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Abstract

A drawing of a graph in the plane is pseudolinear if the edges of the
drawing can be extended to doubly-infinite curves that form an arrange-
ment of pseudolines, that is, any pair of these curves crosses precisely once.
A special case is rectilinear drawings where the edges of the graph are
drawn as straight line segments. The rectilinear (pseudolinear) crossing
number of a graph is the minimum number of pairs of edges of the graph
that cross in any of its rectilinear (pseudolinear) drawings. In this paper
we describe an ongoing project to continuously obtain better asymptotic
upper bounds on the rectilinear and pseudolinear crossing number of the
complete graph Kn.
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1 Introduction

Let G be a graph. In a drawing D of G in the plane the vertices of G are
distinct points in the plane and every edge of G is represented by a simple closed
polygonal chain connecting the two points representing its vertices. We require
that in D the edges do not pass through a point representing a vertex (other than
their endpoints). A crossing in D is a proper intersection of the interior of two
line segments in a pair of polygonal chains representing two edges. Obtaining
a drawing of a given graph G that minimizes the number of crossings among
all possible drawings of G is a central topic in many areas like graph drawing
and discrete and computational geometry. Depending on how drawings are
defined and on the precise way crossings are counted, there exist a huge number
of variants of crossing number problems; see [15] for a comprehensive survey.
In this work we concentrate on rectilinear and pseudolinear drawings of the
complete graph Kn.

The crossing number of G is the minimum number, cr(G), of pairs of edges
of G that cross in any drawing of G. A set of points in the plane is in general
position if no three of its points are collinear. A rectilinear drawing of a graph G
is a drawing of G in the plane where its vertices (points) are in general position
and its edges are drawn as straight line segments. The rectilinear crossing
number of G is the minimum number, cr(G), of pairs of edges of G that cross
in any rectilinear drawing of G.

A generalization of rectilinear drawings are pseudolinear drawings. A draw-
ing of a graph in the plane is pseudolinear if the edges of the drawing can
be extended to doubly-infinite curves that form an arrangement of pseudo-
lines, that is, any pair of these curves crosses precisely once. Similar as before,
the pseudolinear crossing number of a graph is the minimum number, c̃r(G),
of pairs of edges of G that cross in any pseudolinear drawing of G. Clearly,
cr(G) ≤ c̃r(G) ≤ cr(G).

Finding the crossing number, rectilinear crossing number or pseudolinear
crossing number of the complete graph Kn are important open problems in
discrete geometry. For the crossing number of Kn Harary and Hill conjectured
the following.

Conjecture 1 (Harary-Hill [12])

cr(Kn) =
1
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According to [12] drawings achieving this bound had been found independently
and Guy published them for the first time in [11]. The lower bounds on cr(Kn)
and c̃r(Kn), and the upper bound on cr(Kn) together imply that for sufficiently
large n we have that cr(Kn) ≥ c̃r(Kn) > cr(Kn). However, it is unknown
whether cr(Kn) > c̃r(Kn) (for some sufficiently large n). See [4] for a nice
survey. When bounding cr(Kn) and c̃r(Kn) these numbers are often considered
together, see e.g. [3]; since c̃r(Kn) ≤ cr(Kn), an upper bound on cr(Kn) is also
an upper bound on c̃r(Kn), and similar for lower bounds.
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It is known that

lim
n→∞

cr(Kn)(
n
4

) = q∗,

where q∗ is a positive constant known as the rectilinear crossing constant. Sim-
ilarly, we have

lim
n→∞

c̃r(Kn)(
n
4

) = q̃∗,

where q̃∗ is a positive constant, called the pseudolinear crossing constant. As it
is unknown whether cr(Kn) > c̃r(Kn) for sufficiently large n, it is a challenging
open problem whether q∗ > q̃∗.

The currently best lower bounds [3] are

0.379972 < q̃∗ ≤ q∗

and the previously best upper bounds [6, 9] are

q̃∗ < 0.380448 q∗ < 0.380473.

