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Abstract. We show that the 1-planar slope number of 3-connected cubic 1-planar
graphs is at most four when edges are drawn as polygonal curves with at most one bend
each, that is, any such graph admits a drawing with at most one bend per edge and
such that the number of distinct slopes used by the edge segments is at most four. This
bound is obtained by drawings whose angular and crossing resolution is at least π/4.
On the other hand, if the embedding is fixed, then there is a 3-connected cubic 1-planar
graph that needs three slopes when drawn with at most one bend per edge. We also
show that two slopes always suffice for 1-planar drawings of subcubic 1-planar graphs
with at most two bends per edge. This bound is obtained with angular resolution π/2
and the drawing has crossing resolution π/2 (i.e., it is a RAC drawing). Finally, we
prove lower bounds for the slope number of straight-line 1-planar drawings in terms of
number of vertices and maximum degree.
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1 Introduction

A graph is 1-planar if it can be drawn in the plane such that each edge is crossed at most once.
The notion of 1-planarity naturally extends planarity and received considerable attention since its
first introduction by Ringel in 1965 [38], as witnessed by recent surveys [6, 17, 32]. Despite the
efforts made in the study of 1-planar graphs, only few results are known concerning their geometric
representations (see, e.g., [1, 4, 8, 10, 11, 14]). In this paper, we study the existence of 1-planar
drawings that simultaneously satisfy the following properties: edges are polylines using few bends
and few distinct slopes for their segments, edge crossings occur at large angles, and pairs of edges
incident to the same vertex form large angles. For example, Figure 3d shows a 1-bend drawing of
a 1-planar graph (i.e., a drawing in which each edge is a polyline with at most one bend) using 4
distinct slopes, such that edge crossings form angles at least π/4, and the angles formed by edges
incident to the same vertex are at least π/4. In what follows, we recall some literature concerning
the problems of computing polyline drawings with few bends and few slopes or with few bends and
large angles.

Related work. The k-bend (planar) slope number of a (planar) graph G with maximum vertex
degree ∆ is the minimum number of distinct edge slopes needed to obtain a (planar) drawing of
G such that each edge is a polyline with at most k bends. When k = 0, this parameter is simply
known as the (planar) slope number of G. Clearly, if G has maximum vertex degree ∆, at least
d∆/2e slopes are needed for any k. While there exist non-planar graphs with ∆ ≥ 5 whose slope
number is unbounded with respect to ∆ [3, 37], Keszegh et al. [28] proved that the planar slope
number is bounded by 2O(∆). Several authors improved this bound for subfamilies of planar graphs
(see, e.g., [25, 31, 33]).

Concerning k-bend drawings, Angelini et al. [2] proved that the 1-bend planar slope number
is at most ∆ − 1 (for ∆ ≥ 4), while 3

4 (∆ − 1) slopes may be needed as shown by Knauer and
Walczak [30]. Keszegh et al. [28] proved that the 2-bend planar slope number is d∆/2e (which
matches the trivial lower bound).

Special attention has been paid in the literature to the slope number of (sub)cubic graphs, i.e.,
graphs having vertex degree (at most) three. Mukkamala and Pálvölgyi [36] showed that the four
slopes {0, π4 ,

π
2 ,

3π
4 } suffice for every cubic graph. For planar graphs, Kant [26] and independently

Dujmović et al. [18] proved that cubic 3-connected planar graphs have planar slope number three
disregarding the slopes of three edges on the outer face, while Di Giacomo et al. [16] proved that
the planar slope number of (not necessarily 3-connected) subcubic planar graphs is at most four,
which is worst-case optimal.

We note that the slope number problem is related to orthogonal drawings, which are pla-
nar and with slopes {0, π2 } [19], and with octilinear drawings, which are planar and with slopes
{0, π4 ,

π
2 ,

3π
4 } [5]. All planar graphs with maximum vertex degree ∆ ≤ 4 (except the graph of the

octahedron) admit 2-bend orthogonal drawings [7, 34], and planar graphs have octilinear drawings
with no bends if ∆ ≤ 3 [16, 26], with one bend if ∆ ≤ 5 [5], and with two bends if ∆ ≤ 8 [28].

Of particular interest for us is the k-bend 1-planar slope number of 1-planar graphs, i.e., the
minimum number of distinct edge slopes needed to compute a 1-planar drawing of a 1-planar
graph such that each edge is a polyline with at most k ≥ 0 bends (we recall that not all 1-plane
graphs have a straight-line drawing [24]). For this problem, Di Giacomo et al. [15] proved an O(∆)
upper bound for the 1-planar slope number (k = 0) of outer 1-planar graphs, i.e., graphs having a
1-planar drawing with all vertices on the external boundary.

Finally, the angular resolution and the crossing resolution of a drawing are defined as the mini-
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mum angle between two consecutive segments incident to the same vertex or crossing, respectively
(see, e.g., [20, 23, 35]). A drawing is RAC if its crossing resolution is π/2. Eades and Liotta
proved that 1-planar graphs may not have straight-line RAC drawings [21], while Bekos et al. [4]
proved that every 1-planar graph has a 1-bend RAC drawing, but their algorithm might require
exponential area. Recently, Chaplick et al. [11] modified the algorithm of Bekos et al. such that a
given embedding is preserved.

Our contribution. We prove upper and lower bounds on the k-bend 1-planar slope number of
1-planar graphs, when k ∈ {0, 1, 2}. Our results are based on techniques that lead to drawings with
large vertex and crossing resolution. More precisely, our results can be summarized as follows.

(i) We prove that every 3-connected cubic 1-planar graph admits a 1-bend 1-planar drawing
that uses at most four distinct slopes and has both angular and crossing resolution π/4.

(ii) We prove that every subcubic 1-planar graph admits a 2-bend 1-planar drawing that uses at
most two distinct slopes and has both vertex and crossing resolution π/2. These bounds on
the number of slopes and on the angular/crossing resolution are clearly worst-case optimal.

(iii) We exhibit a 3-connected cubic 1-plane graph for which any embedding-preserving 1-bend
drawing uses at least three distinct slopes. The lower bound holds even if we are allowed to
change the outer face.

(iv) We present 2-connected subcubic 1-plane graphs with n vertices such that any embedding-
preserving straight-line drawing uses Ω(n) distinct slopes, and

(v) We show 3-connected 1-plane graphs with maximum degree ∆ ≥ 3 such that any embedding-
preserving straight-line drawing uses at least 9(∆− 1) distinct slopes, which implies that at
least 18 slopes are needed if ∆ = 3.

Paper organization. Section 2 contains preliminaries and basic results that will be used through-
out the paper. The 1-bend 1-planar slope number is studied in Section 3, while the 2-bend 1-planar
slope number is studied in Section 4. The lower bounds for the k-bend 1-planar slope number are
in Section 5.1 (k = 1) and in Section 5.2 (k = 0). We conclude in Section 6 with a list of interesting
open problems that arise from our research.

2 Preliminaries and Basic Results

Drawings and embeddings. We only consider simple graphs with neither self-loops nor multi-
ple edges. A drawing Γ of a graph G maps each vertex of G to a point of the plane and each edge
to a simple open Jordan arc between its endpoints. We always refer to simple drawings where two
edges can share at most one point, which is either a common endpoint or a proper intersection. A
drawing divides the plane into topologically connected regions, called faces; the unbounded region
is called the outer face. For a planar (i.e., crossing-free) drawing, the boundary of a face consists
of vertices and edges, while for a non-planar drawing the boundary of a face may also contain
crossings and parts of edges. An embedding of a graph G is an equivalence class of drawings of G
that define the same set of faces and the same outer face. A plane graph is a graph with a fixed
planar embedding. Similarly, a 1-plane graph is a graph with a fixed 1-planar embedding. Given a
1-plane graph G, the planarization G∗ of G is the plane graph obtained by replacing each crossing
of G with a dummy vertex. To avoid confusion, the vertices of G∗ that are not dummy vertices
are called real vertices. Moreover, we call the edges of G∗ that are incident to a dummy vertex
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Figure 1: Eliminating dummy cutvertices from G∗

fragments. The next lemma will be used in the following and can be of independent interest, as it
extends a similar result by Fabrici and Madaras [22].

