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Abstract. In this paper, we introduce and study multilevel planarity, a general-
ization of upward planarity and level planarity. Let G = (V,E) be a directed graph
and let ` : V → P(Z) be a function that assigns a finite set of integers to each vertex.
A multilevel-planar drawing of G is a planar drawing of G such that for each vertex v ∈ V
its y-coordinate y(v) is in `(v), and each edge is drawn as a strictly y-monotone curve.

We present linear-time algorithms for testing multilevel planarity of embedded graphs
with a single source and of oriented cycles. Complementing these algorithmic results,
we show that multilevel-planarity testing is NP-complete even in very restricted cases.

1 Introduction

Testing a given graph for planarity, and, if the graph is planar, finding a planar drawing of it, are
classic algorithmic problems. However, one is often not interested in just any planar drawing, but in
one that has some additional properties. Examples of such properties include that a given existing
partial drawing should be extended [3, 21] or that some parts of the graph should appear clustered
together [11, 22]. There also exist notions of planarity specifically tailored to directed graphs. An
upward-planar drawing is a planar drawing where each edge is drawn as a strictly y-monotone
curve. While testing upward planarity of a graph is an NP-complete problem in general [16],
efficient algorithms are known for outerplanar graphs, single-source graphs and for embedded
graphs [27, 6, 20, 7]. One notable restricted variant of upward planarity is that of level planarity. A
level graph is a directed graph G = (V,E) together with a level assignment γ : V → Z that assigns
an integer level to each vertex and satisfies γ(u) < γ(v) for all (u, v) ∈ E. A drawing of G is level
planar if it is upward planar, and for each vertex v ∈ V the y-coordinate of v is γ(v). Level-planarity
testing and drawing is feasible in linear time [23]. There exist further level-planarity variants on
the cylinder and on the torus [1, 4] and there has been considerable research on further-constrained
versions of level planarity. Examples include ordering the vertices on each level according to
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(a) (b) (c)

Figure 1: A drawing that is not multilevel-planar (a) since the underlying level graph (b) is not
level planar. Changing the y-coordinates of two vertices yields a multilevel-planar drawing (c).

so-called constraint trees [2, 17], clustered level planarity [2, 14], partial level planarity [8] and
ordered level planarity [25]. Finally, an undirected graph G = (V,E) is leveled planar if there exists
an assignment γ : V → Z and a planar drawing Γ of G where for each vertex v ∈ V its y-coordinate
is γ(v) and for each edge {u, v} it is |γ(u) − γ(v)| = 1. Recognizing leveled planar graphs is
NP-complete [19]. Recently, relationships between track layouts, layered pathwidth and leveled
planarity have been studied, and bipartite outerplanar graphs and squaregraphs have been shown
to be leveled planar [5].

Contribution and Outline. In this paper, we introduce and study multilevel planarity. Let P(Z)
denote the power set of integers. The input of the multilevel-planarity testing problem consists of a
directed graph G = (V,E) together with a function ` : V → P(Z), called a multilevel assignment,
which assigns admissible levels, represented as a set of integers, to each vertex. A multilevel-planar
drawing of G is a planar drawing of G such that for the y-coordinate of each vertex v ∈ V it
holds that y(v) ∈ `(v), and each edge is drawn as a strictly y-monotone curve. See Figure 1 for
an example of a multilevel-planar graph. For each vertex v the gray circles in the same column
as v visualize the set `(v). The choice of y-coordinates shown in (a) is not level planar (b), but
the choice of y-coordinates shown in (c) gives a multilevel-planar drawing. Figure 2 showcases
one of the use cases of multilevel planarity. It visualizes an excerpt of the genealogy of European
royalty [28, 13, 24]. In this graph, vertices are associated with individuals. The intervals assigned
to a vertex are derived from the corresponding individual’s lifespan and visualized as gray bars.
Dashed edges represent marriages and solid lines connected to dashed edges represent descent of
children. To improve readability, the edges representing marriages are drawn as horizontal line
segments even though the formal definition requires strictly y-monotone curves.

