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Abstract

We present a multi-scale layout algorithm for the aesthetic drawing of
undirected graphs with straight-line edges. The algorithm is extremely
fast, and is capable of drawing graphs that are substantially larger than
those we have encountered in prior work. For example, the paper con-
tains a drawing of a graph with over 15,000 vertices. Also we achieve
“nice” drawings of 1000 vertex graphs in about 1 second. The proposed
algorithm embodies a new multi-scale scheme for drawing graphs, which
was motivated by the earlier multi-scale algorithm of Hadany and Harel
[HH99]. In principle, it could significantly improve the speed of essentially
any force-directed method (regardless of that method’s ability of drawing
weighted graphs or the continuity of its cost-function).

Communicated by Michael Kaufmann: submitted February 2001;
revised December 2001 and June 2002.
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1 Introduction

A graph G(V, E) is an abstract structure that is used to model a relation E over
a set V of entities. Graph drawing is a conventional tool for the visualization
of relational information, and its usefulness depends on its readability, that is,
the capability of conveying the meaning of the diagram quickly and clearly. In
recent years, many algorithms for drawing graphs automatically were proposed
(the state of the art is surveyed comprehensively in [Di+99, KW01]).

We concentrate on the problem of drawing an undirected graph with straight-
line edges. In this case the problem reduces to that of positioning the vertices
by determining a mapping L : V −→ R

2. A popular generic approach to
this problem is the force-directed technique, which introduces a heuristic cost
function (an energy) of the mapping L, which (hopefully) achieves its minimum
when the layout is nice. Variants of this approach differ in the definition of the
energy, and in the optimization method that finds its minimum. Some known
algorithms are those of [Ea84, KK89, DH89, FR91]. Major advantages of force-
directed methods are their relatively simple implementation and their flexibility
(heuristic improvements are easily added), but there are some problems with
them too. One severe problem is the difficulty of minimizing the energy function
when dealing with large graphs. The above methods focus on graphs of up to
100 vertices. For larger graphs the convergence to a minimum, if possible at all,
is very slow.

We propose a new method for drawing graphs that could in principle improve
the speed of every force-directed method. We build our algorithm around the
Kamada-Kawai method, and the resulting algorithm, which is extremely fast,
is capable of drawing graphs that are substantially larger than those we have
encountered in prior work (although subsequent developments are reviewed in
Section 6). The algorithm, which was motivated by the earlier multi-scale algo-
rithm of Hadany and Harel [HH99], works by producing a sequence of improved
approximations of the final layout. Each approximation allows vertices to devi-
ate from their final place by an extent limited by a decreasing constant r. As
a result, the layout can be computed using increasingly coarse representations
of the graph, where closely drawn vertices are collapsed into a single vertex.
Each layout in the sequence is generated very rapidly, by performing a local
beautification on the previously generated layout.

2 Force-Directed Graph Drawing

The force-directed approach is apparently the prevalent attitude for drawing
general graphs. Algorithms based on this approach consist of two components.
The first is the force (or energy) model that quantifies the quality of a drawing.
The second is an optimization algorithm for computing a drawing that is locally
optimal with respect to this model. The resulting final layout brings the system
to equilibrium, where the total force on each vertex is zero, or equivalently, the
potential energy is locally minimal with respect to the vertex positions. Regard-
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ing the drawing standard, force-directed methods draw the edges as straight-line
segments, so the whole issue reduces to the problem of positioning the vertices.

In this section we outline some notable work on force-directed graph drawing.

2.1 The Spring Embedder Method

The spring embedder method is the earliest viable algorithm for drawing general
graphs. It was proposed by Eades [Ea84], and was later refined by Fruchterman
and Reingold [FR91]. This method likens a graph to a mechanical collection
of electrical charged rings (the vertices) and connecting springs (the edges).
Every two vertices reject each other by a repulsive force and adjacent vertices
(connected by an edge) are pulled together by an attractive force. The method
seeks equilibrium of these conflicting constraints. Spring based methods are
very successful with small-sized graphs of up to around 50 vertices.

