx, i.e., dG(v, c∗) ≤ dG(v,mx) = (x|t)v.

By the triangle inequality and since dG(v, t) ≥ 2rad(G) − 4δ − 1 and both
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dG(t, x) and dG(x, v) are at most rad(G) + k, we get

dG(x, c∗) ≤ (t|v)x + δ + (x|t)v − dG(v, c∗) = dG(v, x)− dG(v, c∗) + δ

≤ rad(G) + k − dG(v, t)
2 + δ ≤ k + 3δ + 1

2 .

Hence, dG(x, c) ≤ dG(x, c∗)+ 1
2 ≤ k+3δ+1. On the other hand, since eccG(x) ≤

eccG(c) + dG(x, c) and eccG(c) ≤ rad(G) + 3δ, we get

dG(x, c) ≥ eccG(x)− eccG(c) = k + rad(G)− eccG(c)
≥ (k + rad(G))− (rad(G) + 3δ) = k − 3δ.

2

Recall that Ck(G) := {v ∈ V : eccG(v) = rad(G) + k}. Next we show that
all vertices of Ck(G) (0 ≤ k ≤ diam(G) − rad(G)) are pairwise at distance at
most 2k + 2δ + 1 in G. Hence, the diameter of the center C(G) of G is at most
2δ + 1.

Proposition 4 For every graph G with δ-thin triangles, diam(Ck(G)) ≤ 2k +
2δ + 1. In particular, diam(C(G)) ≤ 2δ + 1.

Proof: Let x, y be two vertices of Ck(G) such that dG(x, y) = diam(Ck(G)).
Pick any (x, y)-geodesic and consider the middle point m of it. Let z be a vertex
of G such that dG(m, z) = eccG(m). Consider a geodesic triangle ∆(x, y, z) :=
[x, y]∪ [y, z]∪ [z, x], where [z, x], [y, z] are arbitrary geodesics connecting z with
x and y. Let mz be a point on [x, y] which is at distance (x|z)y = 1

2 (dG(x, y) +
dG(z, y)−dG(x, z)) from y and hence at distance (y|z)x = 1

2 (dG(x, y)+dG(z, x)−
dG(y, z)) from x. Without loss of generality, we can assume that m is located
on [x, y] between y and mz.

Since eccG(y) ≤ rad(G) + k, we have

dG(m, z) = eccG(m) ≥ rad(G)− 1
2 ≥ eccG(y)− k − 1

2 ≥ dG(y, z)− k − 1
2 .

On the other hand, by the triangle inequality, we get

dG(m, z) ≤ (x|z)y − dG(y,m) + δ + (x|y)z = dG(y, z)− dG(y,m) + δ

≤ dG(y, z)− dG(x, y)
2 + δ.

Hence, dG(x, y) ≤ 2k + 2δ + 1. 2

3.2.1 Diameter and radius.

For an arbitrary connected graph G = (V,E) and a given vertex u ∈ V , a
most distant from u vertex v ∈ F (u) can be found in linear (O(|E|)) time by
a breadth-first-search BFS(u) started at u. A pair of mutually distant vertices
of a connected graph G = (V,E) with δ-thin triangles can be computed in



408 Chepoi et al. Eccentricities and distances in hyperbolic graphs

O(δ|E|) total time as follows. By Proposition 3(c), if v is a most distant vertex
from an arbitrary vertex u and t is a most distant vertex from v, then dG(v, t) ≥
diam(G)−2δ. Hence, using at most O(δ) breadth-first-searches, one can generate
a sequence of vertices v := v1, t := v2, v3, . . . vk with k ≤ 2δ + 2 such that each
vi is most distant from vi−1 (with, v0 = u) and vk, vk−1 are mutually distant
vertices (the initial value dG(v, t) ≥ diam(G)− 2δ can be improved at most 2δ
times).

Thus, by Proposition 2 and Proposition 3, we get the following additive
approximations for the radius and the diameter of a graph with δ-thin triangles.

Corollary 2 Let G = (V,E) be a graph with δ-thin triangles.

1. There is a linear (O(|E|)) time algorithm which finds in G a vertex c with
eccentricity at most rad(G) + 3δ and a vertex v with eccentricity at least
diam(G)− 2δ. Furthermore, C(G) ⊆ B(c, 3δ + 1) holds.

2. There is an almost linear (O(δ|E|)) time algorithm which finds in G a
vertex c with eccentricity at most rad(G) + δ. Furthermore, C(G) ⊆
B(c, 2δ + 1) holds.

3.2.2 All eccentricities.

In what follows, we will show that all vertex eccentricities of a graph with δ-thin
triangles can be also additively approximated in (almost) linear time. It will be
convenient, for the middle point m of an edge e of G, to define a BFS(m)-tree
of G; it is nothing else than a BFS(e)-tree of G rooted at edge e.

Proposition 5 Let G be a graph with δ-thin triangles.

(a) If v is a most distant vertex from an arbitrary vertex u, t is a most distant
vertex from v, c is a vertex of a (v, t)-geodesic at distance ddG(v,t)

2 e from t
and T is a BFS(c)-tree of G, then eccG(x) ≤ eccT (x) ≤ eccG(x) + 6δ+ 1.

(b) If c∗ is the middle point of any (u, v)-geodesic between a pair u, v of mu-
tually distant vertices of G and T is a BFS(c∗)-tree of G, then, for every
vertex x of G, eccG(x) ≤ eccT (x) ≤ eccG(x) + 2δ.

Proof: (a) Let x be an arbitrary vertex of G and assume that eccG(x) =
rad(G) + k for some integer k ≥ 0. We know from Proposition 3(d) that
eccG(c) ≤ rad(G) + 3δ and dG(c, x) ≤ k + 3δ + 1. Since T is a BFS(c)-tree,
dG(x, c) = dT (x, c) and eccG(c) = eccT (c). Consider a vertex y in G such that
dT (x, y) = eccT (x). We have

eccT (x) = dT (x, y) ≤ dT (x, c) + dT (c, y)
≤ dG(x, c) + eccT (c) = dG(x, c) + eccG(c)
≤ k + 3δ + 1 + rad(G) + 3δ = rad(G) + k + 6δ + 1
= eccG(x) + 6δ + 1.
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As T is a spanning tree of G, evidently, also eccG(x) ≤ eccT (x) holds.
(b) Consider an arbitrary vertex x of G and a geodesic triangle ∆(x, u, v) :=

[x, u]∪ [u, v]∪ [v, x], where [u, v] is a (u, v)-geodesic containing c∗ and [u, x], [v, x]
are arbitrary geodesics connecting x with u and v. Let mx be a point on [u, v]
which is at distance (x|u)v = 1

2 (dG(x, v)+dG(u, v)−dG(x, u)) from v and hence
at distance (x|v)u = 1

2 (dG(x, u) + dG(v, u)− dG(x, v)) from u. Without loss of
generality, we can assume that c∗ is located on [u, v] between v and mx. We
have (see Fig. 3),

dG(x, c∗) ≤ (u|v)x + δ + dG(mx, c
∗)

= (u|v)x + δ + dG(u, c∗)− (v|x)u

= (u|v)x + δ + dG(v, u)
2 − (v|x)u,

and
eccG(x) ≥ dG(x, v) = (u|v)x + (u|x)v.