Our paper is structured as follows. We start by discussing some preliminaries, including the
relationship between multilevel planarity and existing planarity variants in Section 2. Then, we
present linear-time algorithms that test multilevel planarity of embedded single-source graphs and of
oriented cycles with multiple sources in Sections 3 and 4, respectively. In Section 5, we complement
these algorithmic results by showing that multilevel-planarity testing is NP-complete for abstract
single-source graphs, for oriented trees and for embedded multi-source graphs where |`(v)| ≤ 2 for
all v ∈ V . We finish with some concluding remarks in Section 6.

2 Preliminaries

This section consists of three parts. First, we introduce basic terminology and notation. Second,
we discuss the relationship between multilevel planarity and existing planarity variants for directed
graphs. Third, we define a normal form for multilevel assignments, which simplifies the arguments
in Sections 3 and 4.
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Basic Terminology. Let G = (V,E) be a directed graph. A drawing of G maps each vertex in V
to a point in the Euclidean plane and each edge e ∈ E to a Jordan curve between the two endpoints
of e. A drawing is planar if Jordan curves corresponding to distinct edges do not intersect, except,
possibly, in common endpoints. A planar drawing defines a cyclic order of the incident edges around
each vertex. A combinatorial embedding assigns such a cyclic order to each vertex of a graph. We
say that two planar drawings are combinatorially equivalent if they define the same combinatorial
embedding and have the same outer face. A drawing of G is upward if each edge is drawn as a
strictly y-monotone curve. A multilevel assignment ` : V → P(Z) assigns a finite set of integers to
each vertex. An upward-planar drawing is multilevel planar if y(v) ∈ `(v) for all v ∈ V . Note that
any finite set of integers can be represented as a finite list of finite integer intervals. We choose this
representation to be able to represent sets of integers that contain large intervals of numbers more
efficiently.

A vertex of a directed graph with no incoming (outgoing) edges is a source (sink). A directed,
acyclic and planar graph with a single source s is an sT -graph. An sT -graph with a single sink t
and an edge (s, t) is an st-graph. In any upward-planar drawing of an st-graph, the unique source
and sink are the lowest and highest vertices, respectively, and both are incident to the outer face.
For a face f of a planar drawing, an incident vertex v is called source switch (sink switch) if all
edges incident to f and v are outgoing (incoming). Note that a source switch or a sink switch
does not need to be a source or a sink in G. We will frequently add incoming edges to sources and
outgoing edges to sinks during later constructions, referring to this as source canceling and sink
canceling, respectively. An oriented path of length k is a sequence of vertices (v1, v2, . . . , vk+1) such
that for all 1 ≤ i ≤ k either the edge (vi, vi+1) or the edge (vi+1, vi) is in G. A directed path of
length k is a sequence of vertices (v1, v2, . . . , vk+1) such that for all 1 ≤ i ≤ k the edge (vi, vi+1) is
in G. Let u, v ∈ V be two distinct vertices. Vertex u is a descendant of v in G, if there exists a
directed path from v to u. A topological ordering is a function τ : V → N such that for every v ∈ V
and for each descendant u of v it is τ(v) < τ(u).

Relationship to Existing Planarity Variants. Multilevel-planarity testing is a generalization
of level planarity testing. To see this, let G = (V,E) be a directed graph together with a level
assignment γ : V → Z. Define `(v) = {γ(v)} for all v ∈ V . It is readily observed that a drawing Γ
of G is level planar with respect to γ if and only if Γ is multilevel planar with respect to `. Therefore,
level planarity reduces to multilevel planarity in linear time.