Regarding the optimization algorithm, we describe the method of [FR91].
A predetermined number of sweeps is performed. In each sweep every vertex
is moved in the direction of the total force exerted on it. The extent of the
movement is determined by a global cooling schedule that restricts the distance
a vertex can move as a decreasing function of the sweep number. Frick et al.
[Fr+94] have suggested several improvements on this scheme, the most notable
of which is a local cooling schedule, resulting in a different extent of movement
for each vertex according to its temperature. They show graphs of size 256.
More recently, Tunkelang [Tu99] suggested several other refinements to the op-
timization method. One is to approximate the effect of many distant repulsive
forces as being exerted by a single vertex using a quad-tree, in the spirit of the
Barnes-Hut method [BH86]. Another improvement is the use of the Conjugate-
Gradient method for decreasing the energy. Tunkelang dealt with 1000-vertex
graphs, drawn in 5-10 minutes.

2.2 Kamada and Kawai’s Method

Kamada and Kawai [KK89] modelled a graph as a system of springs that act
in accordance with Hooke’s Law: Every two vertices are connected by a spring,
whose rest length is proportional to the graph-theoretic distance between its
two endpoints, and its stiffness is inversely proportional to the square of its rest
length. The optimization procedure tries to minimize the total energy of the
system, that is:

E =
∑

v,u∈V

1
d2

uv

(l(u, v)− Lduv)2

where l(u, v) is the length of the spring between u and v, L is the length of a
single edge, and duv is the graph-theoretic distance between u and v.

Kamada and Kawai’s method treats all the aesthetic criteria that the spring-
embedder method addresses, and produces drawings with a similar quality. An
advantage of this method is that it can be applied straightforwardly to drawing
edge-weighted graphs, assuming that edge lengths have to reflect their weights.
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2.3 Hadany and Harel’s Multi-Scale Algorithm

The multi-scale approach proposed by Hadany and Harel [HH99] is an improve-
ment of the force-directed technique, which facilitates the drawing of larger
graphs. The main idea of this method is to consider a series of abstractions of
the graph called coarse graphs, in which the combinatorial structure is signif-
icantly simplified, but important topological features are well preserved. The
energy minimization is divided between these coarse graphs, in such a way that
globally related properties are optimized on coarser graphs, while locally related
properties are optimized on finer graphs. As a result, the energy minimization
process considers only small neighborhoods at once, yielding a quick running
time. The scheme of the algorithm is a recursive repetition of:

1. Perform fine-scale relocations of vertices that yield a locally organized
configuration.

2. Perform coarse-scale relocations (through local relocations in the coarse
representations) correcting global disorders not found in stage (1).

3. Perform fine-scale relocations that correct local disorders introduced by
stage (2).

All actual local relocations are carried out in [HH99] by minimizing the
energy defined in [KK89] using simple gradient-descent. The coarsening step
is done in a pre-processing stage by contracting edges that minimize a convex
combination of three objectives (in a greedy fashion):

• The cluster number : The number of original vertices forming the new
vertex.

• The degree number : The degree of the vertices forming the new vertex in
the current abstraction of the graph.

• The homotopic number : The number of vertices (in the coarse graph) that
are adjacent to both the vertices forming the edge.

The algorithm produces good results on large graphs containing hundreds of
vertices, in a reasonable time.

In this paper we continue the multi-scale approach of Hadany and Harel
[HH99], and introduce a simpler and much faster algorithm which produces
better drawings.

3 Multi-Scale Graph Drawing

The intuition of [HH99] for beauty in graph layout is that the graph should be
nice on all scales. In other words the drawing should be nice at both the micro
level and the macro level. Relying only on this intuition, we will formalize the
notion of scale relevant to the graph drawing problem. The crucial observation
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is that global aesthetics refer to phenomena that are related to large areas of the
picture, disregarding its micro structure, which has only a minor impact on the
global issue of beauty. On the other hand, local aesthetics refer to phenomena
that are limited to small areas of the drawing. Following this line of thinking,
we will construct a coarse scale of a drawing by shrinking nodes that are drawn
close to each other, into a single node, obtaining a new drawing that eliminates
many local details but preserves the global structure of the original drawing.
An alternative view of our notion of coarsening is as an approximation of a nice
layout. This approximation allows vertices to deviate from their final position
by an amount limited to some constant r. As a consequence, we can unify all
the vertices whose final location lies within a circle of radius r, and thus obtain
the coarse scale representation.

Our presentation of the drawing scheme is preceded by some definitions:

Definition 3.1
A layout of a graph G(V, E) is a mapping of the vertices to the Euclidean space:
LG : V −→ R

2. We often omit the subscript G.
For simplicity, we assume that there is a single optimal layout with respect to
fixed set of aesthetic criteria accepted in force-directed algorithms. We term this
layout nice. The nice layout of G is denoted by L∗

G, or simply L∗.