Furthermore, by Proposition 2(a), eccG(c∗) ≤ dG(v,u)
2 + δ. Hence,

eccT (x)− eccG(x) ≤ dT (x, c∗) + eccT (c∗)− eccG(x)
= dG(x, c∗) + eccG(c∗)− eccG(x)

≤ (u|v)x + δ + dG(v, u)
2 − (v|x)u +

dG(v, u)
2 + δ − (u|v)x − (u|x)v

= 2δ + dG(v, u)− ((v|x)u + (u|x)v)
= 2δ.

2

A spanning tree T of a graph G is called an eccentricity k-approximating
spanning tree if for every vertex v of G eccT (v) ≤ eccG(v) + k holds [52, 79].
Thus, by Proposition 5, we get.

Theorem 1 Every graph G = (V,E) with δ-thin triangles admits an eccen-
tricity (2δ)-approximating spanning tree constructible in O(δ|E|) time and an
eccentricity (6δ + 1)-approximating spanning tree constructible in O(|E|) time.

Theorem 1 generalizes recent results from [52, 79] that chordal graphs and some
of their generalizations admit eccentricity 2-approximating spanning trees.

Note that the eccentricities of all vertices in any tree T = (V,U) can be
computed in O(|V |) total time. As we noticed already, it is a folklore by now
that for trees the following facts are true:

(1) The center C(T ) of any tree T consists of one vertex or two adjacent
vertices.
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(2) The center C(T ) and the radius rad(T ) of any tree T can be found in
linear time.

(3) For every vertex v ∈ V , eccT (v) = dT (v, C(T )) + rad(T ).

Hence, using BFS(C(T )) on T one can compute dT (v, C(T )) for all v ∈ V
in total O(|V |) time. Adding now rad(T ) to dT (v, C(T )), one gets eccT (v)
for all v ∈ V . Consequently, by Theorem 1, we get the following additive
approximations for the vertex eccentricities in graphs with δ-thin triangles.

Theorem 2 Let G = (V,E) be a graph with δ-thin triangles.

(1) There is an algorithm which in total linear (O(|E|)) time outputs for ev-
ery vertex v ∈ V an estimate ê(v) of its eccentricity eccG(v) such that
eccG(v) ≤ ê(v) ≤ eccG(v) + 6δ + 1.

(2) There is an algorithm which in total almost linear (O(δ|E|)) time outputs
for every vertex v ∈ V an estimate ê(v) of its eccentricity eccG(v) such
that eccG(v) ≤ ê(v) ≤ eccG(v) + 2δ.

4 Fast Additive Approximation of All Distances
Here, we will show that if the δth power Gδ of a graph G with δ-thin triangles
is known in advance, then the distances in G can be additively approximated
(with an additive one-sided error of at most δ+ 1) in O(|V |2) time. If Gδ is not
known, then the distances can be additively approximated (with an additive
one-sided error of at most 2δ + 2) in almost quadratic time.

Our method is a generalization of an unified approach used in [51] to estimate
(or compute exactly) all pairs shortest paths in such special graph families as k-
chordal graphs, chordal graphs, AT-free graphs and many others. For example:
all distances in k-chordal graphs with an additive one-sided error of at most
k − 1 can be found in O(|V |2) time; all distances in chordal graphs with an
additive one-sided error of at most 1 can be found in O(|V |2) time and the all
pairs shortest path problem on a chordal graph G can be solved in O(|V |2) time
if G2 is known. Note that in chordal graph all geodesic triangles are 2-thin.

Let G = (V,E) be a graph with δ-thin triangles. Pick an arbitrary start
vertex s ∈ V and construct a BFS(s)-tree T of G rooted at s. Denote by pT (x)
the parent and by hT (x) = dT (x, s) = dG(x, s) the height of a vertex x in T .
Since we will deal only with one tree T , we will often omit the subscript T .
Let PT (x, s) := (xq, xq−1, . . . , x1, s) and PT (y, s) := (yp, yp−1, . . . , y1, s) be the
paths of T connecting vertices x and y with the root s. By slT (x, y;λ) we
denote the largest index k such that dG(xk, yk) ≤ λ (the λ separation level).
Our method is based on the following simple fact.

Proposition 6 For every vertices x and y of a graph G with δ-thin triangles
and any BFS-tree T of G,

hT (x) + hT (y)− 2k − 1 ≤ dG(x, y) ≤ hT (x) + hT (y)− 2k + dG(xk, yk),
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where k = slT (x, y; δ).

Proof: By the triangle inequality, dG(x, y) ≤ dG(x, xk) + dG(xk, yk) +
dG(yk, y) = hT (x) + hT (y) − 2k + dG(xk, yk). Consider now an arbitrary
(x, y)-geodesic [x, y] in G. Let ∆(x, y, s) := [x, y] ∪ [x, s] ∪ [y, s] be a geodesic
triangle, where [x, s] = PT (x, s) and [y, s] = PT (y, s). Since ∆(x, y, s) is δ-
thin, slT (x, y; δ) ≥ (x|y)s − 1

2 . Hence, hT (x) − slT (x, y; δ) ≤ (s|y)x + 1
2 and

hT (y) − slT (x, y; δ) ≤ (s|x)y + 1
2 . As dG(x, y) = (s|y)x + (s|x)y, we get

dG(x, y) ≥ hT (x)− slT (x, y; δ) + hT (y)− slT (x, y; δ)− 1. 2

Note that we may regard BFS(s) as having produced a numbering from n
to 1 in decreasing order of the vertices in V where vertex s is numbered n. As a
vertex is placed in the queue by BFS(s), it is given the next available number.
The last vertex visited is given the number 1. Let σ := [v1, v2, . . . , vn = s] be
a BFS(s)-ordering of the vertices of G and T be a BFS(s)-tree of G produced
by a BFS(s). Let σ(x) be the number assigned to a vertex x in this BFS(s)-
ordering. For two vertices x and y, we write x < y whenever σ(x) < σ(y).

First, we will show that if Gδ is known in advance (i.e., its adjacency matrix
is given) for a graph G with δ-thin triangles, then the distances in G can be
additively approximated (with an additive one-sided error of at most δ + 1)
in O(|V |2) time. We consider the vertices of G in the order σ from 1 to n.
For each current vertex x we show that the values d̂(x, y) := hT (x) + hT (y) −
2slT (x, y; δ) + δ for all vertices y with y > x can be computed in O(|V |) total
time. By Proposition 6,

dG(x, y) ≤ d̂(x, y) ≤ dG(x, y) + δ + 1.