Lemma 1 Let G = (V,E) be a 1-plane graph and let G∗ be its planarization. We can re-embed G
such that each edge is still crossed at most once and (i) no cutvertex of its planarization is a dummy
vertex, and (ii) if G is 3-connected, then its planarization is 3-connected.

Proof: We first show how to iteratively remove all cutvertices from G∗ that are dummy vertices.
Suppose that there is a cutvertex v in G∗ that is a dummy vertex. Let a, b, c, d be the neighbors
of v in clockwise order, so the edges (a, c) and (b, d) cross in G.

First, assume that one of the four edges of v, say (v, a), is a bridge, so removing v from G∗

gives a connected component A that contains neither b, c, d; see Figure 1a. We shrink A and move
it along the edge (a, c) such that the crossing between (a, c) and (b, d) is eliminated from G, and
no new crossing is introduced.

We can now assume that there is no bridge at v, so removal of v divides G∗ into two com-
ponents A and B. If a and c lie in the same component, G is disconnected as there is no path
from a to b; hence, assume w.l.o.g. that a, b ∈ A and c, d ∈ B; see Figure 1b. Hence, there is
a simple closed curve that passes through v and separates A and B. The existence of this curve
ensures that we can modify A and B independently. In particular, we can transform B as follows:
we shrink it, mirror it on any axis, and possibly rotate it such that, afterwards, we can reroute
the edge (a, c) along (a, v) and (v, c) and reroute (b, d) along (b, v) and (v, d). This eliminates the
crossing between (a, c) and (b, d) from G and again it creates no further crossings.

This shows the first part of the lemma. For the second part, suppose that G is 3-connected
and G∗ has no dummy vertex as a cutvertex; otherwise, apply the first part of the lemma. Assume
that there is a separation pair u, v in G∗ where v is a dummy vertex. Let again a, b, c, d be the
neighbors of v in clockwise order.

First, assume that u is a real vertex. The removal of u and v splits G∗ in at most four connected
components. If one of these connected components contains exactly one neighbor of v, say a, there
are at most two vertex-disjoint paths from a to c in G: the edge (a, c) and one path via u. But
this contradicts 3-connectivity. Hence, there are two connected components A and B that contain
two neighbors of v each; assume w.l.o.g. that A contains a. If A contains a and c, u is a cutvertex
in G, which contradicts 3-connectivity. If A contains a and b, we redraw A as described in the
previous case, reroute the edge (b, d) along (b, v) and (v, d) and reroute (a, c) along (a, v) and (v, c);
see Figure 2a. This eliminates the crossing between (a, c) and (b, d) from G. If A contains a and d,
we proceed analogously.

Second, assume that u is also a dummy vertex with neighbors a′, b′, c′, d′ in clockwise order.
Removal of u and v splits G∗ in at most four connected components. If one of these connected
components contains exactly one neighbor of v, say a, and exactly one neighbor of u, say a′, then
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there are at most two vertex-disjoint paths from a to c in G: the edge (a, c) and one path via
the edge (a′, c′). But this contradicts 3-connectivity. If one of the connected components contains
exactly three neighbors of v, say a, b, c, and exactly one neighbor of u, say a′, then d, a′ is a
separation pair in G, as it separates a, b, c from b′, c′, d′. Again, this contradicts 3-connectivity.
Hence, each of these connected components contains exactly two neighbors of one of v and u.
Let A be a connected component and assume w.l.o.g. that it contains a and one more neighbor
of v. If A contains a and c, there is some neighbor of u that is not in A, say a′. Since (a, c) ∈ A
and b, d /∈ A, all paths from a to a′ in G have to traverse the edge (a′, c′) or (b′, d′), so there are at
most two of them; a contradiction to 3-connectivity. If A contains a and b, we flip A and reroute
the edges (a, c) and (b, d) to eliminate their crossing from G. Note that, if A contains also exactly
two neighbors of u, this also eliminates the crossing between (a′, c′) and (b′, d′); see Figure 2b. If A
contains a and d, we proceed analogously.

Each step reduces the number of crossings in the embedding, so it terminates with an embedding
that has a 3-connected planarization. �

Slopes and ports. A drawing Γ is straight-line if all its edges are mapped to segments, or it is
k-bend if each edge is mapped to a chain of segments with at most k > 0 bends. The slope of an
edge segment of Γ is the slope of the line containing this segment. For convenience, we measure
the slopes by their angle with respect to the x-axis. Let S = {α1, . . . , αt} be a set of t distinct
slopes. The slope number of a k-bend drawing Γ is the number of distinct slopes used for the edge
segments of Γ. An edge segment of Γ uses the north (N) port (south (S) port) of a vertex v if it has
slope π/2 and v is its bottommost (topmost) endpoint. We can define analogously the west (W)
and east (E) ports with respect to the slope 0, the north-west (NW) and south-east (SE) ports
with respect to slope 3π/4, and the south-west (SW) and north-east (NE) ports with respect to
slope π/4. Any such port is free for v if there is no edge that attaches to v by using it.

Orderings. We will use a decomposition technique called canonical ordering [27]. Let G =
(V,E) be a 3-connected plane graph. Let δ = {V1, . . . ,VK} be an ordered partition of V , that is,
V1 ∪ · · · ∪ VK = V and Vi ∩Vj = ∅ for i 6= j. Let Gi be the subgraph of G induced by V1 ∪ · · · ∪ Vi
and denote by Ci the outer face of Gi. The partition δ is a canonical ordering of G if:

1. V1 = {v1, v2}, where v1 and v2 lie on the outer face of G and (v1, v2) ∈ E.
2. VK = {vn}, where vn lies on the outer face of G, (v1, vn) ∈ E.
3. Each Ci (i > 1) is a cycle containing (v1, v2).



6 Kindermann et al. Drawing Subcubic 1-Planar Graphs with . . .

(a) G

V6
V5

V4V3 V2

v1

v2

V1

V8V7

(b) δ

u

v1
v2

v

(c) uv-cut (d)

Figure 3: (a) A 3-connected cubic 1-plane graph G. (b) A canonical ordering δ of the planarization
G∗ of G; the real (dummy) vertices are black points (white squares). (c) The edges crossed by the
dashed line are a uv-cut of G5 with respect to (u, v); the two components have a yellow and a blue
background, respectively. (d) A 1-bend 1-planar drawing with 4 slopes of G.

4. Each Gi is 2-connected and internally 3-connected, that is, removing any two interior vertices
of Gi does not disconnect it.

5. For each i ∈ {2, . . . ,K − 1}, one of the following conditions holds:
(a) Vi is a singleton vi that lies on Ci and has at least one neighbor in G \Gi;
(b) Vi is a chain {vi1, . . . , vil}, both vi1 and vil have exactly one neighbor each in Ci−1, and

vi2, . . . , v
i
l−1 have no neighbor in Ci−1. Since G is 3-connected, each vij has at least one

neighbor in G \Gi.
Let v be a vertex in Vi, then its neighbors in Gi−1 (if Gi−1 exists) are called the predecessors of

v, while its neighbors in G \Gi (if Gi+1 exists) are called the successors of v. In particular, every
singleton has at least two predecessors and at least one successor, while every vertex in a chain
has either zero or one predecessor and at least one successor. Kant [27] proved that a canonical
ordering of G always exists and can be computed in O(n) time; the technique in [27] is such that
one can arbitrarily choose two adjacent vertices u and w on the outer face so that u = v1 and
w = v2 in the computed canonical ordering.

An n-vertex planar st-graph G = (V,E) is a plane acyclic directed graph with a single source
s and a single sink t, both on the outer face [13]. An st-ordering of G is a numbering σ : V →
{1, 2, . . . , n} such that for each edge (u, v) ∈ E, it holds σ(u) < σ(v) (thus σ(s) = 1 and σ(t) = n).
For an st-graph, an st-ordering can be computed in O(n) time (see, e.g., [12]) and every biconnected
undirected graph can be oriented to become a planar st-graph (also in linear time).

3 1-bend Drawings of 3-connected Cubic 1-planar Graphs

In this section we prove the following result.

Theorem 1 Every 3-connected cubic 1-planar graph admits a 1-bend 1-planar drawing using only
slopes in the set {0, π4 ,

π
2 ,

3π
4 } and having both angular and crossing resolution at least π

4 .