Definition 3.2
L is a locally nice layout of G(V, E) with respect to r, if the intersection of L(V )
with every circle of radius r induces a nice layout of the appropriate subgraph
of G.

Definition 3.3
L is a globally nice layout of G(V, E) with respect to r if

max
v∈V
{|L(v)− L∗(v)|} < r

Definition 3.4
A locality preserving k-clustering (a k-lpc for short) of G(V, E) with respect to
r is the weighted graph G({V1, V2, . . . , Vk}, E′, w), where:

V = V1 ∪ V2 · · · ∪ Vk, ∀i 6= j : Vi ∩ Vj = ∅
E′ = { (Vi, Vj) | ∃(vi, vj) ∈ E ∧ vi ∈ Vi ∧ vj ∈ Vj}
w(Vi, Vj) =

1
|Vi||Vj |

∑
v∈Vi,u∈Vj

dvu , ∀(Vi,Vj)∈E′

(dvu is the shortest distance between u and v in G)

and for every i:

max
v,u∈Vi

{|L∗(v)− L∗(u)|} < r

i.e., all the vertices in one cluster are drawn relatively close in the nice layout.
We sometimes call the vertices of a k-lpc clusters.
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At first glance, this definition seems to be of a little practical value, as it refers
to the unknown nice layout L∗. We will discuss this important point in the next
section.

Definition 3.5
A multi-scale representation of a graph G(V, E) is a sequence of graphs Gk1 ,

Gk2 , . . . , Gkl , where k1 < k2 < · · · < kl = |V |, and for all 1 6 i 6 l : Gki is a
locality preserving ki-clustering of G(V, E) with respect to ri, where r1 > r2 >
· · · > rl = 0.

Remark: We naturally assume that in a nice layout of an edge-weighted
graph, the lengths of the edges have to reflect their weights.

Our method relies on the ease of drawing graphs with a small number of
vertices and on the following two assumptions, which formalize what we think
to be amenability to multi-scale aesthetics — independence between global and
local aesthetics.

Assumption 3.1
Let Gr be k-lpc of a graph G with respect to r, and let r̂ > r. L is a globally

nice layout of Gr with respect to r̂ if and only if L is a globally nice layout of G
with respect to r̂. (In G, we take L(v) = L(Vi) for each v ∈ Vi).

Corollary: If L is a nice layout of a k-lpc of a graph G with respect to r then
L is a globally nice layout of G with respect to r.

The intuition of Assumption 3.1 is that global aesthetics is independent of the
micro structure of the graph, so the differences between the layouts of Gr and
of G are bounded with r.

Assumption 3.2
If L is both a locally and a globally nice layout of a graph G with respect to r,

then it is a nice layout of G.

Now we present the multi-scale drawing scheme, which draws a graph by
producing a sequence of improved approximations of the final layout.
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The Multi-Scale Drawing Scheme

1. Place the vertices of G randomly in the drawing area.

2. Choose an adequate decreasing sequence of radiuses ∞ = r0 >
r1 > r2 > · · · > rl = 0.

3. for i=1 to l do

3.1 Choose an appropriate value of ki, and construct Gki , a
ki-lpc of G w.r.t. ri.

3.2 Place each vertex of Gki at the (weighted) location of the
vertices of G that constitute it.

3.3 Locally beautify local neighborhoods of Gki .

3.4 Place each vertex of G at the location of its cluster (i.e., the
vertex in Gki).

4. end

The viability of the scheme stems from the following observations:

1. In the first iteration, after step 3.3, we should have a nice layout of Gk1 . To
guarantee this, the value of r1 has to be large enough so that the resulting
Gk1 will be small and can be easily drawn nicely.

2. Step 3.3 should yield a locally nice layout of Gki w.r.t. ri−1. To guarantee
this, we have to choose large enough neighborhood.

3. At the beginning of iteration i, we have a globally nice layout of Gki

w.r.t. ri−1. Hence, by Assumption 3.2, after step 3.4 we have a nice
layout of Gki . This layout is a globally nice layout of Gki+1 w.r.t. ri, by
Assumption 3.1.

We remark that the choice of the multi-scale representation can be based
upon either the decreasing sequence r1, . . . , rl = 0 (as described above) or the
increasing sequence k1, . . . , kl = |V | (as we have done in our implementation).