In this note we describe an ongoing project to improve these upper bounds
on q∗ and q̃∗. The best upper bounds we have obtained so far1 are

q∗ ≤ 43317371729896

113858494707069
< 0.3804491869

and

q̃∗ ≤ 5995534434121

15759524733750
< 0.3804387846.

The arXiv version of this paper [arXiv:1907.07796] will be regularly updated
with new upper bounds.

1.1 Constructing Good Drawings

To derive upper bounds on q∗ one way is to produce rectilinear drawings of Kn

with few crossings for arbitrarily large values of n. The first general construction
for such sets was given by Jensen [14] who gave explicit coordinates for the
points of Kn. Around the same time Singer [16] proposed another approach. His
construction takes a drawing of Kn and produces a drawing of K3n. If the former
drawing has few crossings, then so does the latter. Using this drawing of K3n

and repeating the process gives a good drawing of K9n, and so on. This approach
of iteratively generating larger sets has been successful in improving the upper
bound on q∗ several times, see [7, 5, 2, 1]. The current best iterative construction
is that of Ábrego, Cetina Fernández-Merchant, Leaños and Salazar([2] and [1]).

A feature of these iterative constructions is that to improve the upper bound
on q∗ it is sufficient to find for a specific, constant value of n, a sufficiently good
rectilinear drawing of Kn. Fabila and López [9] used an heuristic to improve the

1As of 2020-07-15.
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best known rectilinear drawing of K75, obtaining a rectilinear drawing of K75

with 450492 crossings. This rectilinear drawing together with the construction
of [2, 1] provides the until now best upper bound of q∗ < 0.380473.

Up to and including the work of Fabila and López [9] upper bounds for q̃∗

were simply derived from the upper bounds of q∗, that is, q̃∗ ≤ q∗ < 0.380473.
Only recently Balko and Kynčl [6] obtained the first upper bound on q̃∗ which is
below the upper bound of q∗ by showing q̃∗ < 0.380448. The method they used is
a generalization of [9] to pseudolinear drawings. They give a nice presentation
of pseudolinear drawings with n-signatures2 and show that the construction
of [2, 1] can be adopted to the pseudolinear setting; see below for details.

Our goal is to be able to improve the upper bounds on the crossing constants
in a semi-automatic way. We thus implemented the construction of [2, 1] and
also its extension to pseudolinear drawings [6], as well as various heuristics
to improve a given rectilinear or pseudolinear drawing of Kn. In this paper we
describe our approach in detail. In Section 1.2 we briefly recall the constructions
of [2] and [1] and the modification by [6]. In Section 2 we describe several
heuristics we used to improve known rectilinear and pseudolinear drawings of
Kn. In Section 3 we describe how these tools play together in an iterative way
to regularly obtain better upper bounds on q∗ and q̃∗.

1.2 The Construction of [2], [1], and [6]

Note that a rectilinear drawing of Kn is determined by the position of its ver-
tices. Let S := {p1, . . . , pn} be a set of n points in general position in the plane.
Let cr(S) be the number of crossings in the rectilinear drawing of Kn where the
vertices are placed at S.

A halving line of S is a straight line ` passing through at least one point of
S such that in the two open half-planes defined by ` there are the same number
of points of S. Note that if n is odd then ` passes only through a single point
of S, and if n is even then ` passes through two points of S.

Let G be the bipartite graph with vertex partition (A,B), where A := S
and B is the set of the halving lines of S. A pair (p, `) in (A,B) is adjacent in
G if and only if ` passes through p. A halving matching of S is a matching of
G, in which every point in A is matched to a halving line in B. If n is odd then
a halving matching of S always exists. In this case every halving line contains
exactly one point of S and every point of S is contained in at least one halving
line (actually an infinite number of them). So any choice of a halving line for
every point of A is a halving matching. A halving matching may not exist if n
is even. For example, a set of 4 points in which exactly three of them are in the
convex hull does not contain a halving matching.