Let G be a 3-connected cubic 1-plane graph (see, e.g., Figure 3a). We begin by listing a few
assumptions on G. Let G∗ be the planarization of G. We can assume that G∗ is 3-connected (else
we can re-embed G by Lemma 1). For the description of the algorithm, we assume that there exists
some edge (v1, v2) whose vertices are both real. Later, we describe how to adjust the algorithm if
no such edge exists. We choose as outer face of G a face containing (v1, v2) (see Figure 3b).

Let δ = {V1, . . . ,VK} be a canonical ordering of G∗, let Gi be the graph obtained by adding
the first i sets of δ, and let Ci be the outer face of Gi. We give some definitions and notation that
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Figure 4: The left vertex of V4 has two L-successors, one in V5 and one in V6. The vertex is
L-attachable in G4 and in G5.

will be useful in the following. Note that a real vertex v of Gi can have at most one successor w
in some set Vj with j > i. We call w an L-successor (resp., R-successor) of v if v is the leftmost
(resp., rightmost) neighbor of Vj on Ci. Similarly, a dummy vertex x of Gi can have at most two
successors in some sets Vj and Vl with l ≥ j > i. In both cases, a vertex v of Gi having a successor
in some set Vj with j > i is called attachable. We call v L-attachable (resp., R-attachable) if v is
attachable and it has an L-successor (resp., R-successor) in G\Gi. See Figure 4. The upward edge
connecting v to its first L-successor (resp., first R-successor) uses either the slope 0 or π/4 (resp., 0
or 3π/4). Also, if both the successors of v are L-successors (resp., R-successors), the upward edge
connecting v to its second L-successor (resp., second R-successor) uses slope π/2.

Let u and v be two vertices of Ci, for i > 1. Denote by Pi(u, v) the path of Ci having u and
v as endpoints and that does not contain (v1, v2). Vertices u and v are consecutive if they are
both attachable and if Pi(u, v) does not contain any other attachable vertex. We say that u and v
are L-consecutive (resp., R-consecutive) if they are consecutive, u lies to the left (resp., right) of v
on Ci, and u is L-attachable (resp., R-attachable). Given two consecutive vertices u and v of Ci
and an edge e of Ci (and in particular of Pi(u, v)), a uv-cut of Gi with respect to e is a set of edges
of Gi that contains both e and (v1, v2) and whose removal disconnects Gi into two components,
one containing u and one containing v (see Figure 3c).

We are now ready to describe our drawing technique. We aim at computing an embedding-
preserving drawing Γi of Gi, for i = 2, . . . ,K, by adding one by one the sets of δ.

Definition 1 (Valid drawing.) A drawing Γi of Gi is valid, if:
P1 It uses only slopes in the set {0, π4 ,

π
2 ,

3π
4 };

P2 It is a 1-bend drawing such that the union of any two edge fragments that correspond to the
same edge in G is drawn with (at most) one bend in total.

A valid drawing ΓK of GK will coincide with the desired drawing of G, after replacing dummy
vertices with crossing points.

Construction of Γ2. We distinguish three cases, based on whether V2 is a real singleton, a
dummy singleton, or a chain. In all cases, the edge between v1 and v2 uses the SE port of v1 and
the SW port of v2 and, thus, has one bend. If a vertex v ∈ V2 is real, its adjacent edges use the W
port and the E port. If v is dummy, we use the S port and the E port (resp., N port) of v if it has
two R-successors (resp., two L-successors), and the W port and the SE port otherwise. Note that,
in any case, each of these edges has a horizontal segment. The cases are illustrated in Figure 5
and it is immediate to verify that all of them represent a valid drawing of G2.
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Figure 5: Construction of Γ2: (a) V2 is a real singleton; (b) V2 is a dummy singleton; (c) V2 is a
chain where v2

3 is a vertex with two R-successors.
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Figure 6: Stretching of Γi.

Construction of Γi, for 2 < i < K. We now show how to com-
pute a valid drawing of Gi, for i = 3, . . . ,K − 1, by incrementally
adding the sets of δ.

We aim at constructing a valid drawing Γi that is also stretch-
able, i.e., that satisfies the two properties below; see Figure 6 for an
illustration. These two properties will be useful to prove Lemma 2,
which defines a standard way of stretching a drawing by lengthen-
ing horizontal segments.

Definition 2 (Stretchable drawing.) A valid drawing Γi of Gi is stretchable (see Figure 6 for
an illustration), if:

P3 The edge (v1, v2) is drawn with two segments s1 and s2 that meet at a point p. Segment s1

uses the SE port of v1 and s2 uses the SW port of v2. Also, p is the lowest point of Γi, and
no other point of Γi belongs to the two lines that contain s1 and s2.

P4 For every pair of consecutive vertices u and v of Ci with u left of v on Ci, it holds that:
(a) If u is L-attachable, then for each vertical segment s in Pi(u, v), traversed upwards when

going from u to v, there is a horizontal segment in the subpath before s; Symmetrically,
if v is R-attachable, then for each vertical segment s in Pi(u, v) there is a horizontal
segment in the subpath before s, if s is traversed upwards when going from v to u;

(b) if u is L-attachable and v is R-attachable, then Pi(u, v) contains at least one horizontal
segment; and

(c) for every edge e of Pi(u, v) that contains a horizontal segment, there exists a uv-cut
of Gi with respect to e whose edges, other than (v1, v2), are all drawn as horizontal
segments in Γi with the following property: there exists a y-monotone curve that crosses
all the edges of the uv-cut but no other edge.

P5 The path Pi(v1, v2) is drawn x-monotone.

Lemma 2 Suppose that Γi is valid and stretchable, and let u and v be two consecutive vertices of
Ci. If u is L-attachable (resp., v is R-attachable), then it is possible to modify Γi such that any
ray with slope π/4 (resp., 3π/4) that originates at u (resp., at v) and that intersects the outer face
of Γi does not intersect any edge segment with slope π/2 of Pi(u, v). Also, the modified drawing is
still valid and stretchable.

Proof: Refer to Figure 7. Suppose there is a ray h that originates at u (the argument is analogous
for v) with slope π/4 that intersects the outer face of Γi and, in particular, some edge segment of
Pi(u, v). Let s be the first edge segment of Pi(u, v) that is intersected by h. By the slope of h, we
have that s is drawn with slope π/2. Then, s must be traversed upwards when going from u to v
in Pi(u, v), and thus by P4 there is a horizontal segment before s.
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Figure 7: Illustration for Lemma 2.

Let e be the edge containing this horizontal segment. By P4, there is a uv-cut with respect
to e and there is a y-monotone curve `uv that cuts the horizontal segments of this cut. Let Cu
and Cv be the two components defined by the uv-cut, such that Cu contains u and Cv contains
v. We shift all vertices in Cv and all edges having both end-vertices in Cv to the right by σ units,
for some suitable σ > 0. All vertices in Cu and all edges having both end-vertices in Cu are not
modified. Furthermore, the edges having an end-vertex in Cu and the other end-vertex in Cv are
all and only the edges of the uv-cut, and thus they all contain a horizontal segment in Γi that can
be stretched by σ units. Finally, note that (v1, v2) is also part of the uv-cut, but it does not contain
any horizontal segment; however, by P3 its two segments can be always redrawn by using the SE
port of v1 and the SW port of v2. For a suitable choice of σ, this operation removes the crossing
between h and s. Moreover, no new edge crossing can appear in the drawing because `uv intersects
only the edge segments of the cut. Hence, we can repeat this procedure until all crossings between
h and segments of Pi(u, v) are resolved. The resulting drawing is clearly still valid and stretchable.

�

Definition 3 (Attachable drawing.) A valid and stretchable drawing Γi of Gi is attachable, if:
P6 At any attachable real vertex v of Γi, its N, NW, and NE ports are free.
P7 Let v be an attachable dummy vertex of Γi.

• If v has two R-successors in G \ Gi, it is drawn as in one of Cases C1s, C2, C2s, C3
in Figure 8.

• If v has two successors in G \ Gi such that at most one is an R-successor, it is drawn
as in one of Cases C1, C2, C2s, C3 in Figure 8.

• If v has only one successor which is in G\Gi, then it is drawn as in Case C4 in Figure 8.