In Definition 3.4 we added weights to the edges of the k-lpc in order to
retain the size proportions of G, which is necessary for making Assumption 3.1
valid. However, in practice, we conjecture that our scheme works well even
without weighting the edges of the k-lpc, when using some variants of the spring-
embedder method (e.g., those of [Ea84] and [FR91]) as the local beatification
method. The reason for this is that such methods benefit significantly from the
better initialization, which, while not capturing the final size of the graph, often
solves many large scale conflicts correctly.
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4 The New Algorithm

In order to implement a multi-scale graph drawing algorithm based on the
scheme of Section 3, we have to further elaborate on two points: (1) how to
find the multi-scale representation of a graph (line 3.1 of the scheme), and (2)
how to devise a locally nice layout (line 3.3 of the scheme).

4.1 Finding a Multi-Scale Representation

In order to construct a multi-scale representation of a graph G based on Defi-
nition 3.5, we must find a k-lpc of G, in it vertices that are drawn close in the
nice layout should be grouped together. The important question is: How can
we know which vertices will be close in the final picture, if we still do not know
what the final picture looks like? 1 Luckily we do have a heuristic that can
help decide which vertices will be drawn closely. Moreover, this key decision
can be made very rapidly, and is a major reason for the fast running time of
our algorithm.

The heuristic is based on the observation that a nice layout of the graph
should convey visually the relational information that the graph represents, so
vertices that are closely related in the graph (i.e., the graph theoretic distance is
small) should be drawn close together. This heuristic is very conservative, and
all the force directed drawing algorithms use it heavily.

Employing this heuristic, we can approximate a k-lpc of G by using an
algorithm for the well known k-clustering problem. In this problem we wish to
partition V into k clusters so that the longest graph-theoretic distance between
two vertices in the same cluster is minimized. In reality, we would like to identify
every vertex in the cluster with a single vertex that approximates the barycenter
of the cluster. Hence we use a solution to the closely related k-center problem,
where we want to choose k vertices of V , such that the longest distance from
V to these k centers is minimized. These fundamental problems arise in many
areas and have been widely investigated in several papers (see e.g., [Go85] and
[HS86]). Unfortunately, both problems are NP-hard, and it has been shown in
[Go85] and [HS86] that unless P=NP there does not exist a (2−ε)-approximation
algorithm for any fixed ε > 0.2 Nevertheless, there are various fast and simple
2-approximation algorithms for these problems.

We will approximate a k-lpc as the solution to the k-center problem, adopting
a 2-approximation method mentioned in [Ho96]:

1What is needed is only a sufficient (even if not necessary) condition that vertices are close.
2A δ-approximation algorithm delivers an approximate solution guaranteed to be within a

constant factor δ of the optimal solution.
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K-Centers (G(V, E) ,k)
% Goal: Find a set S ⊆ V of size k, such that maxv∈V mins∈S{dsv} is minimized.

S ← {v} for some arbitrary v ∈ V
for i = 2 to k do

1. Find the vertex u farthest away from S
(i.e., such that mins∈S{dus} > mins∈S{dws}, ∀w ∈ V )

2. S ← S ∪ {u}
return S

Complexity: Line 1 can be carried out in time Θ(|E|) by BFS. In our case, it
can be done faster, since, as we shall see, we already have the all-pairs shortest
path length (APSP) at our hands (it is needed for the local beautification).
Utilizing this fact and memorizing the current distance of every vertex from S,
we can implement line 1 in time Θ(|V |), yielding a total time complexity of
Θ(k|V |) (without the APSP computation).

4.2 Local Beautification

We have chosen to use a variant of the Kamada and Kawai method [KK89] as
our local drawing method. We found it to be very appropriate, because it relates
every pair of vertices, so, when constructing a new coarse representation of the
graph, we do not have to define which pairs of vertices are connected by an edge.
Notice that this property of the Kamada and Kawai method has a price: it forces
us to waste Θ(|V |2) memory, even when the graph is sparse. Another advantage
of the Kamada and Kawai method is that it can deal directly with weighted
graphs, which is convenient in our case since the multi-scale representation of a
graph contains weighted graphs.