A rough description of the construction of [2] and [1] is as follows. Let
M = {(p1, `1), . . . , (p, `n)} be a halving matching for S. For every `i assume
that `i is directed, and let ~vi be the direction vector of `i. Let S′ be the point
set that results by replacing each pi in S with the pair of points pi + ε~vi and

2An n-signature is a function which assigns to every triple of vertices an orientation {+,−}.
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pi − ε~vi for an arbitrarily small (but positive) value of ε.
This construction was first described in [2]; furthermore, they showed that

if S has an even number of points then S′ also has a halving matching. This
allows for the iterative construction mentioned above. If S has an odd number
of points then it always has a halving matching; however, it is not obvious that
S′ should also have a halving matching. In [1] they showed that in this case S′

also has a halving matching. The following theorem gives the upper bound on
q∗ that is derived from this construction.

Theorem 1 ([1, 2]) Let S be a set of n points in general position in the plane,
such that S has a halving matching. Then

q∗ ≤ 24cr(S) + 3n3 − 7n2 + (30/7)n

n4
.

The above theorem is derived by showing that in every doubling step from
S to S′ it holds that cr(S′) = 16cr(S) + (n/2)(2n2 − 7n + 5). It is not hard
to see that the concept of halving matching also translates to pseudolinear
drawings. Consequently it is shown in [6] that the construction of doubling can
be applied to pseudolinear drawings and that the halving matching property
is also preserved. Thus, a similar relation holds when doubling a pseudolinear
drawing D to D′, namely c̃r(D′) = 16c̃r(D) + 2n

(
dn/2e2 + bn/2c2

)
− 7n2/2 +

5n/2 [6]. For even n this is the same bound as for the rectilinear case. Although
not explicitly stated in [6] this therefore leads to the following bound for q̃∗.

Corollary 2 Let D be a pseudolinear drawing of Kn, such that D has a halving
matching. Then

q̃∗ ≤ 24c̃r(D) + 3n3 − 7n2 + (30/7)n

n4
for n even; and

q̃∗ ≤ 24c̃r(D) + 3n3 − 7n2 + (81/14)n

n4
for n odd.

While the above two results will be directly used to derive our improved
upper bounds, we are also interested in actually obtaining the good sets of
doubled cardinality; see also Section 3.

For rectilinear drawings the above construction has been implemented as a
Python program in [10] and produces point sets with integer coordinates. The
choice of using integer coordinates helps to avoid numerical issues, since as long
as we use a library (or programming language) that handles arbitrarily large
integers, arithmetic precision is not an issue. We therefore used the implemen-
tation of [10] also for our computations.

For pseudolinear drawings no numerical issues arise, as no realization with
points is needed and thus no coordinates are computed. We follow the lines
of [6] and use a representation of a pseudolinear drawing by n-signatures. This
is a function which assigns to every triple of vertices an orientation {+,−}. The
advantage of this representation is that it is easy to check if a given n-signature
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can be realized as a pseudolinear drawing and that the number of crossings can
be computed directly from the representation. Moreover, the above mentioned
results for the doubling construction have been derived; see again [6] for more
details. We implemented this approach also as a Python program to generate
good pseudolinear drawings of twice the size.

2 Heuristics

We now describe various heuristics that attempt to improve a given drawing
of Kn. For a rectilinear drawing the vertices are the points of the point set
S and p is a point of S. For a pseudolinear drawing D all triple orientations
vivjvk, 1 ≤ i < j < k ≤ n are given.

2.1 Moving a Point to a New Random Location

In [9] the following simple heuristic is used for rectilinear drawings. Choose a
random point q /∈ S in a certain neighborhood of p. If cr(S \ {p}∪ {q}) ≤ cr(S)
then replace p with q in S. In [9], cr(S \{p}∪{q}) is computed in O(n2) time. If
after some time no improvement is found then the size of the neighborhood of p
from which q is chosen, is made smaller. We use the amortized faster algorithm
of [8]. In that algorithm a set Q of Θ(n) candidate points for the new position
of p is chosen. The set of values

{cr(S \ {p} ∪ {q}) : q ∈ Q}

is computed in O(n2) time. Note that this is linear per point in Q. We then
consider the best point in Q as a possible replacement for p.