• If v has one L-successor in G \Gi and one successor in Gi, then it is drawn as in one
of the possible cases illustrated in Figure 9, except case C1sR.

• If v has one R-successor in G \Gi and one successor in Gi, then it is drawn as in one
of the possible cases illustrated in Figure 9, except case C1R.

As a consequence of P7, the following observation holds.
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addition v = ul addition v = urconfiguration at v
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C3

C1L

C2sL
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C3L
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C4L C4R
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Figure 8: Cases for attaching the first success of a dummy vertex. The regions with a dark blue
background are inner faces of the drawing before the addition of a singleton or of a chain; the
regions with a light blue background are inner faces created by the addition of a singleton or of a
chain.
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Observation 1 An edge (u, v) of an attachable drawing Γi of Gi is drawn as a single vertical
segment if and only if v is the second L-successor or the second R-successor of u.

Moreover, observe that Γ2, besides being valid, is also stretchable and attachable by construc-
tion (see also Figure 5). Assume that Gi−1 admits a valid, stretchable, and attachable drawing
Γi−1, for some 2 ≤ i < K − 1; we show how to add the next set Vi of δ so to obtain a drawing Γi
of Gi that is valid, stretchable, and attachable. We distinguish between the following cases.

Case 1. Vi is a singleton, i.e., Vi = {vi}. We further distinguish based on whether vi is real or
dummy. Note that if vi is real, it has two neighbors on Ci−1, while if it is dummy, it can have
either two or three neighbors on Ci−1. Let ul and ur be the first and the last neighbor of vi,
respectively, when walking along Ci−1 in clockwise direction from v1. We will call ul (resp., ur)
the leftmost predecessor (resp., rightmost predecessor) of vi.

Case 1.1. Vertex vi is real. Then, ul and ur are its only two neighbors in Ci−1. Each of ul and
ur can be real or dummy. If ul (resp., ur) is real, we draw (ul, v

i) (resp., (ur, v
i)) with a single

segment using the NE port of ul and the SW port of vi (resp., the NW port of ur and the SE port
of vi).

Suppose now ul is dummy. If ul has just one successor or it has two successors and vi is the
first one that is placed, we distinguish between the cases of Figure 8.

If ul has two successors and vi is the second one that is placed, we distinguish between the
various cases of Figure 9. Observe that, in order to guarantee at most one bend per edge, Case
C1L requires a local reassignment of one port of ul. Such a reassignment is always doable as the
modified edge does not cross any other edge (possibly after a suitable stretching of the drawing
through the edge at ul using the W port). The edge (ur, v

i) is handled similarly. Vertex vi is
then placed at the intersection of the lines passing through the assigned ports of ul and ur, which
always intersect by construction.

Observe that, by construction, each port at vi is used at most once, expect one. Namely,
the S port at vi is the only one that potentially can be used by both ul and ur. However, we
argue that this is not the case, namely we argue that the S port at vi is not used by both edges
connecting to its predecessors. For this, we assume that both edges use the S port in order to
derive a contradiction. By Observation 1, the edge (ul, v

i) is drawn as a single vertical segment
and thus uses the S port of vi only if ul has an L-successor x in Gi−1, and analogously, the edge
(ur, v

i) uses the S port of vi only if ur has an R-successor y in Gi−1; see Figure 10. Note that x = y
is possible but x 6= ur (otherwise, ur would have no R-successor on Ci−1). Since the first edge
(ul, x) on Pi−1(ul, ur) goes from a predecessor to a successor and the last edge (y, ur) goes from a
successor to a predecessor, there has to be a vertex z without a successor on the path (where z = x
or z = y is possible). But then z has no successor in Gi−1 and, since every vertex in a canonical
order has at least one successor, z has to have a successor in G \ Gi−1. Hence, z is attachable.
This leads to a contradiction and so ul and ur are not consecutive.

To avoid crossings between Γi−1 and the new edges (ul, v
i) and (ur, v

i), we apply Lemma 2 to
suitably stretch the drawing. In particular, by P5, possible crossings can occur only with vertical
edge segments of Pi−1(ul, ur).

Case 1.2. Vertex vi is dummy. By 1-planarity, the two or three neighbors of vi on Ci−1 are all
real. If vi has two neighbors, we draw (ul, v

i) and (ur, v
i) as shown in Figure 11a, while if vi has

three neighbors, we draw (ul, v
i) and (ur, v

i) as shown in Figure 11b. Analogous to the previous
case, vertex vi is placed at the intersection of the lines passing through the assigned ports, which
always intersect by construction, and avoiding crossings between Γi−1 and the new edges (ul, v

i)
and (ur, v

i) by applying Lemma 2. In particular, if vi has three neighbors on Ci−1, say ul, w, and
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addition v = ul addition v = urconfiguration at v
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Figure 9: Cases for attaching the second successor of a dummy vertex. The regions with a dark
blue background are inner faces of the drawing before the addition of a singleton or of a chain; the
regions with a light blue background are inner faces created by the addition of a singleton or of a
chain.
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ul
urx

y
z

Gi−1

Figure 10: Illustration for Case 1.1.

ul
ur

vi

(a)

ur

ul

vi

(b)

Figure 11: Illustration for the addition of a dummy singleton.

ur, by P4 there is a horizontal segment between ul and w, as well as between w and ur. Thus,
Lemma 2 can be applied not only to resolve crossings, but also to find a suitable point where the
two lines with slopes π

4 and 3π
4 meet along the line with slope π

2 that passes through w.

Case 2. Vi is a chain, i.e., Vi = {vi1, vi2, . . . , vil}. We find a point as if we had to place a real vertex
v whose leftmost predecessor is the leftmost predecessor of vi1 and whose rightmost predecessor
is the rightmost predecessor of vil . We then draw the chain slightly below this point (i.e., in the
half-plane below the horizontal line through this point) by using the same technique used to draw
V2. Note that, if vi1 is dummy we use case C2 of Figure 8, and similarly if vil is dummy we use case
C2s of Figure 8. Again, Lemma 2 can be applied to resolve possible crossings.

Lemma 3 If a path Pi(u, v) of Γi has a vertex whose y-coordinate is strictly smaller that those of
u and v, then Pi(u, v) contains a horizontal segment.

Proof: Let w be the lowest vertex of Pi(u, v). We know that the y-coordinate of w is strictly
smaller than these of u and v. If w is incident to an edge of Pi(u, v) that is part of a chain,
then such edge contains a horizontal segment by construction. Else, since w is the lowest vertex,
both its two incident edges of Pi(u, v) are upward with respect to w (i.e., the vertex preceding w
and the vertex following w along Pi(u, v) are both successors of w), thus w has degree four and,
consequently, is a dummy vertex. In this case, all possible configurations are shown in Figure 9,
and in each of them there is an edge incident to w that contains a horizontal segment. �

Lemma 4 Drawing ΓK−1 is valid, stretchable, and attachable.

Proof: In all the cases used by our construction, we guaranteed the drawing to be valid and
attachable. Concerning stretchability, observe that P3 holds clearly throughout the construction.
To show P4 and P5, we use induction on i ≤ K − 1 as follows.

In the base case i = 2, we have that Γ2 is clearly stretchable by construction. When adding Vi
to Γi−1, P4 holds by induction for all pairs of vertices that are consecutive both in Γi−1 and in Γi,
because Pi−1(u, v) = Pi(u, v). Similarly, P5 holds by induction for all edges that appear on the
boundary of both Γi−1 and in Γi. For the edges added in Γi, one can easily verify that P5 holds
by looking at Figures 8, 9, and 11.
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v1

vn

(a) vn is dummy

v1

vn

(b) vn is real

Figure 12: Illustration for the addition of Vk.

Let ul and ur be the two vertices on Ci−1 used by Vi to attach to Γi−1. Observe that by P4(b)
there is at least one horizontal edge e on Pi−1(ul, ur), and that P4(c) holds for e by induction.
Now for any edge e′ on Pi(ul, ur) that contains a horizontal segment, a uv-cut of Gi with respect
to e′ can be obtained by extending the uv-cut of Gi−1 with respect to e so to pass through e′ first.
Hence, P4(c) holds for Γi.