Multilevel-planarity testing is also a generalization of upward planarity testing. Without loss of
generality, the vertices in an upward-planar drawing can be assigned unique integer y-coordinates
so that there is at least one vertex on each level in [1, |V |]. Hence, upward planarity of G can be
tested by setting `(v) = [1, |V |] for all v ∈ V and testing the multilevel planarity of G with respect
to `. Therefore, upward planarity reduces to multilevel planarity in linear time. By then restricting
the multilevel assignment, multilevel planarity can also be seen as a constrained version of upward
planarity. Garg and Tamassia [16] showed that upward-planarity testing is NP-complete. It is easy
to see that multilevel-planarity testing is in NP and so we conclude the following.

Theorem 1 Multilevel-planarity testing is NP-complete.

Multilevel planarity is related to leveled planarity. Both notions ask about the existence of a
certain y-coordinate assignment γ. However, multilevel planarity is defined for directed graphs,
i.e., for two adjacent vertices it is known which one has the greater y-coordinate, whereas leveled
planarity is defined for undirected graphs. And for adjacent vertices u, v in a leveled planar drawing
it must be |γ(u)− γ(v)| = 1, whereas no such restriction exists for the multilevel-planar drawings.
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Multilevel Assignment Normal Form. A multilevel assignment ` has normal form if for
all (u, v) ∈ E it is min `(u) < min `(v) and max `(u) < max `(v). Some proofs are easier to follow
for multilevel assignments in normal form. The following lemma justifies that we may assume
without loss of generality that ` has normal form.

Lemma 1 Let G = (V,E) be a directed graph together with a multilevel assignment `. Then there
exists a multilevel assignment `′ in normal form such that a drawing of G is multilevel planar with
respect to ` if and only if it is multilevel planar with respect to `′. Moreover, `′ can be computed in
linear time.

Proof: The idea is to convert `(v) into `′(v) ⊆ `(v) for all v ∈ V by finding a lower bound lv
and an upper bound uv for the level of v, and then setting `′(v) = `(v) ∩ [lv, uv]. If this set is
empty there exists no multilevel-planar drawing. To find the lower bound, iterate over the vertices
in increasing order with respect to some topological ordering τ of G. Because all edges have to
be drawn as strictly y-monotone curves, for each vertex v ∈ V it must be y(v) > max(w,v)∈E lw.
So, set lv = max(min `(v),max(w,v)∈E lw + 1). Analogously, to find the upper bound, iterate
over V in decreasing order with respect to τ . Again, because edges are drawn as strictly y-
monotone curves, for each vertex v ∈ V it must hold true that y(v) < min(v,w)∈E uw. Therefore,
set uv = min(max `(v),min(v,w)∈E uw − 1). This means that in any multilevel-planar drawing of G
the y-coordinate of v ∈ V is y(v) ∈ `(v) ∩ [lv, uv]. So it follows that a drawing of G is multilevel
planar with respect to ` if and only if it is multilevel planar with respect to `′.

To see that the running time is linear, note that a topological ordering of G can be computed in
linear time and every vertex and edge is handled at most twice during the procedure described
above. Because every level candidate in ` is removed at most once, the total running time
is O(n+

∑
v∈V |`(v)|), i.e., linear in the size of the input. �

3 Embedded sT -Graphs

In this section, we characterize multilevel-planar sT -graphs as subgraphs of certain planar st-graphs.
Similar characterizations exist for upward planarity and level planarity [12, 26]. The idea behind
our characterization is that for any given multilevel-planar drawing, we can find a set of edges
that can be inserted without rendering the drawing invalid, and which make the underlying graph
an st-graph. For these st-graphs multilevel planarity and planarity coincide and we can use existing
linear-time algorithms to find (multilevel-)planar drawings. This technique is similar to the one
found by Bertolazzi et al. [7], and in fact is built on top of it.