The Energy Function: We consider the graph G(V, E), where each vertex
v is mapped by the layout L into a point in the plane L(v) with coordinates
(xv, yv). The distance duv is defined as the length of the shortest path in G
between u and v. We define the k-neighborhood of v to be: Nk(v) = {u ∈ V | 0 6
duv < k}. In order to find a layout with aesthetically pleasing k-neighborhoods,
we use an energy function that relates the graph theoretic distance between
vertices in the graph to the Euclidean distance between them in the drawing,
and is defined as follows:

Ek =
∑
v∈V

∑
u∈Nk(v)

kuv(‖L(u)− L(v)‖ − lduv)2

where l is the length of a single edge, ‖L(u)−L(v)‖ is the Euclidean distance
between L(u) and L(v), and kuv is a weighting constant that can be either 1

duv

or 1
d2

uv
.

The energy represents the normalized mean squared error between the Eu-
clidean distance of vertices in the picture and the graph-theoretic distance. Only
pairs in the same k-neighborhood are considered.
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Local Minimization of the Energy: Our purpose is to find a layout that
brings the energy Ek to a local minimum. The necessary condition of a local
minimum is as follows:

∂Ek

∂xv
=

∂Ek

∂yv
= 0, ∀v ∈ V

To achieve this condition we iteratively choose the vertex that has the largest
value of ∆k

v , which is defined as:

∆k
v =

√
(
∂Ek

∂xv
)2 + (

∂Ek

∂yv
)2

and move this vertex, v, by the amount of δk
v = (δk

v (x), δk
v (y)). The computation

of δk
v is carried out by viewing Ek as a function of only L(v) = (xv, yv), and the

use of a two-dimensional Newton-Raphson method. As a result, the unknowns
δk
v (x) and δk

v (y) are found by solving the following pair of linear equations:

∂2Ek

∂x2
v

δk
v (x) +

∂2Ek

∂xv∂yv
δk
v (y) = −∂Ek

∂xv

∂2Ek

∂yv∂xv
δk
v (x) +

∂2Ek

∂y2
v

δk
v (y) = −∂Ek

∂yv

The interested reader can find further details in [KK89].

Algorithms for Locally Nice Layout
The following algorithm, which is based on [LSD] and as mentioned in [Br+95],
is a modification of [KK89]. The algorithm computes a nice layout of every
k-neighborhood of a graph:

LocalLayout(dV ×V , L, k, Iterations)
% Goal: Find a locally nice layout L by beautifying k-neighborhoods

% dV ×V : all-pairs shortest path length

% L: initialized layout

% k: radius of neighborhoods

for i = 1 to Iterations · |V | do
1. Choose the vertex v with the maximal ∆k

v

2. Compute δk
v by solving the above mentioned equations

3. L(v)← L(v) + (δk
v (x), δk

v (y))
end

A typical value of the parameter Iterations is 4.

Complexity: An efficient implementation of line 1 is by storing the first
derivatives of Ek in a binary heap, sorted by the values of ∆k

v . (After the
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movement of each vertex v, the first derivatives of vertices in Nk(v) are up-
dated.) Hence, the computation time of line 1 is Θ(log |V |). The computation
time of δk

v (line 2) is Θ(|Nk(v)|), which is a constant for a bounded degree graph.
These computations are carried out Iterations · |V | times, so the overall time
complexity for a bounded degree graph is Θ(|V | log |V |).

This algorithm differs from the one of Kamada and Kawai [KK89] in its single
loop structure, and in the use of a predefined number of iterations, instead of
basing termination on the value of ∆k

v . This results in much faster termination
when dealing with large graphs. We recommend this as an improvement (in
a stand-alone sense) of the Kamada and Kawai method. We have tested it
and have found it far superior for larger graphs. The recommended value of
Iterations when running this algorithm as a stand alone (not as a part of the
multi-scale algorithm) is 10, at least. Performance can be improved by executing
most of the iterations (the first ones) without choosing the vertex with the
largest value of ∆k

v , but iterating through all the vertices in some order.