Concerning P4(a–b), observe that the vertices in Vi are all attachable vertices. We distinguish
the following cases.
Case A. Vi is singleton. Then, vi is consecutive with either ul or the attachable vertex w before ul,
and with either ur or the attachable vertex w′ after ur.

Case A.1. vi is consecutive to ul or to ur. In the former case, ul has degree four and hence is
dummy. The configurations at ul are those shown as cases C1L, C2L, C2sL, C3L in Figure 8, and
in each of them edge (ul, v

i) contains a horizontal segment. In the latter case, ur has degree four
and hence is dummy. The configurations at ur are those shown as cases C1R, C1sR, C2R, C2sR,
C3R in Figure 8. In each of them, except C1R, edge (ur, v

i) contains a horizontal segment. By
P7, C1R is only used if ur has no more R-successors, thus ur is not R-attachable and we don’t
require a horizontal segment.

Case A.2 vi is consecutive to w (a symmetric argument applies to w′). Then, observe first that
P4(a–b) hold for Pi−1(w, ul) = Pi(w, ul). Also, observe that if there is a horizontal segment in
Pi(w, ul), then P4(a–b) hold for Pi(w, v

i) (even if (ul, v
i) contains a vertical segment and even if

vi is real).

Case A.2.1. w is real. Since w and vi are consecutive, w is attachable, which implies it does not
have successors in Gi. It follows that in the path Pi(w, v

i), the first edge at w either has horizontal
segment (and we are done) or it goes downward. In the latter case, by construction, the last edge
of Pi(w, v

i), namely (ul, v
i), is drawn upward. It follows that Pi(w, v

i) contains a vertex whose
y-coordinates is strictly smaller than those of w and vi, and the existence of a horizontal segment
follows by Lemma 3.

Case A.2.2. w is dummy. Consider again the first edge of Pi(w, v
i). If such edge goes downward,

the same argument as in the previous case applies. Else, this edge is drawn as in one of C1L, C2L,
C2sL, and C3L shown in Figure 8, and in each of these cases it contains a horizontal segment.

Case B. Vi is a chain. Note first that P4(a–b) hold for each pair of consecutive vertices u and v
such that both of them are in Vi, since all edges of Vi contain a horizontal segment. If u ∈ Vj and
v ∈ Vi (resp., u ∈ Vi and v ∈ Vj) with j < i, then v = vi1 (resp., u = vil), and a similar argument
as for the singletons can be applied. This ends the case analysis and completes the proof. �

Construction of ΓK . We now show how to add VK = {vn} to ΓK−1 so as to obtain a valid
drawing of GK , and hence the desired drawing of G after replacing dummy vertices with crossing
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points. Recall that (v1, vn) is an edge of G by the definition of canonical ordering. We distinguish
whether vn is real or dummy. Note that if vn is dummy, then its four neighbors are all real and
hence their N, NW, and NE ports are free by P6, so we can draw vn as depicted in Figure 12a.
If vn is real, then it has three neighbors in ΓK−1. Vertex v1 is real by construction, but the other
two neighbors can be dummy. If these neighbors are real, then they are attached as depicted in
Figure 12b; if one of them is dummy (or both), then we distinguish between the same cases as
earlier, as shown in Figure 14. Finally, since ΓK−1 is attachable, we use Lemma 2 to avoid crossings
and to find a suitable point to place vn. A complete drawing is in Figure 3d.

Embeddings with no uncrossed edge. Recall that we assume that there is some edge (v1, v2)
in the planarization of G∗ such that both v1 and v2 are real. However, there are 1-planar drawings
of 3-connected 1-planar graphs such that every edge is crossed and the planarization is also 3-
connected. In this case, we do the following; see Figure 13. We choose any two crossing edges
(v1, vb) and (v2, va), remove them and add two dummy edges (v1, v2) and (va, vb) in a planar way
to obtain the graph H. We construct a valid drawing of H where we use as outer face the face
containing the edge (v1, v2) but not (va, vb). Γ2 is drawn as depicted in Figure 13c, i.e., the edge
(va, vb) is a horizontal segment. After constructing a drawing of H, we replace (v1, v2) and (va, vb)
by the original edges as shown in Figure 13d. This gives a valid drawing of the original graph.

Theorem 1 follows by observing that the minimum angle between two consecutive edge segments
around a crossing or around a vertex is at least π

4 .

4 2-bend Drawings of Subcubic 1-planar Graphs

In this section, we show how to compute orthogonal drawings of all subcubic 1-planar graphs by
using (at most) two bends per edge.

Theorem 2 Every subcubic 1-plane graph admits a 2-bend 1-planar drawing using only slopes in
the set {0, π2 } and having both angular and crossing resolution at least π

2 .

Liu et al. [34] presented an algorithm to compute orthogonal drawings for planar graphs of
maximum degree four with at most two bends per edge (except the octahedron, which requires
three bends on one edge). We make use of their algorithm for handling 2-connected graphs. The
algorithm chooses two vertices s and t and computes an st-ordering of the input graph G = (V,E).
Let V = {v1, . . . , vn} with σ(vi) = i, 1 ≤ i ≤ n. Liu et al. now compute an embedding of G such

v1 v2

va vb

(a)

v1 v2

va vb

(b)

v1

v2
va vb

(c)

v1

v2
va vb

(d)

Figure 13: Illustration for the case that there is no uncrossed edge.
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addition v = um addition v = urconfiguration at v
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Figure 14: Cases for dummy vertices that are adjacent to vn. The middle neighbor of vn is um.
The regions with a dark blue background are inner faces of the drawing before the addition of vn;
the regions with a light blue background are inner faces created by the addition of vn.
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vertical horizontal L-shapes C-shapes U-shapes

Figure 15: The shapes to draw edges.

that v2 lies on the outer face if deg(s) = 4 and vn−1 lies on the outer face if deg(t) = 4; such an
embedding exists for every graph with maximum degree four except the octahedron.

In the algorithm by Liu et al., the edges around each vertex vi, 1 ≤ i ≤ n are assigned to the
four ports as follows. If vi has only one outgoing edge, it uses the N port; if vi has two outgoing
edges, they use the N and E port; if vi has three outgoing edges, they use the N, E, and W port;
and if vi has four outgoing edges, they use all four ports. Symmetrically, the incoming edges of vi
use the S, W, E, and N port, in this order. Note that every vertex except s and t has at least
one incoming and one outgoing edge; hence, the given embedding of the graph provides a unique
assignment of edges to ports. The edge (s, t) (if it exists) is assigned to the W port of both s and t.
If deg(s) = 4, the edge (s, v2) is assigned to the S port of s (otherwise the port remains free);
if deg(t) = 4, the edge (t, vn−1) is assigned to the N port of t (otherwise the port remains free).

Finally, they go through all vertices as prescribed by the st-ordering, placing them bottom-
up. The way an edge is drawn is determined completely by the port assignment, as depicted in
Figure 15.

Let G = (V,E) be a subcubic 1-plane graph. We first re-embed G according to Lemma 1.
Let G∗ be the planarization of G after the re-embedding. Then, all cutvertices of G∗ are real
vertices, and since they have maximum degree three, there is always a bridge connecting two 2-
connected components. Let G1, . . . , Gk be the 2-connected components of G, and let G∗i be the
planarization of Gi, 1 ≤ i ≤ k. We define the bridge decomposition tree T of G as the graph having
a node for each component Gi of G, and an edge (Gi, Gj), for every pair Gi, Gj connected by a
bridge in G. We root T in G1. For each component Gi, 2 ≤ i ≤ k, let ui be the vertex of Gi
connected to the parent of Gi in T by a bridge and let u1 be an arbitrary vertex of G1. We will
create a drawing Γi for each component Gi with at most two slopes and two bends such that ui
lies on the outer face.

To this end, we first create a drawing Γ∗i of G∗i with the algorithm of Liu et al. [34] and then
modify the drawing. Throughout the modifications, we will make sure that the following invariants
hold for the drawing Γ∗i .
(I1) Γ∗i is a planar orthogonal drawing of G∗i and its edges are drawn as in Figure 15;
(I2) ui lies on the outer face of Γ∗i and its N port is free;
(I3) every edge is y-monotone from its source to its target (which excludes edges drawn with

U-shapes);
(I4) every edge with two bends is a C-shape, there are no edges with more bends;
(I5) if a C-shape ends in a dummy vertex, it uses only E ports; and
(I6) if a C-shape starts in a dummy vertex, it uses only W ports.