The values d̂(x, y) for all y with y > x can be computed using the following
simple procedure. We will omit the subscripts G and T if no ambiguities arise.
Let also Li = {v ∈ V : dG(v, s) = i}. In the procedure, Su represents vertices
of a subtree of T rooted at u.

(01) set q := h(x)
(02) define a set Su := {u} for each vertex u ∈ Lq, u > x, and

denote this family of sets by F
(03) for k = q downto 0
(04) let xk be the vertex from Lk ∩ PT (x, s)
(05) for each vertex u ∈ Lk with u > x
(06) if dG(u, xk) ≤ δ (i.e., u = xk or u is adjacent to xk in Gδ)
(07) then for every v ∈ Su
(08) set d̂(x, v) := h(x) + h(v)− 2k + δ and

remove Su from F
(09) endfor
(10) endfor
(11) /* update F for the next iteration */
(12) if k > 0 then
(13) for each vertex u ∈ Lk−1



412 Chepoi et al. Eccentricities and distances in hyperbolic graphs

(14) combine all sets Su1 , . . . , Su`
from F (` ≥ 0), such that

pT (u1) = . . . = pT (u`) = u, into one new set
Su := {u} ∪ Su1 ∪ . . .∪ Su`

/* when ` = 0, Su := {u} */
(15) endfor
(16) endfor
(17) set also d̂(x, s) := h(x).

Thus, we have the following result.

Theorem 3 Let G = (V,E) be a graph with δ-thin triangles. Given Gδ, all
distances in G with an additive one-sided error of at most δ+ 1 can be found in
O(|V |2) time.

To avoid the requirement that Gδ is given in advance, we can use any known
fast constant-factor approximation algorithm that in total T (|V |)-time computes
for every pair of vertices x, y of G a value d̃(x, y) such that dG(x, y) ≤ d̃(x, y) ≤
αdG(x, y) + β. We can show that, using such an algorithm as a preprocessing
step, the distances in a graph G with δ-thin triangles can be additively approxi-
mated with an additive one-sided error of at most αδ+β+1 in O(T (|V |)+ |V |2)
time.

Although one can use any known fast constant-factor approximation algo-
rithm in the preprocessing step, in what follows, we will demonstrate our idea
using a fast approximation algorithm from [19]. It computes in O(|V |2 log2 |V |)
total time for every pair x, y a value d̃(x, y) such that

dG(x, y) ≤ d̃(x, y) ≤ 2dG(x, y) + 1.

Assume that the values d̃(x, y), x, y ∈ V , are precomputed. By s̃lT (x, y;λ)
we denote now the largest index k such that d̃G(xk, yk) ≤ λ. We have

Proposition 7 For every vertices x and y of a graph G with δ-thin triangles,
any integer ρ ≥ δ, and any BFS-tree T of G,

hT (x) + hT (y)− 2k − 1 ≤ dG(x, y) ≤ hT (x) + hT (y)− 2k + dG(xk, yk),

where k = s̃lT (x, y; 2ρ+ 1).

Proof: The proof is identical to the proof of Proposition 7. One needs only
to notice the following. In a geodesic triangle ∆(x, y, s) := [x, y] ∪ [x, s] ∪
[y, s] with [x, s] = PT (x, s) = (xq, xq−1, . . . , x1, s) and [y, s] = PT (y, s) =
(yp, yp−1, . . . , y1, s), for each i ≤ (x|y)s, dG(xi, yi) ≤ δ ≤ ρ and, hence,
d̃(xi, yi) ≤ 2ρ+ 1 holds. Therefore, s̃lT (x, y; 2ρ+ 1) ≥ (x|y)s − 1

2 . 2

Let ρ be any integer greater than or equal to δ. By replacing in our earlier
procedure lines (06) and (08) with

(06)′ if d̃(u, xk) ≤ 2ρ+ 1 then
(08)′ set d̂(x, v) := h(x) + h(v)− 2k + 2ρ+ 1 and remove Su from F
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we will compute for each current vertex x all values d̂(x, y) := hT (x) + hT (y)−
2s̃lT (x, y; 2ρ+ 1) + 2ρ+ 1, y > x, in O(|V |) total time. By Proposition 7,

dG(x, y) ≤ hT (x) + hT (y)− 2s̃lT (x, y; 2ρ+ 1) + dG(xk, yk)
≤ hT (x) + hT (y)− 2s̃lT (x, y; 2ρ+ 1) + d̃(xk, yk)
≤ hT (x) + hT (y)− 2s̃lT (x, y; 2ρ+ 1) + 2ρ+ 1
= d̂(x, y)

and

d̂(x, y) = hT (x) + hT (y)− 2s̃lT (x, y; 2ρ+ 1) + 2ρ+ 1
≤ dG(x, y) + 2ρ+ 2.

Thus, we have the following result:

Theorem 4 Let G = (V,E) be a graph with δ-thin triangles.

(a) If the value of δ is known, then all distances in G with an additive one-
sided error of at most 2δ + 2 can be found in O(|V |2 log2 |V |) time.

(b) If an approximation ρ of δ such that δ ≤ ρ ≤ aδ + b is known (where a
and b are constants), then all distances in G with an additive one-sided
error of at most 2(aδ + b+ 1) can be found in O(|V |2 log2 |V |) time.

The second part of Theorem 4 says that if an approximation of the thin-
ness parameter of a graph G is given then all distances in G can be additively
approximated in O(|V |2 log2 |V |) time. Recently, it was shown in [31] that the
following converse is true. From an estimate of all distances in G with an addi-
tive one-sided error of at most k, it is possible to compute in O(|V |2) time an
estimation ρ∗ of the thinness of G such that δ ≤ ρ∗ ≤ 8δ + 12k + 4, proving
a Õ(|V |2)-equivalence between approximating the thinness and approximating
the distances in graphs.

5 Experimentation on Some Real-World Net-
works

In this section, we analyze the performance of our algorithms for approximating
eccentricities and distances on a number of real-world networks. Our experimen-
tal results show that the estimates on eccentricities and distances obtained are
even better than the theoretical bounds described in Corollary 2 and Theorems
2,4.