For pseudolinear drawings a very similar idea is used. Obviously there are
no points to be moved. But observe that moving a point continuously in the
rectilinear case corresponds to changing the orientation of point triples one after
another (since there are no collinear points), that is, changing the order type
of the set step by step. The difficulty in the rectilinear setting is that this is
a geometric process, and even if all points have integer coordinates, moving
the point on an integer grid might not be sufficient to get all triple changes
separately.

To the contrary, changing triple orientations in a pseudolinear drawing given
as n-signature is trivial. We choose a random vertex triple vivjvk, 1 ≤ i < j <
k ≤ n, of the drawing D and invert its orientation. Then we check if this new
n-signature is still realizable as a pseudolinear drawing D′. In case D′ exists,
we keep the new orientation if c̃r(D′) ≤ c̃r(D) and set D = D′. Otherwise we
revert the change. Iterating this process eventually gives pseudolinear drawings
with less crossings.

It is interesting to observe that our experiments show that this local opti-
mization heuristic works in average significantly better for pseudolinear drawings
than for rectilinear drawings. The main reason might be that for pseudolinear
drawings the algorithm has a combinatorial flavor, while for rectilinear drawings
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Figure 1: A drawing of K75 with 450492 crossings

the precise geometry of the arrangement of the point set (e.g. the size of cells)
plays a role. We therefore present in the next section an approach for rectilinear
drawings which avoids this bottleneck.

2.2 The Point Set Explorer

Consider the line arrangement, A, spanned by the set of lines passing through
every pair of points of S \ {p}. Let C be a cell of A and let q be a point in C.
Note that cr(S \ {p} ∪ {q}) has the same value regardless of the choice of the
precise location of q within C.

All the best known rectilinear drawings of Kn consist of three “arms” with
close to n/3 points each; the points in each arm are close to being collinear.
See Figure 1 for an example. This implies that many of the cells in the line
arrangements of such sets have area close to zero. Therefore, in the heuristic
described in 2.1 many of the candidate points fall in the same cells and many
cells are never visited.

In [13] the following algorithm is implemented. The algorithm computes
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the cell of A that contains p in O(n2 log n) time. Afterwards, moving between
adjacent cells, and finding a point in the interior of these cells, takes O(log2 n)
time.

Using this implementation we produce a sequence C = C1, . . . , Cm of consec-
utive adjacent cells. At each Ci we choose a point qi as a candidate to replace p
in S. Since we are moving between adjacent cells, cr(S \{p}∪{qi}) can actually
be computed in O(1) time.

In this way the size of the cells in the arrangement and thus the precise
geometry of our point set does not play a role anymore. We obtain an algorithm
with a more combinatorial behavior than with the previous heuristic.

2.3 Finding Good Subdrawings

It is often the case that for m > n, drawings of Km with few crossings contain
drawings of Kn with few crossings. We observed that when optimizing drawings
of Km with the heuristics presented in the previous section, they often contain
better subdrawings of Kn than before the optimization. In other words, it is
possible to improve drawings of Kn by optimizing drawings of Km. It might
sound counter intuitive to optimize the larger set. But observe that there are
many subsets of size n in a set of size m. So if just one of these subdrawings is
improved, this approach is successful.

Given a drawing of Km, we use the following heuristics to find drawings of
Kn with few crossings.

Removing one point at a time

For rectilinear drawings we remove one point of S at a time, to obtain smaller
drawings. We use an implementation of an algorithm described in [8] that does
the following. In O(n2) time, it computes the set of values

{cr(S \ {p}) : p ∈ S}.