Note that the algorithm by Liu et al. has additional invariants about the exact ports used at
each vertex based on the number of incoming and outgoing edges; these invariants do not hold
throughout our modifications, so it can happen that, e.g., the S or the N port of a vertex is free,
or an outgoing edge uses the W port instead of the E port.
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Lemma 5 Every G∗i admits a drawing Γ∗i that satisfies invariants (I1)–(I6).

Proof: By construction, G∗i is biconnected. First, observe that every face in G∗i contains at least
two real vertices since no two dummy vertices can be adjacent. Hence, there is some face that
contains the real vertex t = ui and some real vertex s. We use these two vertices to compute an
st-order σ and use the algorithm of Liu et al. to obtain the drawing Γ∗i of G∗i . We now show that
this drawing satisfies all invariants. Invariants (I1) and (I2) are trivially satisfied.

Since s and t are real vertices, both have degree at most 3. All other vertices have at least one
incoming and one outgoing edges. Hence, no incoming edge can use the N port and no outgoing
edge can use the S port. So there are no U-shapes in the drawing; since U-shapes are the only edges
that are not drawn y-monotone from its source to its target, this satisfies (I3). By construction,
all edges in G∗i are drawn with at most 2 bends; hence, invariant (I4) holds.

Consider a dummy vertex v in G∗i with neighbors a, b, c, d in clockwise order; hence, the edges
(a, c) and (b, d) cross in the given embedding of Gi. Assume w.l.o.g. that (v, a) uses the S port,
(v, b) uses the W port, (v, c) uses the N port, and (v, d) uses the E port at v. Since there are no
U-shapes in the drawing, both (v, a) and (v, c) have to be drawn as a vertical or an L-shape, so
they both have at most 1 bend.

Consider now the edges (v, b) and (v, d). Both edges are drawn as a horizontal, an L-shape,
or a C-shape. Recall that b and d are real vertices, so they have at most degree 3. If (v, b) is an
outgoing edge of b, it uses the N or the E port at b, but it uses the W port at v, so it cannot be a
C-shape. If (v, b) is an incoming edge of b, it uses the W or the S port at b, and it can only be a
C-shape if it uses the W one. Symmetrically, if (v, d) is an outgoing edge of d, it uses the N port
or the E port at d and it can only be a C-shape if it uses the E one. If (v, d) is an incoming edge
of d, it uses the W or the S port at d, but it uses the E port at v, so it cannot be a C-shape. This
establishes invariants (I5) and (I6) and proofs the lemma. �

We now iteratively remove the C-shapes from the drawing while maintaining the invariants. We
make use of a technique similar to the stretching in Section 3. We lay an orthogonal y-monotone
curve S through our drawing that intersects no vertices. Then we stretch the drawing by moving S
and all features that lie right of S to the right by some distance d, and all points that lie on S are
stretched to horizontal segments of length d. After this stretch, in the area between the old and
the new position of S, there are no vertices, only horizontal segments of edges that are intersected
by S. The same operation can be defined symmetrically for a x-monotone curve that is moved
upwards.

Lemma 6 Every Gi admits an orthogonal 2-bend drawing such that ui lies on the outer face and
its N port is free.

Proof: We start with a drawing Γ∗i of G∗i that satisfies invariants (I1)–(I6), which exists by
Lemma 5. By (I2), ui lies on the outer face and its N port is free. If no dummy vertex in Γ∗i is
incident to a C-shape, by (I4) all edges incident to dummy vertices are drawn with at most 1 bend,
so the resulting drawing Γi of Gi is an orthogonal 2-bend drawing. Otherwise, there is a C-shape
between a real vertex u and a dummy vertex v. We show how to eliminate this C-shape without
introducing new ones while maintaining all invariants.

We first prove the case that (u, v) is directed from u to v, so by (I5) it uses only E ports. We
do a case analysis based on which ports at u are free. Note that our modifications also change
port assignments at real vertices, so we cannot assume that the invariants on the used ports by
Liu et al. hold. So it might happen that after some modifications the N port of a vertex is free.
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In particular, we will often first move the edge that uses the N port to another port and then use
Case 1 to resolve the resulting configuration. Hence, we present this case first, although it cannot
happen in the very first step of the algorithm.

u

v

(a)

u

v

(b)

u

v

(c)

Figure 16: Proof of Lemma 6, Case 1.

Case 1. The N port at u is free; see Figure 16. Create a curve S as follows: Start at some point p
slightly to the top left of u and extend it downward to infinity. Extend it from p to the right until
it passes the vertical segment of (u, v) and extend it upwards to infinity. Place the curve close
enough to u and (u, v) such that no vertex or bend point lies between S and the edges of u that lie
right next to it. Then, stretch the drawing by moving S to the right such that u is placed below
the top-right bend point of (u, v). Since S intersected a vertical segment of (u, v), this changes the
edge to be drawn with four bends. However, now the rectangular region between u and the second
bend point of (u, v) is empty and the N port of u is free, so we can make an L-shape out of (u, v)
that uses the N port at u. This does not change the drawing style of any edge other than (u, v),
so all the invariants are maintained and the number of C-shapes is reduced by one.

Case 2. The N port at u is used by an edge (u,w) and the W port is free. We distinguish three
more cases based on the drawing style of (u,w).
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u
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w

(b)

u

v
w

(c)

Figure 17: Proof of Lemma 6, Case 2.1.

Case 2.1. (u,w) is a vertical edge; see Figure 17. We create a curve S as in Case 1 except that
we do not pass the vertical segment of (u, v) but extend it upwards to infinity before. We stretch
the drawing by moving S to the right such that u is placed below the top-right bend point of (u, v).
Now the edge (u,w) is drawn with 2 bends, but the area between u and the two bend points is
empty and the W port of u is unused, so we can make an L-shape out of (u,w) that uses the W
port at u. Furthermore, similar to Case 1, the rectangular region between u and the top-right
bend point of (u, v) is free and now the N port of u is unused, so we can make an L-shape out of
(u, v) that uses the N port at u.

Case 2.2. (u,w) is an L-shape and w lies to the left of u; see Figure 18. Assume first that w lies
below v. We claim that there is no vertex in the rectangular region bounded by the bend point
of (u,w) and the bottom bend point of (u, v). Assume to the contrary that there is some vertex
in this region and let x be the bottom-most one. Since Gi is a directed s-t-graph and all edges
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Figure 18: Proof of Lemma 6, Case 2.2.

are drawn y-monotone from their source to their target, there has to a y-monotone path from s
to x. Since the E and the N port of u are already used, the only way to enter this region is by
intersecting (u,w) or (u, v), which contradicts invariant (I1).

Hence, this region is empty and we can move u upwards to the same y-coordinate as w. Now
(u,w) uses the W port at u and we can use Case 1 to make (u, v) an L-shape.

On the other hand, if w does not lie below v, we can use the same argument that the area
described above, but bounded from the top by the y-coordinate of v, is empty. However, there has
to be an edge that uses the S port of v, and it has to be y-monotone by invariant (I3), so its source
has to lie below v; a contradiction.
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w
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Figure 19: Proof of Lemma 6, Case 2.3.

Case 2.3. (u,w) is an L-shape and w lies to the right of u; see Figure 19. By the same argument
as in Case 2.2, w has to lie below v. We can also use the exact argument to show that the
rectangular region between (u,w) and (u, v) is empty.

We create a curve S as in Case 2.1. We stretch the drawing by moving S to the right such
that u is placed directly below w. Because of the empty region, we can now make (u,w) vertical
and then use Case 2.1 to make (u, v) an L-shape.
Case 3. The N port and the W port at u are used. Let (u,w) be the edge that uses the W port
at u; since (u, v) is an outgoing edge and the edge at the N port has to be outgoing by invariant
(I3), (u,w) is an incoming edge at u. By invariants (I3) and (I5), it has to be drawn as a horizontal
segment or as an L-shape such that w lies below u. We distinguish two more cases based on the
drawing style of (u,w).