We apply our algorithms to six social networks, four email communication
networks, four biological networks, six internet graphs, four peer-to-peer net-
works, three web networks, two product-co-purchasing networks, and four in-
frastructure networks. Most of the networks listed are part of the Stanford
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δ(G)
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al

dutch-elite [17] 3621 4310 3 12 22 4 n 5
facebook [74] 4039 88234 1 4 8 0 y 1.5
eva [17] 4475 4664 15 10 18 3 y 3.5
slashdot [72] 77360 905468 1 6 12 0 y *1.5
loans [70] 89171 3394979 29350 5 8 4 y
twitter [41] 465017 834797 755 5 8 4 y

C
om

m
un

. email-virgili [61] 1133 5451 215 5 8 4 y 2
email-enron [72] 33696 180811 248 7 13 2 y
email-eu [71] 224832 680720 1 7 14 0 y
wikitalk-china [85] 1217365 3391055 17 4 8 2 y

B
io

lo
gi

c cs-metabolic [55] 453 4596 17 4 7 2 y 1.5
sc-ppi [65] 1458 1948 48 11 19 6 n 3.5
yeast-ppi [28] 2224 6609 57 6 11 4 n 2.5
homo-pi [83] 16635 115364 135 5 10 2 n 2

In
te

rn
et

as-graph-1 [1] 3015 5156 32 5 9 2 y 2
as-graph-2 [1] 4885 9276 531 6 11 4 n 3
as-graph-3 [1] 5357 10328 10 5 9 2 y 2
routeview [7] 10515 21455 2 5 10 2 n 2.5
as-caida [4] 26475 53381 2 9 17 1 y 2.5
itdk [5] 190914 607610 155 14 26 4 y

P
2P

gnutella-06 [71] 8717 31525 338 6 10 5 n 3
gnutella-24 [71] 26498 65359 1 6 11 0 y 3
gnutella-30 [71] 36646 88303 602 7 11 6 n *2.5
gnutella-31 [71] 62561 295756 55 7 11 5 n *2.5

W
eb

web-stanford [72] 255265 2234572 1 82 164 0 y *7
web-notredam [13] 325729 1497134 12 23 46 2 n *2
web-berkstan [72] 654782 7600595 1 104 208 0 y *7

C
o-

p. amazon-1 [93] 334863 925872 21 24 47 3 n
amazon-2 [93] 400727 3200440 194 11 20 5 n

In
fr

as
tr

. road-euro [84] 1039 1305 1 31 62 0 y 7.5
openflight [6] 3397 19231 21 7 13 2 y 2
power-grid [88] 4941 6594 1 23 46 0 y 10
road-pa [72] 1087562 3083028 2 402 794 1 y *195.5

Table 1: Statistics of the analyzed networks: |V | is the number of vertices, |E|
is the number of edges; |C(G)| is the number of central vertices; rad(G) is the
graph’s radius; diam(G) is the graph’s diameter; diamG(C(G)) is the diameter
of the graph’s center; ”connected?” indicates whether or not the center of the
graph is connected; δ(G) is the graph’s hyperbolicity. Hyperbolicity values
marked with asterisks are approximate.
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Large Network Dataset Collection (snap) and the Koblenz Network Collection
(konect), and are available at [2] and [3]. Characteristics of these networks,
such as the number of vertices and edges, the average degree, the radius and
the diameter, are given in Table 1. The numbers listed in Table 1 are based
on the largest connected component of each network, when the entire network
is disconnected. We ignore the directions of the edges and remove all self-loops
from each network. Additionally, in Table 1, for each network we report the size
(as the number of vertices) of its center C(G). We also analyze the diameter
and the connectivity of the center of each network. The diameter of the cen-
ter diamG(C(G)) is defined as the maximum distance between any two central
vertices in the graph. In the last column of Table 1, we report the Gromov hy-
perbolicity δ of majority of networks2. Computing the hyperbolicity of a graph
is computationally expensive; therefore, we provide the exact δ values for the
smaller networks (those with |V | ≤ 30K) in our dataset (in some cases, the algo-
rithm proposed in [42] was used). For some larger networks, the approximated
δ-hyperbolicity values listed in Table 1 are as reported in [67]3. Most networks
that we included in our dataset are hyperbolic. However, for comparison rea-
sons, we included also a few infrastructure networks that are known to lack the
hyperbolicity property.

5.1 Estimation of Eccentricities
Following Proposition 2, for each graph in our dataset, we found a pair u, v of
mutually distant vertices. In column two of Table 2, we report on how many
BFS sweeps of a graph were needed to locate u and v. Interestingly, for almost
all graphs (28 out 33) only two sweeps were sufficient. For four other graphs
(including road-pa network whose hyperbolicity is large) three sweeps were
needed, and only for one graph (power-grid network) we needed four sweeps.
Here, by a BFS sweep of a graph G starting at a vertex s, we mean a traversal
of G which visits all vertices of G in a breadth-first-search order starting from s.

In column four of Table 2, we report for each graph G the difference between
2rad(G) and dG(u, v). Proposition 2(c) says that the difference must be at most
2δ + 1, where δ is the thinness of geodesic triangles in G. Actually, for large
number (27 out of 33) of graphs in our dataset, the difference is at most two.
Five other graphs have the difference equal to 3, and only road-pa network
has the difference equal to 10. We have dG(u, v) = diam(G) for 27 graphs in
our dataset, including road-pa network whose geodesic triangles thinness is at
least 196. For remaining six graphs dG(u, v) = diam(G)− 1 holds.

We also analyzed the quality of a middle vertex c of a randomly picked
shortest path between mutually distant vertices u and v. Proposition 2 states

2All δ-hyperbolicity values listed in Table 1 were computed using Gromov’s four-point
condition definition. As mentioned in [59, 60], geodesic triangles of geodesic δ-hyperbolic
spaces are 4δ-thin.

3For web-stanford and web-berkstan, [67] gives 1.5 and 2, respectively, as estimates on
the hyperbolicities. However, the sampling method they used seems to be not very accurate.
According to [75], the hyperbolicities are at least 7 for both graphs.
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dutch-elite 2 22 2 13 1 1 3 6 2.35
facebook 2 8 0 4 0 0 0 2 0.686
eva 2 18 2 10 0 0 2 2 0.571
slashdot 2 11 1 7 1 2 2 3 1.777
loans 2 7 3 5 0 0 3 3 2.06
twitter 2 8 2 6 1 1 3 4 2.569
email-virgili 2 7 3 6 1 1 3 4 2.729
email-enron 2 13 1 7 0 0 2 2 0.906
email-eu 2 14 0 7 0 0 0 2 0.002
wikitalk-china 2 7 1 5 1 1 2 3 2.076
ce-metabolic 2 7 1 5 1 1 2 3 1.982
sc-ppi 3 19 3 12 1 2 6 3 0.981
yeast-ppi 3 11 1 6 0 0 3 3 1.872
homo-pi 2 10 0 5 0 0 2 2 0.747
as-graph-1 2 8 2 6 1 1 2 3 1.791
as-graph-2 3 11 1 6 0 0 3 3 1.124
as-graph-3 2 9 1 5 0 0 2 2 0.828
routeview 2 10 0 5 0 0 2 2 0.329
as-caida 2 17 1 9 0 0 1 0 0
itdk 2 26 2 15 1 1 3 4 2.108
gnutella-06 2 10 2 6 0 0 4 4 2.507
gnutella-24 2 10 2 7 1 1 1 5 2.697
gnutella-30 2 11 3 7 0 0 5 5 3.167
gnutella-31 2 11 3 8 1 2 5 6 4.176
web-stanford 2 164 0 82 0 0 0 28 0.006
web-notredam 2 46 0 23 0 0 2 2 0.935
web-berkstan 2 208 0 104 0 0 0 22 0.002
amazon-1 2 47 1 24 0 0 2 6 0.991
amazon-2 2 20 2 12 1 2 5 6 3.735
road-euro 2 62 0 31 0 0 0 8 0.135
openflight 2 13 1 8 1 1 2 3 1.879
power-grid 4 46 0 28 5 8 8 13 5.735
road-pa 3 794 10 415 13 44 45 98 23.339