We remove the point p that minimizes cr(S \ {p}), thus finding a rectilinear
drawing of Km−1. We proceed iteratively in this way to find rectilinear drawings
of Kn with n = m− 1,m− 2, . . . , 27 points.

For pseudolinear drawings this is done in a similar way.

Removing two or more points at a time

It is known that point sets minimizing the rectilinear crossing number have a
triangular convex hull, and most of them have several layers consisting of three
vertices each. Moreover, during the process of generating good examples to get
an improved crossing constant we could observe that the cardinality of the best
sets seems to be a multiple of 3. So actually it turned out that sometimes it
is better to remove more than one point at each step. That means we look
at a tuple or triple of points which, when being removed at once, reduces the
crossing number the most. Occasionally, this provides rectilinear drawings that
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cannot be obtained by removing one point at a time as in the previous heuristic.
However, the amortized speed up described above is lost, and thus this method
needs more computational resources.

To our own surprise good pseudolinear drawings show precisely the same be-
havior. There also the best drawings (w.r.t. the obtainable pseudolinear crossing
constant) we found so far have a cardinality which is a multiple of 3. We there-
fore use the same approach of removing a tuple or triple of vertices at the same
time also for pseudolinear drawings.

3 Joining Everything Together

Several computers run all the heuristics described in Section 2 permanently in
the background. Processes are started for the best drawings of Kn for some
specific values of n - typically the currently best three or four cardinalities for
both types of drawings, rectilinear and pseudolinear. The newly-found drawings
are sent daily to a central node. If after for some time, no new improvements
are made on the upper bound of either q∗ or q̃∗ , we take the corresponding
drawing of Kn providing the best upper bound and apply the doubling con-
struction described in Section 1.2 to obtain a drawing of K2n providing the
same upper bound on q∗ or q̃∗, respectively. From this set we then compute
good subsets by removing points/vertices as described in Section 2.3. In parallel
we locally optimize the new drawing K2n and all the obtained subdrawings by
the methods described in Sections 2.1 and 2.2. The steps of local optimization
and computing subdrawings are interleaved and iterated. Note, however, that
the local optimization is applied only for a limited time. The best sets obtained
in these iterations serve as new starting sets of our optimization, and the whole
process is restarted.

3.1 Results for Rectilinear Drawings

With the just described approach we were able to obtain good rectilinear draw-
ings of Kn for up to n = 3240 points. The best crossing constant is obtained
by using a rectilinear drawing of K2643 which has 771218714414 crossings. The
interested reader can download the file with the coordinates of the points from
http://www.crossingnumbers.org/projects/crossingconstants/rectilinear.php.
The reason why larger sets do not necessarily provide a better constant lies in
the before mentioned search for good subsets, which is an essential ingredient
of our mixed heuristic. Plugging the values of this drawing into Theorem 1 we
obtain the following result.

Theorem 3

q∗ ≤ 43317371729896

113858494707069
< 0.3804491869

http://www.crossingnumbers.org/projects/crossingconstants/rectilinear.php
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3.2 Results for Pseudolinear Drawings

For pseudolinear drawings we have been able to get good results for Kn for
up to n = 2502. The reason why the maximal cardinality is smaller than
the one for rectilinear drawings is that here we have to store every triple ori-
entation explicitly, which needs several hundreds MB for each set. The best
crossing constant is obtained by using a pseudolinear drawing of K2205 which
has 373382224051 crossings. The interested reader can download the file with
the information of the triple orientation from http://www.crossingnumbers.org/

projects/crossingconstants/pseudolinear.php. Plugging the values of this draw-
ing into Corollary 2 we obtain the following result.

Theorem 4

q̃∗ ≤ 5995534434121

15759524733750
< 0.3804387846.

The rectilinear drawing of K2643 with 771218714414 crossings can be found
in the arXiv version of this paper.

http://www.crossingnumbers.org/projects/crossingconstants/pseudolinear.php
http://www.crossingnumbers.org/projects/crossingconstants/pseudolinear.php
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