Case 3.1. (u,w) is an L-shape and w lies below u; see Figure 20. We create a curve S as follows:
We start at some point p slightly to the top left of w and extend it downward to infinity. Then
we extend it from p to the right until it passes u and extend it upwards to infinity. We place the
curve close enough to (u,w) such that no vertex or bend point lies between S and (u,w). Then, we
stretch the drawing by moving S to the right such that w is placed below u. After this operation,
the S port of u is free and there is no edge or vertex on the vertical segment between u and w, so
we can make (u,w) a vertical edge and then use Case 2 to make (u, v) an L-shape.
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Figure 20: Proof of Lemma 6, Case 3.1.
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Figure 21: Proof of Lemma 6, Case 3.2.

Case 3.2. (u,w) is a horizontal edge and w is at the same y-coordinate as u; see Figure 21. We
now create an x-monotone curve S as follows: We start at some point p slightly to the top left of u
and extend it leftward to infinity. Then we extend it from p to the bottom until it passes (u,w)
and extend it rightwards to infinity. We place the curve close enough to (u,w) such that no vertex
or bend point lies between S and (u,w). Then, we stretch the drawing by moving S upwards for
a short distance. After this operation, the S port of u is free and the whole rectangular region
between w and u is empty, so we can make (u,w) an L-shape and then use Case 2 to make (u, v)
an L-shape.
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Figure 22: Proof of Lemma 6, Case 3.3.

Case 3.3. (u,w) is a C-shape; see Figure 22. We create a y-monotone curve S as follows: We
start at some point p slightly to the bottom right of u and extend it upward to infinity. Then
we extend it from p to the left, following the upper horizontal segment of (u,w) until it reaches
the vertical segment of (u,w) and then extend it downwards to infinity. We place the curve close
enough to (u,w) such that no vertex or bend point lies between S and (u,w). Then, we stretch the
drawing by moving S to the right such that the whole rectangle between u and the bottom bend
of (u,w) is empty. Because of the empty area, we can now make (u,w) an L-shape that uses the
S port at u. Hence, the W port of u is now free and we can use Case 2 to make (u, v) an L-shape.
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The case in which (u, v) is directed from v to u is completely symmetric: rotate the drawing
by 180◦, then (u, v) is again directed from u to v and uses only E ports. We only have to make
sure that we do not use the S port of u if u = ui, which would violate invariant (I2) after rotating
back. This can only happen in Case 3; however, since ui has degree 2 and the E port is used by
(ui, v), we are in Case 1 or 2, in which the S port is untouched, so invariant (I2) holds.

To conclude, we note that each of the above operations maintains all the invariants. Hence, by
repeating them for every C-shape, we obtain the desired drawing of Gi. �

Finally, we combine the drawings Γi to a drawing Γ of G. Recall that every cutvertex is real
and two biconnected components are connected by a bridge. Let Gj be a child of Gi in the bridge
decomposition tree. We have drawn Gj with uj on the outer face and a free N port. Let vi be
the neighbor of uj in Gi. We choose one of its free ports, rotate and scale Γj such that it fits into
the face of that port, and connect uj and vi with a vertical or horizontal segment. Doing this for
every biconnected component gives an orthogonal 2-bend drawing of G and hence concludes the
proof of Theorem 2.

5 Lower Bounds for 1-plane Graphs

In this section, we provide lower bounds on the slope number for 1-bend and straight-line 1-planar
drawings of 1-plane graphs. A 1-plane graph is specified by the combinatorial embedding of the
planarization of some 1-planar drawing.

5.1 1-bend Drawings

The first lower bound we prove holds for embedding-preserving 1-bend drawings of 3-connected
subcubic 1-plane graphs. The gap between this lower bound and upper bound of Theorem 1 is only
one unit, however, the algorithm used to prove Theorem 1 may use a different 1-planar embedding
of the input graph.

Theorem 3 There exists a 3-connected subcubic 1-plane graph such that any embedding-preserving
(fixed edge order around vertices) 1-bend drawing uses at least three distinct slopes.

Proof: We show that any drawing of K4 that uses only two slopes has a pair of crossing edges.
Let G be K4 and assume that two slopes suffice. Now consider the boundary of the drawing, which
defines a polygon Π. Note that Π has at least four convex corners since otherwise we would need
three slopes. Every convex corner has to use two consecutive ports, hence every convex corner is
a degree-2 vertex and must be a bend bend point. Consider the set X consisting of the leftmost,
rightmost, bottommost and topmost segments of Π (a segment is a consecutive set of edges with
the same slope). The endpoint of any of those segments has to be a bend point (no crossing and no
vertex, due to the used ports). Since on a segment no bend can be adjacent to another bend or a
crossing, every segment of X contains one of the vertices of G in the interior. Let vt be the vertex
on the topmost segment and vb be the vertex on the bottommost segment. Note that vt and vb
have the same x-coordinate since otherwise we need two bends for their connecting edge. For the
same reason the two other vertices (v`, vr) have the same y-coordinate. As a consequence, the edges
connecting vt and vb, and the edges connecting vr and v` are bendless and cross each other. The
remaining four edges have the bends appearing on Π and thus form the boundary. This is the only
possibility for a 1-bend 1-planar drawing of K4 with two slopes; see Fig. 23a. Combinatorially, this
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Figure 23: (a) The only way to draw K4 in a 1-planar way and with at most 1 bend per edge with
two slopes up to affine transformations. (b) A different embedding using three slopes.
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Figure 24: The construction for Theorem 4: (a) The graph G5; (b) a straight-line drawing of G3;
(c) the tower of the Wis (schematic).

is a drawing of the nonplanar embedding of K4. Thus, for the planar embedding of G no 1-bend
1-planar drawing with 2 slopes exists. As a remark, for any embedding of K4 three slopes suffice
as indicated by Fig. 23b. �

5.2 Straight-line Drawings

We now give lower bounds for bendless drawings. We exhibit 1-plane graphs with vertex degree
two such that any embedding-preserving straight-line drawing uses a number of bends that grows
linearly with the size of the graph. This construction is the same as the one used by Hong et
al. [24] to prove an exponential area lower bound for embedding-preserving straight-line drawings
of 1-plane graphs, with two edges added to make the graph 2-connected.

Theorem 4 There exist 2-connected 2-regular 1-plane graphs with n vertices such that any embedding-
preserving straight-line drawing.

Proof: Let Gk be the plane graph given by the planarization of the drawing Γk of the cycle
Ck = a1 . . . , ak+1, bk+1, . . . , b1, a1 as shown in Figure 24a. We denote the crossing between two
edges aiai+1 and bibi+1 with ci. Let Wi be the quadrilateral face of Gk with vertices ci−1, ai, ci
and bi. Note that the edges in Wi incident to ci and the edges in Wi+1 incident to ci have the
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Figure 25: The construction for Lemma 7: (a) The graph G; (b) a straight-line drawing of G; (c)
rearrangement of G (schematic).

same (pair of) slopes in any straight-line drawing of Ck. Hence, in any straight-line embedding-
preserving redrawing of Γk we can rotate Wi+1 by π around ci and align it with Wi such that
the edges meeting in ci of both quadrilaterals overlap. The rotation will maintain the slopes. We
do this for every Wi and end up with a sequence of disjoint copies of all Wi (see Figure 24c).
This gives a different drawing, but it uses the same slopes. (We changed the drawing to make
the analysis easier.) For all 1 < i < k the supporting lines of aici and ai+1ci+1 differ by rotation
(angle < π) in the same direction. The total rotation of those edges cannot exceed π, since when
radially sweeping from aici to ai+1ci+1 we cannot pass the slope of the (imaginary) edge b2a2. As
a consequence, the slopes of all edges aici are different and thus also all the slopes of the edges
aiai+1 have to be different. �

Note that the graphs used for Theorem 4 cannot be augmented to become 3-connected, unless
either we modify their embedding or we cross an edge twice. Hence, we now study lower bounds for
3-connected 1-plane graphs. We first exhibit cubic graphs that require a relatively large number of
slopes (namely, 18), and then extend this construction to general 3-connected 1-plane graphs with
maximum vertex degree ∆, for which we prove a lower bound linear in ∆.

Lemma 7 There exist 3-connected cubic 1-plane graphs such that any embedding-preserving straight-
line drawing uses at least eighteen distinct slopes.