Table 2: Qualities of a pair of mutually distant vertices u and v, of a middle
vertex c of a (u, v)-geodesic, and of a BFS(c)-tree T1 rooted at vertex c (see
Proposition 2). ”No. of BFS sweeps“ indicates how many breadth-first-search
iterations were needed to obtain a pair of mutually distant vertices u and v. For
each vertex x ∈ V , k(x) := eccT1(x)− eccG(x). Also, kmax := maxx∈V k(x) and
kavg := 1

n

∑
x∈V k(x).
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that eccG(c) is close to rad(G) and c is not too far from the graph’s center C(G).
Table 2 lists the properties of the selected middle vertex c. In almost all graphs,
vertex c belongs to the center C(G) or is at distance one or two from C(G).
Even in graphs with eccG(c) − rad(G) > 2 (power-grid and road-pa), the
value eccG(c) − rad(G) is smaller than what is suggested by Proposition 2(b).
It is also clear from Table 2 that c is not too far from any vertex in C(G) (look
at the radius i of the ball B(c, i) required to include C(G)). In all graphs, i is
much smaller than 2δ + 1 (indicated in Proposition 2(d)).

Following Theorem 1, for each graph G = (V,E) in our dataset, we con-
structed an arbitrary BFS(c)-tree T1 = (V,E′), rooted at vertex c, and ana-
lyzed how well T1 preserves or approximates the eccentricities of vertices in G.
By Theorem 1, eccG(v) ≤ eccT1(v) ≤ eccG(v) + 3δ + 1 holds for every v ∈ V .
In our experiments, for each graph G and the constructed for it BFS(c)-tree
T1, we computed kmax := maxv∈V {eccT1(v) − eccG(v)} (maximum distortion)
and kavg := 1

n

∑
v∈V eccT1(v) − eccG(v) (average distortion). For most graphs

(see Table 2), the value of kmax is small: kmax = 0 for one graph, kmax = 2
for eight graphs, kmax = 3 for nine graphs, kmax = 4 for four graphs, kmax = 5
for two graphs, and kmax > 5 for nine graphs. Also, the average distortion
kavg is much smaller than kmax for all graphs. In fact, kavg < 3 in all but five
graphs (gnutella-30, gnutella-31, amazon-2, power-grid, and road-
pa). In graphs with high kmax, close inspection reveals that only small per-
cent of vertices achieve this maximum. For example, in graph web-stanford,
kmax = 28 was only achieved by 17 vertices. The distributions of the values of
k(v) := eccT1(v)− eccG(v) of all graphs are listed in Table 8 (see Appendix).

Similar experiments were performed following Proposition 3. For each graph
G in our dataset, we picked a random vertex u ∈ V and a random vertex
v ∈ F (u). Then, we identified in a randomly picked (u, v)-geodesic a vertex w at
distance rad(G) from v. We did not consider a vertex c defined in Proposition
3(d) since, for majority of graphs in our dataset, c will be a middle vertex
of a geodesic between two mutually distant vertices, and working with c we
will duplicate previous experiments. Recall that for majority of our graphs (as
found in our experiments) two BFS sweeps already identify a pair of mutually
distant vertices. We know from Proposition 3 that eccG(v) ≥ diam(G) − 2δ ≥
2rad(G) − 4δ − 1 and eccG(w) ≤ rad(G) + δ. Our experimental results are
better than these theoretical bounds. In Table 3, we list eccentricities of v and
w for each graph. In almost all graphs, the eccentricity of v is equal to the
diameter diam(G). Only four graphs have eccG(v) = diam(G) − 1 and one
graph (road-pa) has eccG(v) > diam(G)−1. Vertex w is central for 21 graphs,
has eccentricity equal to rad(G) + 1 for 10 graphs, has eccentricity equal to
rad(G) + 2 for one graph, and only for one remaining graph (road-pa network,
which has large hyperbolicity) its eccentricity is equal to rad(G) + 15. It turns
out also (see columns five and six of Table 2) that vertex w either belongs to the
center C(G) or is very close to the center. The only exception is again road-pa
network where 2rad(G)− eccG(w) = 32 and dG(w,C(G)) = 21.

For every graph G = (V,E) in our dataset, we constructed also an arbitrary
BFS(w)-tree T2 = (V,E′), rooted at vertex w, and analyzed how well T2 pre-
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dutch-elite 22 2 12 0 4 6 2.431
facebook 8 0 5 3 3 3 0.704
eva 18 2 11 1 3 2 0.572
slashdot 11 1 7 2 2 3 1.88
loans 7 3 5 0 3 3 2.031
twitter 8 2 5 0 3 3 1.821
email-virgili 7 3 5 0 4 4 1.932
email-enron 13 1 7 0 2 2 0.903
email-eu 14 0 7 0 0 2 0.002
wikitalk-china 8 0 5 1 2 3 1.791
ce-metabolic 7 1 4 0 1 1 0.349
sc-ppi 19 3 12 1 6 7 4.196
yeast-ppi 11 1 7 1 3 4 2.558
homo-pi 9 1 5 0 2 2 0.612
as-graph-1 9 1 5 0 2 2 0.887
as-graph-2 11 1 6 0 3 2 0.833
as-graph-3 9 1 5 0 2 2 0.312
routeview 10 0 5 0 2 2 0.329
as-caida 17 1 9 0 1 0 0
itdk 26 2 15 1 3 5 2.702
gnutella-06 10 2 7 1 5 5 3.543
gnutella-24 11 1 8 3 3 6 4.475
gnutella-30 11 3 8 1 5 6 4.034
gnutella-31 11 3 8 1 5 6 4.251
web-stanford 164 0 82 0 0 28 0.006
web-notredam 46 0 23 0 2 2 0.935
web-berkstan 208 0 104 0 0 22 0.002
amazon-1 47 1 24 0 3 7 0.919
amazon-2 20 2 11 0 5 5 2.03
road-euro 62 0 31 0 0 8 0.135
openflight 13 1 7 0 2 2 0.641
power-grid 46 0 23 0 0 4 1.409
road-pa 772 32 417 21 22 80 22.545