4.3 The Multi-Scale Drawing Algorithm

We now describe the full algorithm:

LayoutG(V, E)
% Goal: Find L, a nice layout of G

% Constants:

% Rad[= 7] — determines radius of local neighborhoods

% Iterations[= 4] — determines number of iterations in local beautification

% Ratio[= 3] — ratio between number of vertices in two consecutive levels

% MinSize[= 10] — size of the coarsest graph

Compute the all-pairs shortest path length: dV ×V

Set up a random layout L
k ←MinSize
while k 6 |V | do

centers ← K-Centers(G(V, E) ,k)
radius = maxv∈centers minu∈centers{dvu} ·Rad
LocalLayout (dcenters×centers, L(centers),radius,Iterations)
for every v ∈ V do

L(v)← L(center(v)) + rand
k ← k · Ratio

return L

Comments: Inside the for-loop, the call center(v) returns the center that is
closest to v. We add a small random noise (0, 0) < rand < (1, 1), because our
local beautification algorithm performs badly when the vertices are initialized
to the same point. One might try to improve the global aesthetics by iteratively
repeating the body of the while-loop (for each fixed k) a number of times that
decreases with k (e.g., |V |

|k| times).



Harel and Koren, Fast Drawing of Large Graphs, JGAA, 6(3) 179–202 (2002)190

Complexity: The overall asymptotical complexity is determined by the com-
putation of the all-pairs shortest path length (APSP) (line 1), which we imple-
mented by initiating a BFS from every vertex. It thus takes time Θ(|V ||E|).
Experimental running times are given in Table 1. The space complexity is
Θ(|V |2), since we have to memorize the all-pairs shortest path length matrix.

5 Examples

This section contains examples of the results of our algorithm. The implemen-
tation is in C++, and runs on a Pentium III 1GHz PC. Table 1 gives the actual
running times of the algorithm on the graphs given here. We should mention
that our implementation is far from being efficient, and an optimized version
will probably do better. For all the executions, we have used the default param-
eters: Iterations = 4, Ratio = 3, MinSize = 10. Regarding, Rad, its default
value – 7 was sufficient for achieving reasonable results for all the graphs, except
the full binary tree. However, we have found for several graphs, that we can get
“smoother” results when increasing Rad. Hence, for these graphs we give also
results with Rad > 7, as indicated in the table. As can be seen in the table,
almost all the running time is dedicated for computing the all-pairs shortest
path length (APSP), and for performing local beautification.

The layouts shown in Figures 1–3 demonstrate applying our algorithm to
regular graphs. We were particularly happy with the graphs in Figures 4 and 5,
since the “correct” (grid or torus) appearance is retained despite the partiality
of information available to the algorithms.

Drawing the full binary trees in Figure 6 was harder. Force-directed meth-
ods behave better on bi-connected graphs, since there are forces that work in
many ways and directions. They perform quite badly on trees. Our method
succeeded in finding a nice layout of the trees only when it considered the entire
graph as one in its “local” beautification stages. The problem is that the lo-
cal beautification scheme is based only on neighborhoods in the graph-theoretic
sense, but in deep kinds of trees, leaves should show up close to each other even
if they are far apart in the graph-theoretic sense.

We mention that even in laying out full binary trees our method has two
advantages when compared to Kamada and Kawai’s method [KK89]. First,
its running time is still faster; about 5sec for a 1023-vertex tree, compared
with 15sec of Kamada-Kawai’s method (implemented efficiently, as discussed in
Section 4.2), on account of the relatively few beautification iterations. Second,
the resulting picture (Figure 6(a)) is almost planar and has no global distortions,
in contrast to Kamada-Kawai’s method, which will be trapped in many local
minima, and will always result in many edge crossings (see Figure 6(c)).

Figure 7, which is a grid with some of the horizontal edges removed, illus-
trates a similar problem. In Figure 7(a), we set things up so that the local
beautification procedure considered larger than regular neighborhoods, as this
is the only way to take into account together the vertices of two consecutive
“lines” to make the resulting picture planar. On the other hand, since in Figure
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Graph Name Figure |V| |E| Rad APSP Beautification Overall
time time time

Grid 32 × 32 1024 1984 7 0.3 0.7 1.08
Grid 55 × 55 1(a) 3025 5940 7 1.45 4.11 5.87
Grid 80 × 80 6400 12640 7 12.11 15.153 29.39
Grid 100× 100 10000 19800 7 38.27 35.11 76.22
Folded Grid 1(b) 6400 12642 7 12.11 15.34 29.16
80 × 80 20 12.11 34.81 49.22
Torus 64 × 16 2(a) 1024 2048 7 0.3 0.81 1.16