Proof: Consider the graph G depicted in Figure 25a–b. To simplify the analysis we exploit a
similar idea as in Theorem 4. Let xi be the crossing between aici and ai+1ei (indices modulo 3).
Fix any straight-line drawing of G and let Ti be the triangle eicixi including the two segments eidi
and cidi. For i = 1, 2, 3 we cut Ti, rotate it by π around xi and put it back to the drawing.
This constructs a new drawing with the same set of slopes. The modified drawing contains a
pseudo-triangle (polygon with exactly three convex corners), whose chains (aicidieiai+1) have four
edges (see Figure 25c). Further, for every chain there is an edge (eici) between the second and
fourth vertex cutting off di. The edges of a pseudo-triangle have different slopes. Thus, we have
12 different slopes here. Moreover, if you traverse the edges of a pseudo-triangle in cyclic order
they will be ordered by slope. Since aibi is in between aici and aiei+2 when doing a radial sweep
we have three more distinct slopes. Finally, we note that replacing the edges eidi and cidi with
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Figure 26: The construction for Theorem 5.

eici gives another pseudo triangle that avoids the slopes of eidi and cidi. As a consequence, the
edges eici will give us three new slopes and we end up with eighteen different slopes.

To obtain an infinite family of graphs, observe that we do not use the edges between b- and f -
vertices in our analysis. Hence, we can subdivide the edges (b1, f3) and (b2, f1) several times and
connect pairs of subdivision vertices. �

Theorem 5 There exist 3-connected 1-plane graphs with maximum vertex degree ∆ such that any
embedding-preserving straight-line drawing uses at least 9(∆− 1) distinct slopes.

Proof: Consider the graph in Figure 26. The degree of ai, ci and ei is ∆.

We can repeat the argument of the proof of Lemma 7. There are only two differences: (i)
instead of a single edge aibi there is a bundle of edges incident to ai. However the whole bundle
lies in between aici and aiei+2 and therefore the slopes of these edges are distinct. (ii) Instead of
the pseudo-triangle with chains aicidieiai+1 we have now a sequence of nested chains given by the
edges incident to ei and ci. All these “subchains” are contained in the triangle eicixi, where xi is
the crossing between aici and ai+1ei. Their slopes lie between the slopes of aici and eiai+1. This
means that the three edge-bundles of subchains are separated by slopes. Clearly the slopes within
each bundle have to be different.

Counting the slopes, we have the 18 slopes of the subgraph shown in Figure 25a and then there
are 9 vertices, each incident to ∆ − 3 new edges, that will need a new slope. In total we need
18 + 9(∆− 3) = 9(∆− 1) distinct slopes.

To obtain an infinite family of graphs, we can again subdivide (b1, f3) and (b2, f1) several times
and connect pairs of the subdivision vertices. �

6 Open problems

The research in this paper gives rise to interesting questions, in what follows we mention some of
them.
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Concerning 1-bend drawings of 1-planar graphs, a natural question is whether Theorem 1 can
be extended to all subcubic 1-planar graphs. Observe that it may not be possible to augment a
2-connected 1-planar graph in order to make it 3-connected without loosing 1-planarity [9].

Our lower bounds for straight-line drawings hold only for embedding-preserving drawings. It
would be very interesting to devise lower bounds that hold with the only restriction that the drawing
be 1-planar. A challenge to face in this direction is that 1-planar graphs may have exponentially
many embeddings even when 4-connected [8].

Finally, a more general question is whether the 1-planar slope number of 1-planar graphs is
bounded by a function of the maximum vertex degree, which would extend the result by Keszegh
et al. [28] for planar graphs.

Acknowledgments. We thank the anonymous reviewers of this paper for their valuable com-
ments and suggestions.
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slope number of planar partial 3-trees of bounded degree. Graphs Comb., 29(4):981–1005,
2013. doi:10.1007/s00373-012-1157-z.

[26] G. Kant. Hexagonal grid drawings. In E. W. Mayr, editor, Proc. 18th Int. Workshop Graph-
Theor. Concepts Comput. Sci. (WG’92), volume 657 of Lecture Notes Comput. Sci., pages
263–276. Springer, 1992. doi:10.1007/3-540-56402-0\_53.

[27] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32, 1996.
doi:10.1007/BF02086606.

[28] B. Keszegh, J. Pach, and D. Pálvölgyi. Drawing planar graphs of bounded degree with few
slopes. SIAM J. Discrete Math., 27(2):1171–1183, 2013. doi:10.1137/100815001.

[29] P. Kindermann, F. Montecchiani, L. Schlipf, and A. Schulz. Drawing subcubic 1-planar graphs
with few bends, few slopes, and large angles. In Proc. 20th Int. Symp. Graph Drawing (GD’18),
volume 11282 of LNCS, pages 152–166. Springer, 2018.

[30] K. Knauer and B. Walczak. Graph drawings with one bend and few slopes. In Proc. 12th Latin
American Symposium (LATIN’16), volume 9644 of LNCS, pages 549–561. Springer, 2016.

[31] K. B. Knauer, P. Micek, and B. Walczak. Outerplanar graph drawings with few slopes.
Comput. Geom., 47(5):614–624, 2014. doi:10.1016/j.comgeo.2014.01.003.

[32] S. G. Kobourov, G. Liotta, and F. Montecchiani. An annotated bibliography on 1-planarity.
Comput. Sci. Reviews, 25:49–67, 2017. doi:10.1016/j.cosrev.2017.06.002.

[33] W. Lenhart, G. Liotta, D. Mondal, and R. I. Nishat. Planar and plane slope number of
partial 2-trees. In S. K. Wismath and A. Wolff, editors, Proc. 21st Int. Symp. Graph Drawing
(GD’13), volume 8242 of Lecture Notes Comput. Sci., pages 412–423. Springer, 2013. doi:

10.1007/978-3-319-03841-4\_36.

[34] Y. Liu, A. Morgana, and B. Simeone. A linear algorithm for 2-bend embeddings of planar
graphs in the two-dimensional grid. Discrete Appl. Math., 81(1–3):69–91, 1998. doi:10.1016/
S0166-218X(97)00076-0.

[35] S. M. Malitz and A. Papakostas. On the angular resolution of planar graphs. SIAM J. Discrete
Math., 7(2):172–183, 1994. doi:10.1137/S0895480193242931.

[36] P. Mukkamala and D. Pálvölgyi. Drawing cubic graphs with the four basic slopes. In M. J.
van Kreveld and B. Speckmann, editors, Proc. 19th Int. Symp. Graph Drawing (GD’11),
volume 7034 of Lecture Notes Comput. Sci., pages 254–265. Springer, 2011. doi:10.1007/

978-3-642-25878-7\_25.

[37] J. Pach and D. Pálvölgyi. Bounded-degree graphs can have arbitrarily large slope num-
bers. Electr. J. Comb., 13(1):1–4, 2006. URL: http://www.combinatorics.org/Volume_13/
Abstracts/v13i1n1.html.

[38] G. Ringel. Ein Sechsfarbenproblem auf der Kugel. Abh. aus dem Math. Seminar der Univ.
Hamburg, 29(1–2):107–117, 1965. doi:10.1007/BF02996313.

https://doi.org/10.1007/s00373-012-1157-z
https://doi.org/10.1007/3-540-56402-0_53
https://doi.org/10.1007/BF02086606
https://doi.org/10.1137/100815001
https://doi.org/10.1016/j.comgeo.2014.01.003
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1007/978-3-319-03841-4_36
https://doi.org/10.1007/978-3-319-03841-4_36
https://doi.org/10.1016/S0166-218X(97)00076-0
https://doi.org/10.1016/S0166-218X(97)00076-0
https://doi.org/10.1137/S0895480193242931
https://doi.org/10.1007/978-3-642-25878-7_25
https://doi.org/10.1007/978-3-642-25878-7_25
http://www.combinatorics.org/Volume_13/Abstracts/v13i1n1.html
http://www.combinatorics.org/Volume_13/Abstracts/v13i1n1.html
https://doi.org/10.1007/BF02996313

	Introduction
	Preliminaries and Basic Results
	1-bend Drawings of 3-connected Cubic 1-planar Graphs
	2-bend Drawings of Subcubic 1-planar Graphs
	Lower Bounds for 1-plane Graphs
	1-bend Drawings
	Straight-line Drawings

	Open problems