Table 3: Qualities of a vertex v most distant from a random vertex u, of a
vertex w of a (u, v)-geodesic at distance rad(G) from v (see Proposition 3),
and of a BFS(w)-tree T2 rooted at vertex w. For each vertex x ∈ V , k(x) :=
eccT2(x)− eccG(x). Also, kmax := maxx∈V k(x) and kavg := 1

n

∑
x∈V k(x).
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serves or approximates the eccentricities of vertices in G. The value of kmax is
at most five for 23 graphs. The average distortion kavg is much smaller than
kmax in all graphs. The distributions of the values of k(x) for all graphs are
presented in Table 9 (see Appendix).
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dutch-elite 22 24 6 2.35 24 6 2.431 24 6 2.083
facebook 8 8 2 0.686 9 3 0.704 8 2 0.686
eva 18 19 2 0.571 19 2 0.572 19 2 0.571
slashdot 12 14 3 1.777 14 3 1.88 12 2 0.701
loans 8 10 3 2.06 10 3 2.031 10 3 2.081
twitter 8 11 4 2.569 10 3 1.821 10 4 1.856
email-virgili 8 11 4 2.729 10 4 1.932 10 4 1.906
email-enron 13 13 2 0.906 14 2 0.903 14 2 1.735
email-eu 14 14 2 0.002 14 2 0.002 14 2 0.002
wikitalk-china 8 9 3 2.076 9 3 1.791 8 2 0.777
ce-metabolic 7 9 3 1.982 8 1 0.349 8 2 1.185
sc-ppi 19 20 3 0.981 23 7 4.196 22 6 3.163
yeast-ppi 11 12 3 1.872 13 4 2.558 12 3 1.872
homo-pi 10 10 2 0.747 10 2 0.612 10 2 0.747
as-graph-1 9 11 3 1.791 10 2 0.887 10 2 0.886
as-graph-2 11 11 3 1.124 11 2 0.833 12 3 1.272
as-graph-3 9 10 2 0.828 10 2 0.312 10 2 0.312
routeview 10 10 2 0.329 10 2 0.329 10 2 0.329
as-caida 17 17 0 0 17 0 0 17 0 0
itdk 26 29 4 2.108 29 5 2.702 28 3 1.385
gnutella-06 10 12 4 2.507 13 5 3.543 12 4 2.507
gnutella-24 11 14 5 2.697 16 6 4.475 12 3 0.863
gnutella-30 11 14 5 3.167 16 6 4.034 14 5 3.295
gnutella-31 11 16 6 4.176 16 6 4.251 14 5 2.669
web-stanford 164 164 28 0.006 164 28 0.006 164 28 0.006
web-notredam 46 46 2 0.935 46 2 0.935 46 2 0.017
web-berkstan 208 208 22 0.002 208 22 0.002 208 22 0.002
amazon-1 47 47 6 0.991 48 7 0.919 47 7 1.205
amazon-2 20 23 6 3.735 22 5 2.03 22 4 1.274
road-euro 62 62 8 0.135 62 8 0.135 62 8 0.135
openflight 13 15 3 1.879 14 2 0.641 14 2 0.704
power-grid 46 51 13 5.735 46 4 1.409 46 4 1.409
road-pa 794 814 98 23.339 830 80 22.545 803 46 10.64

Table 4: Comparison of three BFS-trees T1, T2 and T3. T3 is a BFS(c∗)-tree
rooted at a randomly picked central vertex c∗ ∈ C(G).

In Table 4, we compare these two eccentricity approximating spanning trees
T1 and T2 with each other and with a third BFS(c∗)-tree T3 which we have
constructed starting from a randomly chosen central vertex c∗ ∈ C(G).

For each graph in the dataset, three values of kmax (kT1
max, kT2

max and kT3
max)

and three values of kavg (kT1
avg, kT2

avg and kT3
avg) are listed. We observe that the

smallest kmax (out of three) is achieved by tree T3 in 28 graphs, by tree T2 in 20
graphs and by tree T1 in 20 graphs (in 14 graphs, the smallest kmax is achieved
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by all three trees). The difference between the largest and the smallest kmax of
a graph is at most one for 26 graphs in the dataset. The largest difference is
observed for road-pa network: the largest kmax (98) is given by tree T1, the
smallest kmax (46) is given by tree T3. Two other graphs have the difference
larger than three: for sc-ppi network, the largest kmax (7) is given by tree T2,
the smallest kmax (3) is given by tree T1; for power-grid network, the largest
kmax (13) is given by tree T1, the smallest kmax (4) is shared by remaining
trees T2, T3. Overall, we conclude that kmax values for trees T1 and T2 are
comparable and generally can be slightly worse than those for tree T3. Similar
observations hold also for the average distortion kavg. Note, however, that for
construction of trees T2 and T3 one needs to know rad(G) or a central vertex
of G, which are unlikely to be computable in subquadratic time (see Statement
2).

We also compared the performance of our base algorithm with a popular
heuristic k-SumSweep (see [22, 23]) for estimating radii and diameters of large-
scale graphs. In our algorithm, for a given graph G, we find with a few BFS
sweeps a mutually distant pair of vertices u and v and a middle vertex c of
an arbitrary shortest path connecting u and v, and report dG(u, v) as an es-
timate for the diameter of G and eccG(c) as an estimate for the radius of G.
k-SumSweep heuristic starts with an arbitrary vertex s and sets F := {s}. It
runs for k iterations (k ∈ N is a parameter of the heuristic). At each iteration a
new vertex s that maximizes

∑
v∈F dG(s, v) is identified and put into F . After

k iterations, max{eccG(s) : s ∈ F} is reported as an estimate for the diameter
of G and eccG(c), where c is a vertex minimizing

∑
v∈F dG(c, v), is reported as

an estimate for the radius of G.
In Table 5, we show our experimental results for large graphs (up-to 1.2M

vertices). For these graphs, the experiments were performed on a PC with Intel
Core i7 processor @ 3GHz and 8GB memory. Since our algorithm needed from
two to four BFS sweeps to find a mutually distant pair of vertices (see Table
2), we run k-SumSweep heuristic for three iterations only (to properly compare
the running times and the quality of outputs). We can see that already three
iterations of k-SumSweep heuristic require slightly more time to terminate than
our algorithm requires. Both algorithms succeed in finding the exact diameter of
most of those graphs (except that for email-virgili the output of our algorithm
is one unit short from the diameter and for road-pa the output of 3-SumSweep
heuristic is a few units short from the diameter). However, in given amounts
of time, our algorithm often finds better estimates for radii than 3-SumSweep
heuristic does. We get same estimates for 12 graphs, our algorithm gives better
estimates for 14 graphs, and 3-SumSweep heuristic gives slightly better estimates
for 7 graphs. The exact radius is found by our algorithm in 22 graphs and by
3-SumSweep heuristic in 16 graphs.