To use this characterization for multilevel-planarity testing, we do not require that a multilevel-
planar drawing is given. We show that if we choose the set of edges to be inserted carefully, the
respective set of edges can be inserted into any multilevel-planar drawing for a fixed combinatorial
embedding. An algorithm constructing such an edge set can therefore be used to test for multilevel
planarity of embedded sT -graphs, resulting in Theorem 2. The algorithm is constructive in the
sense that it finds a multilevel-planar drawing if one exists. In Section 5, we show that testing
multilevel planarity of sT -graphs without a fixed combinatorial embedding is NP-hard. Recall
that every multilevel-planar drawing is upward planar. We now prove that the vertex with the
largest y-coordinate on the boundary of each face is the same across all combinatorially equivalent
drawings. To this end we use the notion of large and small angles at sink switches that Bertolazzi
et al. [7] have used for biconnected graphs. We extend this notion to simply-connected sT -graphs.
Lemma 2 is used to argue that such angles are well-defined, Lemma 3 extends the observations
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of Bertolazzi et al. to simply-connected graphs and Lemma 4 sets the foundation to our st-graph
extension.

Lemma 2 Let G = (V,E) be an sT -graph together with an upward-planar drawing Γ. Further,
let f be a face of Γ and let c denote a sink switch of f . Then c appears exactly once on the cyclic
walk around the boundary of f .

v1 = c = vj

v2

vj−1

vj+1

vm−1

C

f

Proof: Let w = [v1 = c, v2, . . . , vj = c, . . . , vm = v1 = c] be the cyclic
walk around f , where 2 < j < m − 1. We show that c is not
a sink switch. Construct a Jordan curve C by closely following w
along v1 = c, v2, . . . , vj = c within f and then crossing through c to
close the curve. Let Gouter denote the subgraph of G induced by the
vertices in the exterior of C and on C. Let Ginner denote the subgraph
of G induced by the vertices in the interior of C and on C.

Consider the case that H ∈ {Gouter, Ginner} does not contain s. Because G is an sT -graph there
exists in G a directed path from s to every vertex in H. Because no edge crosses C and the only
vertex that lies on C is c all these paths contain c. Therefore, there exists in H a directed path
from c to every vertex of H, i.e., H is an sT -graph with source c. Either v2 or vj+1 lies in H by
construction and so one of the edges (v1 = c, v2), (vj = c, vj+1) exists in G, i.e., c is not a sink
switch of f .

Now consider the other case, namely that both Gouter and Ginner contain s. By construc-
tion Gouter and Ginner share only the vertex c, i.e., c = s. Because s is the source of G it cannot be
a sink switch of any face. �

v

u1 u2

e2e1

v

u2 u1

ye1e2

y

f

f

6 Γ,v(v, f) < π

6 Γ,v(v, f) > π

Let v be a sink switch of a face f in Γ. Further, let e1 = (u1, v), e2 = (u2, v)
denote the edges incident to f and v. By Lemma 2 the choice of these edges
is unique. Let f lie to the right of e1 and to the left of e2 with respect to
the directions of those edges. Because Γ is upward there exists a horizontal
line y that intersects both e1 and e2 exactly once but does not intersect v.
For i = 1, 2, let xi denote the x-coordinate of the intersection of y and ei.
Define ∠Γ,f (v) as small (written as ∠Γ,f (v) < π) if x1 < x2 (see the upper part
of the figure on the right) and as large (written as ∠Γ,f (v) > π) if x1 ≥ x2 (see
the lower part of the figure on the right). Note that x1 = x2 implies e1 = e2,
i.e., u1 = u2 is a cutvertex. This sets the stage for the following.

Lemma 3 Let G be an sT -graph together with an upward-planar drawing Γ.
Then the following properties hold:

1. For each sink switch v on the boundary of the outer face h it is ∠Γ,h(v) > π.

2. For each inner face f of Γ there is exactly one sink switch tf on the boundary of f
with ∠Γ,f (tf ) < π, namely the vertex with greatest y-coordinate among all vertices inci-
dent to f .

Proof: Use induction over the number of biconnected components of G. In the base case of a
biconnected graph both properties were observed by Bertolazzi et al. [7, page 138, Facts 2 and 3].