15 0.3 1.94 2.28
Torus 160× 40 2(b) 6400 12800 7 12.13 15.6 29.57

15 12.13 27.06 41.27
Sierpinski 3 9843 19683 7 39.36 29.39 71.45
depth 8 15 39.36 38.59 80.83
Random Sparse 4(b) 6400 9480 7 12.58 13.75 28.11
Grid
Random Sparse 5(b) 1600 2133 7 0.42 1.41 2.02
Torus
Full Binary 6 1023 1022 16 0.13 3.59 3.73
Tree 18 0.13 4.72 4.88
Partial Grid 7 3025 5156 7 1.41 3.85 5.56

35 1.41 20.31 22.04
3elt 8 4720 13722 7 6.13 10.28 17.73

20 6.13 31.75 39.71
Crack 10 10240 30380 7 49.61 22.05 73.34
4elt 9 15606 45878 7 129.98 143.67 285.45

20 129.98 236.33 383.06

Table 1: Running time (in seconds; non-optimized) of the various components
of the algorithm
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(a) (b)

Figure 1: (a) 55x55 (3025-vertex) square grid; (b) 80x80 (6400-vertex) square
grid with each two opposite corners connected

7(b) the local beautification procedure considered neighborhoods that were too
small, we get the overlapping.

In Figures 8 and 9 we present “real-life” graphs taken from Francois Pelle-
grini’s Scotch graph collection, at: http://www.labri.u-bordeaux.fr/Equipe/
PARADIS/Member/pelegrin/graph/. In Figure 10 we present the beautiful
Crack graph taken from the collection of Jordi Petit, at: http://www.lsi.upc.es/
~jpetit/MinLA/Experiments/.

6 Related Work

The multi-scale approach to graph drawing was first proposed in [HH99], as
described in Section 2.

The major technical improvement of our approach over [HH99] is a more
intuitive and easier to implement coarsening step, which is the source of its much
better running time. Our method eliminates the entire costly pre-processing
step of [HH99] (with the exception of the computation of dV ×V , which is part
of the local beautification process). Practically all the coarsening overhead in
our algorithm is carried out in a negligible fraction of the overall execution time.

Another advantage of our algorithm over that of [HH99] is its simpler schematic
structure. Ours starts by beautifying the coarsest-scale representation and pro-
ceeds by improving the finer-scale representations until reaching the original
graph. The Hadany-Harel method starts with the original graph, continues un-
til it reaches the coarsest level, and then proceeds back to the original graph.
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(a) (b)

Figure 2: Toruses: (a) 64x16 (1024-vertex) (b) 160x40 (6400-vertex)

Figure 3: A depth 8 Sierpinski (9843 vertices)
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(a) (b)

Figure 4: (a) 40x40 (1600-vertex) grid with 1
3 of the edges omitted at random;

(b) 80x80 (6400-vertex) grid with 1
4 of the edges omitted at random

(a) (b)

Figure 5: 80x20 (1600-vertex) torus with 1
5 and 1

3 of the edges omitted at random
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(a) (b)

(c)

Figure 6: Full binary trees: (a,b) 1023-vertices, depth 9; In (a) beautification
considered the whole graph at once, while in (b) neighborhoods of radius 16 were
considered at once; (c) is the result of the Kamada-Kawai algorithm. Notice that
unlike our algorithm, Kamada-Kawai results with bad “global” edge crossings
(i.e., near the root).
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(a) (b)

Figure 7: 55x55 (3025-vertex) partial grid: (a) beautification considered larger
than normal neighborhoods, of radius 35 (b) beautification considered usual
neighborhoods of radius 7

Figure 8: The graph 3elt from the Scotch collection; |V | = 4720, |E| = 13722
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Figure 9: The graph 4elt from the Scotch collection; |V | = 15606, |E| = 45878

Figure 10: The graph Crack; |V | = 10240, |E| = 30380
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Eliminating this alone results in a 50% improvement in beautification time, by
making only half of the local beautification steps.

In addition, the beautification process of [HH99] does not directly change the
layout, but performs a relative change of the layout, since every vertex is located
anew relative to its previous location. This imposes a strong inter-dependency
between all the multi-scale representations of the graph. As a result, one has to
introduce weights on the edges in order to make it possible to link the layouts
of the different scales. In contrast, our scheme makes a direct change to the
graph’s layout at each level of the beautification process. As a consequence, the
dependencies between the various representations are weaker, and we can use
a multi-scale representation with unweighted edges, which while not capturing
the final size of the graph often solves many large scale conflicts correctly. As
a result of this, we can potentially utilize other force-directed methods as our
local beautification procedure, a fact that might possibly yield several additional
benefits.