To see the performance of both methods on very large graphs, we run them on
two networks obtained from the Koblenz Network Collection (konect) [3]. The
first network LiveJournal has 5.2M nodes and 49M edges and its diameter is
23. The second network Orkut has 3M nodes and 117M edges and its diameter
is 10. For these very large graphs, the experiments were performed on a cluster
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our Alg 3-SumSweep
Network rad(G) diam(G) rad′ diam′ time rad′ diam′ time
dutch-elite 12 22 13 22 0.003 13 22 0.032
facebook 4 8 4 8 0.049 5 8 0.087
eva 10 18 10 18 0.016 10 18 0.033
slashdot 6 12 7 12 0.259 7 12 0.286
loans 5 8 5 8 0.745 5 8 0.827
twitter 5 8 6 8 0.569 5 8 0.659
email-virgili 5 8 5 7 0.004 5 8 0.022
email-enron 7 13 7 13 0.081 8 13 0.169
email-eu 7 14 7 14 0.372 8 14 0.522
wiki-china 4 8 4 8 1.723 5 8 2.19
ce-metabolic 4 7 4 7 0.005 4 7 0.02
ppi 11 19 12 19 0.011 11 19 0.017
yeast-ppi 6 11 6 11 0.004 7 11 0.028
homo-pi 5 10 5 10 0.054 6 10 0.139
as-graph-1 5 9 5 9 0.021 5 9 0.055
as-graph-2 6 11 6 11 0.043 6 11 0.048
as-graph-3 5 9 6 9 0.012 5 9 0.058
routeview 5 10 5 10 0.061 5 10 0.067
as-caida 9 17 9 17 0.046 12 17 0.239
itdk 14 26 15 26 0.345 14 26 0.401
gnutella-06 6 10 6 10 0.037 6 10 0.075
gnutella-24 6 11 8 11 0.082 6 11 0.169
gnutella-30 7 11 8 11 0.068 7 11 0.17
gnutella-31 7 11 8 11 0.145 8 11 0.214
web-stanford 82 164 82 164 0.763 98 164 0.991
web-notredam 23 46 23 46 0.324 24 46 0.476
web-berkstan 104 208 104 208 1.735 122 208 1.918
amazon-1 24 47 24 47 0.534 26 47 0.668
amazon-2 11 20 11 20 1.156 11 20 1.352
road-euro 31 62 31 62 0.009 36 62 0.017
openflight 7 13 8 13 0.032 7 13 0.041
power-grid 23 46 23 46 0.031 27 46 0.07
road-pa 402 794 415 794 1.065 469 785 1.522

Table 5: Performance of our algorithm and k-SumSweep heuristic on large
graphs. The k-SumSweep heuristic is run for k = 3. Values rad′ and diam′ are
the estimates for the radius and the diameter output by corresponding methods.
Running times are given in seconds.
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computer with larger main memory; we used Intel(R) Xeon(R) CPU E5-2670
0 @ 2.60GHz with 20480 KB cache and 94GB main memory. For both graphs,
our algorithm found a mutually distant pair of vertices using only three BFS
sweeps. So, we run k-SumSweep heuristic on them first for k = 3 and then
for k = 4 for comparison. Our algorithm was again faster (see Table 6). It
succeeded to find the exact diameter and the exact radius for LiveJournal in
about 5.23 minutes. Both, 3-SumSweep and 4-SumSweep, heuristics computed
the exact diameter for LiveJournal but were one unit off from the exact radius
and required more time. For Orkut, 3-SumSweep and 4-SumSweep, both were
one unit off from the exact radius and one unit off from the exact diameter. Our
algorithm was faster and found the exact radius of Orkut but was also one unit
off from the exact diameter. Note that the exact radii for those two graphs were
previously unknown to us but since for any graph G, diam(G) ≤ 2rad(G), the
radii of those graphs cannot be smaller than 12 and 5, respectively.

our Alg 3-SumSweep 4-SumSweep

Network d
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m
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r
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ti
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e
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′
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LiveJournal 23 12 23 313.77 13 23 338.11 13 23 418.82
Orkut 10 5 9 1186.23 6 9 1311.91 6 9 1545.74

Table 6: Performance of our algorithm and k-SumSweep heuristic on two very
large graphs. The k-SumSweep heuristic is run for k = 3 and k = 4. Values
rad′ and diam′ are the estimates for the radius and the diameter output by
corresponding methods. Running times are given in seconds.

5.2 Estimation of Distances
Following Theorem 3, we experimented also on how well our approach approx-
imates the distances in graphs from our dataset. To analyze the quality of
approximation provided by our method for a given graph G = (V,E), for
every δ := 0, 1, 2, . . . , we computed an estimate d̂δ(x, y) on dG(x, y) and the
error ∆xy(δ) = d̂δ(x, y) − dG(x, y) for all x, y ∈ V . In Table 7, we report
∆max(δ) = maxx,y∈V ∆xy(δ) and ∆avg(δ) = 1

n2

∑
x,y∈V ∆xy(δ) for the small-

est δ such that ∆max(δ) ≤ δ + 1. We omitted some very large graphs in this
experiment. For some other large graphs, we did only sampling; we calculated
∆max(δ) and ∆avg(δ) based only on a set of sampled vertices. We sampled
vertices that are most distant from the root. The number of sampled vertices
ranged from 10 to 100 in each network. For all networks investigated, the aver-
age error ∆avg(δ) was very small, less that 1 even for infrastructure networks.
That is, the maximum error ∆max(δ) was realized on a very small number of
vertex pairs. The maximum error ∆max(δ) was 2 for three networks, was 3 for
five networks, was 4 for ten networks (including infrastructure network open-
flight), and was at most 6 for all except one social network dutch-elite
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Network diam(G) rad(G) δ ∆max(δ) ∆avg(δ) ecc(s)
dutch-elite 22 12 8 8 0.177 16
facebook 8 4 2 2 0.169 6
eva 18 10 6 6 0.044 12
slashdot* 12 6 4 2 0.028 8
loans* 8 5 3 3 0.213 6
twitter* 8 5 3 3 0.156 6
email-virgili 8 5 3 4 0.39 6
email-enron 13 7 4 4 0.06 9
email-eu* 14 7 3 2 0.005 10
ce-metabolic 7 4 2 3 0.125 4
sc-ppi 19 11 6 6 0.19 13
yeast-ppi 11 6 4 4 0.239 8
homo-pi 10 5 3 3 0.02 7
as-graph-1 9 5 3 4 0.061 8
as-graph-2 11 6 4 4 0.034 8
as-graph-3 9 5 4 3 0.035 9
routeview 10 5 4 4 0.038 6
as-caida 17 9 3 4 0.022 14
itdk* 26 14 5 4 0.15 19
gnutella-06 9 6 5 4 0.331 8
gnutella-24 11 6 6 6 0.128 9
gnutella-30* 11 7 6 5 0.439 8
gnutella-31* 11 7 6 5 0.386 9
road-euro 62 31 21 11 0.927 39
openflight 13 7 3 4 0.029 10
power-grid 46 23 17 17 0.518 38