Let c be a cutvertex of G. Then there exists a face f of Γ such that c appears more than once
on the cyclic walk around f . Let w = [v1 = c, v2, . . . , vj = c, . . . , vm = v1 = c] denote the cyclic
walk around f , where 2 < j < m − 1. Further, let C,Gouter, Ginner be defined as in the proof of
Lemma 2.
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Figure 3: Proof of Lemma 3. A drawing Γ of G can be separated into drawings Γouter,Γinner of
two sT -graphs with fewer biconnected components.

First, we show that Gouter, Ginner are sT -graphs. If H ∈ {Gouter, Ginner} does not contain s, we
have shown in the proof of Lemma 2 that H is an sT -graph with source c. Consider the case that H
contains s. Let H ′ ∈ {Gouter, Ginner} with H ′ 6= H. Because G is an sT -graph there exists in G a
directed path from s to every vertex in H. Suppose that such a directed path p contains a vertex
not in H, i.e., a vertex in H ′ other than c. Because no edge crosses C and the only vertex that
lies on C is c this means that p must contain c twice. This contradicts the fact that G is acyclic.
Hence, there exists in H a directed path from s to every vertex of of H, i.e., H is an sT -graph with
source s.

The drawing Γ induces drawings Γouter,Γinner of Gouter, Ginner, respectively. We have just shown
that Gouter, Ginner are sT -graphs. Each has strictly fewer biconnected components than G, so
Properties 1 and 2 hold by induction.

Observe that Γ can be obtained from Γouter by inserting Γinner into C; see Figure 3. This
changes no angles, except at c which is not a sink switch of f by Lemma 2. Every face of Γ except
for f exists in one of Γouter,Γinner and the claimed properties are true by induction. Let g denote
the face of Γouter that contains the interior of C. Let h denote the outer face of Γinner, i.e., the
face of Γinner that contains the exterior of C. Face f in Γ is obtained from combining the faces g
in Γouter and h of Γinner. Every sink switch v on the boundary of f in Γ is a sink switch on the
boundary of either g in Γouter or h in Γinner. If v is a sink switch on the boundary of h Property 1
implies ∠Γinner,h(v) > π and therefore ∠Γ,f (v) > π. Now consider the case that v is a sink switch
on the boundary of g. If g is the outer face of Γouter then f is the outer face of Γ. Then Property 1
implies ∠Γouter,g(v) > π and therefore ∠Γ,f (v) > π. If g is an inner face of Γouter then f is an inner
face of Γ. Property 2 implies that there is exactly one sink switch v on the boundary of g in Γouter

with ∠Γouter,g(v) < π, namely the vertex with the greatest y-coordinate among all vertices incident
to g. Then v is the only sink switch on the boundary of f in Γ with ∠Γ,f (v) < π. Also, because C is
contained within g vertex v is the vertex with the greatest y-coordinate among all vertices incident
to f . �

We are now ready to prove the following.

Lemma 4 Let G be an sT -graph, let Γ,Γ′ be combinatorially equivalent upward-planar drawings
of G and let f be an inner face of Γ and Γ′. Then the vertex with the greatest y-coordinate among
all vertices incident to f is the same in Γ and Γ′.

Proof: Let tf denote the vertex with the greatest y-coordinate among all vertices incident to f
in Γ. Further let e1 = (v1, tf ) and e2 = (v2, tf ) be the edges incident to f and tf (by Lemma 2
and because tf is a sink switch e1, e2 are the only such edges). Property 2 of Lemma 3 states
that ∠Γ,f (v) < π, i.e., e1 6= e2. Assume that tf does not have the greatest y-coordinate of all
vertices incident to f in Γ′. See Figure 4. Because G has a single source s, there exist directed
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Figure 4: Proof of Lemma 4.