Following the appearance of our technical report [HK99], two other multi-
scale (or “multi-level”) methods were presented at the Graph Drawing 2000
conference together with ours, claiming to have certain advantages over ours.
We now describe what seem to be their most important characteristics.

The method of Gajer et al. [G+00] introduces several changes to our al-
gorithm. The most notable one is that the graph theoretic distances between
vertices are not stored in a |V |× |V | table, but are computed dynamically, when
needed. This improves the storage requirements of our algorithm, making it
suitable for dealing with larger graphs. Other attributes of [G+00] are: drawing
in higher dimensions and optimizing the energy using gradient-descent, where
extent of movement is limited by a local temperature (like [Fr+94]). [G+00]
reports on drawings of 16,000-vertex graphs in around 40 seconds.

The method of Walshaw [Wa00] is a multi-level extension of Fruchterman’s
and Reingold’s spring embedder algorithm [FR91]. An advantage of working
with the forces of [FR91] (compared to the energy of Kamada and Kawai) is
that the method of [FR91] does not require the computation (and storage) of
the all-pairs shortest path length. As a result, Walshaw [Wa00] can deal with
huge graphs of 100,000 vertices in 10–20 minutes, which is very impressive.

Another method for drawing large graphs is that of Quigley and Eades
[QE00]. Their method is an improvement of the spring embedder algorithm.
Unlike the multi-scale approach, they consider the whole graph at once. How-
ever, in order to accelerate computation, the nodes are clustered in a quad-tree
structure, which reflects actual spatial proximity. The repulsive forces between
a vertex and a cluster of distant vertices are approximated as a single force,
what significantly lessens the number of forces in the system. There seem to
be some connection with the work of Tunkelang [Tu99] mentioned in Section
2 above. We have not conducted tests to compare the running time of the
multi-scale approach with that of [QE00]. However, the multi-scale approach
optimizes several different energies on several levels, thus apparently capturing
the various scales of beauty. Moreover, the multi-scale method may be faster
and more robust, since it is not sensitive to the initial placement that is derived
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from coarser scales.
Recently, we have developed two new methods [K+01, HK02] for drawing

huge graphs. They can draw 105-vertex graphs in few seconds and 106-vertex
graphs in less than a minute, and thus appear to be significantly faster than
previously known methods. The method in [K+01] draws a graph by quickly
calculating eigenvectors of the Laplacian matrix associated with it, using a spe-
cial algebraic multigrid technique, which is a rather accurate variant of the
multi-scale paradigm.

The method in [HK02] is somewhat more novel and has two phases: first
embed the graph in a very high dimension (say, 50) and then project it onto
the 2-D plane using Principal Components Analysis. The high-dimensional em-
bedding is done very rapidly using a simple algorithm that utilizes the freedom
given by the many dimensions. This method possesses a useful inherent capa-
bility to exhibit the graph in various dimensions, and an effective means for
interactive exploration of large graphs.

7 Conclusions and Future Work

We have presented a new multi-scale approach for drawing graphs nicely, and
have suggested a useful formulation for the desired properties of the coarse
graphs. Our algorithm is able to deal extremely well and extremely fast with
certain classes of large graphs.

The algorithm was designed for speed and simplicity and does not require
explicit representations of coarse graphs.

A more powerful and general implementations of the multi-scale drawing
scheme would overcome some limitations of our algorithm. We can improve
the time and space complexity of our algorithm, by discarding the all-pairs
shortest path length computation. This would enable the algorithm to deal
with larger graphs. Another improvement lies in the construction of the coarse
scale representation, for which we used a simple heuristic. For many graphs
this heuristic is fine, but for some graphs it may not be enough. For example
consider graphs with a tiny diameter, like the graph of Figure 11, whose diameter
is 2. Our heuristic will totally fail on such a graph, since the distances between
each pair of vertices are roughly the same, and it is thus unable to differentiate
different clusters.

Our algorithm uses the heuristic of Kamada and Kawai [KK89], which does
not punish edge-crossings explicitly. It may be interesting to see how the ex-
plicit consideration of crossings, as is done, e.g., in [DH89], will be reflected
in the results of a multi-scale method such as ours. This could be of particu-
lar importance in drawing less regular-looking (that is, more random-looking)
graphs.
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Result of Fruchterman-Reingold Result of our method

Figure 11: Bad example: a graph with a degenerate diameter
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