Table 7: Distance approximations: for every x, y ∈ V , ∆xy(δ) = d̂δ(x, y) −
dG(x, y); ∆max(δ) = maxx,y∈V ∆xy(δ); ∆avg(δ) = 1

n2

∑
x,y∈V ∆xy(δ); δ is de-

fined as the smallest δ (0 ≤ δ ≤ diam(G)) such that ∆max(δ) ≤ δ + 1. Due to
large sizes of some networks, the values of ∆max(δ) and ∆avg(δ) for networks
marked with * were computed only for some sampled vertices (we sampled ver-
tices that are most distant from the root). The number of sampled vertices
ranged from 10 to 100 in each network.

and two infrastructure networks: road-euro and power-grid. The largest
∆max(δ) value had expectedly power-grid network whose hyperbolicity is 10.

Acknowledgements
We would like to thank anonymous reviewers of the journal and short versions
of the paper for many useful suggestions and comments. We are very grateful to
Abdulhakeem Mohammed for performing experiments for Table 6 on Intel(R)
Xeon(R) CPU E5-2670 0 @ 2.60GHz cluster computer.



424 Chepoi et al. Eccentricities and distances in hyperbolic graphs

References
[1] http://web.archive.org/web/20060506132945/.

[2] https://snap.stanford.edu/data/.

[3] http://konect.uni-koblenz.de/networks/.

[4] Center for applied internet data analysis. http://www.caida.org/data/as-
relationships.

[5] Center for applied internet data analysis.
http://www.caida.org/data/internet-topology-data-kit.

[6] Openflights network dataset – konect. October 2016.

[7] University of Oregon route-views project. http://www.routeviews.org/.

[8] A. Abboud, F. Grandoni, and V. V. Williams. Subcubic equivalences be-
tween graph centrality problems, APSP and diameter. In Proceedings of
the twenty-sixth annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1681–1697. SIAM, 2014. doi:10.1137/1.9781611973730.112.

[9] A. Abboud, V. V. Williams, and J. Wang. Approximation and fixed
parameter subquadratic algorithms for radius and diameter in sparse
graphs. In Proceedings of the twenty-seventh annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 377–391. SIAM, 2016. doi:10.1137/
1.9781611974331.ch28.

[10] M. Abu-Ata and F. F. Dragan. Metric tree-like structures in real-world
networks: an empirical study. Networks, 67(1):49–68, 2016. doi:10.1002/
net.21631.

[11] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney. Tree-like structure in
large social and information networks. In 2013 IEEE 13th International
Conference on Data Mining, pages 1–10. IEEE, 2013. doi:10.1109/icdm.
2013.77.

[12] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of di-
ameter and shortest paths (without matrix multiplication). SIAM Journal
on Computing, 28(4):1167–1181, 1999. doi:10.1137/s0097539796303421.

[13] R. Albert, H. Jeong, and A.-L. Barabási. Internet: Diameter of the world-
wide web. Nature, 401(6749):130, 1999. doi:10.1038/43601.

[14] J. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik,
M. Shapiro, and H. Short. Notes on word hyperbolic groups, group theory
from a geometrical viewpoint, ICTP Trieste 1990 (E. Ghys, A. Haefliger,
A. Verjovsky, eds.), 1991. doi:10.1142/9789814539746.

http://dx.doi.org/10.1137/1.9781611973730.112
http://dx.doi.org/10.1137/1.9781611974331.ch28
http://dx.doi.org/10.1137/1.9781611974331.ch28
http://dx.doi.org/10.1002/net.21631
http://dx.doi.org/10.1002/net.21631
http://dx.doi.org/10.1109/icdm.2013.77
http://dx.doi.org/10.1109/icdm.2013.77
http://dx.doi.org/10.1137/s0097539796303421
http://dx.doi.org/10.1038/43601
http://dx.doi.org/10.1142/9789814539746


JGAA, 23(2) 393–433 (2019) 425

[15] H. Alrasheed. Structural properties in δ-hyperbolic networks: Algorith-
mic analysis and implications. In Proceedings of the 25th International
Conference Companion on World Wide Web, pages 299–303. Interna-
tional World Wide Web Conferences Steering Committee, 2016. doi:
10.1145/2872518.2888602.

[16] H. Alrasheed and F. F. Dragan. Core–periphery models for graphs based
on their δ-hyperbolicity: An example using biological networks. Journal
of Algorithms & Computational Technology, 11(1):40–57, 2017. doi:10.
1007/978-3-319-16112-9_7.

[17] V. Batagelj and A. Mrvar. Pajek datasets. (2006). http://vlado.fmf.uni-
lj.si/pub/networks/data/.

[18] B. Ben-Moshe, B. Bhattacharya, Q. Shi, and A. Tamir. Efficient algorithms
for center problems in cactus networks. Theoretical Computer Science,
378(3):237–252, 2007. doi:10.1016/j.tcs.2007.02.033.

[19] P. Berman and S. P. Kasiviswanathan. Faster approximation of distances
in graphs. In Workshop on Algorithms and Data Structures, pages 541–552.
Springer, 2007. doi:10.1007/978-3-540-73951-7_47.

[20] M. Borassi, D. Coudert, P. Crescenzi, and A. Marino. On computing the
hyperbolicity of real-world graphs. In Algorithms-ESA 2015, pages 215–
226. Springer, 2015. doi:10.1007/978-3-662-48350-3_19.

[21] M. Borassi, P. Crescenzi, and M. Habib. Into the square: On the complexity
of some quadratic-time solvable problems. Electronic Notes in Theoretical
Computer Science, 322:51–67, 2016. doi:10.1016/j.entcs.2016.03.005.

[22] M. Borassi, P. Crescenzi, M. Habib, W. A. Kosters, A. Marino, and
F. W. Takes. Fast diameter and radius BFS-based computation in (weakly
connected) real-world graphs: With an application to the six degrees
of separation games. Theoretical Computer Science, 586:59–80, 2015.
doi:10.1016/j.entcs.2016.03.005.

[23] M. Borassi, P. Crescenzi, and L. Trevisan. An axiomatic and an
average-case analysis of algorithms and heuristics for metric properties of
graphs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 920–939. SIAM, 2017. doi:10.1137/
1.9781611974782.58.
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