paths p1 and p2 from s to v1 and v2, respectively. Then the left-to-right order of the edges e1

and e2 in Γ and Γ′ is determined by the order of the outgoing edges at the last common vertex c
on p1 and p2. Because e1 6= e2 it is c 6= tf . Let t′ 6= tf be the vertex with greatest y-coordinate of
all vertices incident to f in Γ′. Then it holds that ∠Γ′,f (t′) < π and from Property 2 of Lemma 3
it follows that ∠Γ′,f (tf ) > π. Since Γ and Γ′ have the same underlying combinatorial embedding,
the clockwise cyclic walk around f is identical in both drawings. But because ∠Γ,f (tf ) < π
and ∠Γ′,f (tf ) > π, the left-to-right order of the outgoing edges of c is different in Γ and Γ′. This
means that Γ and Γ′ are not combinatorially equivalent: If c has an incoming edge the cyclic order
of the edges around c is different in Γ and Γ′. Otherwise it is s = c and because (s, t) is the left-most
edge by definition the cyclic order of the edges around c is different in Γ and Γ′. �

Bertolazzi et al. showed that any sT -graph with an upward-planar drawing can be extended to
an st-graph with an upward-planar drawing that extends the original drawing [6, 7]. More formally,
let G = (V,E) be an sT -graph together with an upward-planar drawing Γ. Then there exists
an st-graph Gst = (V ∪̇ {t}, E ∪̇Est) where t is the unique sink together with an upward-planar
drawing Γst that extends Γ. Moreover, Gst and Γst can be computed in linear time. Note that
in general it is possible for a given Est to choose an upward-planar drawing Γ of G so that the
additional edges in Est cannot be added into Γ as y-monotone curves. For an example, see Figure 5,
where augmenting with the red and black edge works for the drawing shown in (a) but not for the
one shown in (b), whereas augmenting with the blue and black edge works for both drawings. In
Lemma 5 we show that there is a set Est that can be added into any upward planar drawing with
the same combinatorial embedding as Γ. In a way, this is the most general set Est.

Lemma 5 Let G = (V,E) be a directed sT -graph with a fixed combinatorial embedding. Then
there exists an st-graph Gst = (V ∪̇ {t}, E ∪̇Est), where t is the unique sink, such that for any
upward-planar drawing Γ of G there exists an upward-planar drawing Γst of Gst that extends Γ.
Moreover, Gst can be computed in linear time.

Proof: Start by finding an initial upward-planar drawing Γ of G in linear time using the
algorithm due to Bertolazzi et al. [7]. The algorithm additionally outputs an embedded st-
graph G0

st = (V ∪̇ {t}, E ∪̇E0
st) together with an upward-planar drawing Γ0

st that extends Γ. This
means that Γ0

st is obtained from Γ by drawing each edge (u, v) ∈ E0
st within some face F 0(u, v) of Γ.

Define a function T that maps the faces of Γ to the vertex set V ∪̇ {t} as follows. If f is the outer
face of Γ define T (f) = t and if f is an inner face of Γ define T (f) = tf , where tf denotes the sink
switch of f with ∠Γ,f (tf ) < π, which is unique by Property 2 of Lemma 3 and the same for all com-
binatorially equivalent drawings by Lemma 4. We show that Est =

{
(u, T (F 0(u, v))) | (u, v) ∈ E0

st

}
satisfies the claim.
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(a) (b)

s s

Figure 5: Some edges are not admissible for augmentation in Lemma 5.

For each face f of Γ the vertex T (f) has the greatest y-coordinate among all vertices incident to f .
This means that for each edge (u, v) ∈ Est the y-coordinate of u is smaller than the y-coordinate
of v in Γ. Together with the fact that Γ is an upward-planar drawing this means that Gst is acyclic.
Recall that G0

st is an st-graph, i.e., every sink of G is incident to an outgoing edge in E0
st. By

construction of Est every sink of G is then also incident to an outgoing edge in Est. Therefore Gst
has exactly one sink, namely t. Together with the fact that Gst is acyclic this shows that Gst is
an st-graph.

Now let Γ′ be an upward-planar drawing of G. Recall that the embedding of G is fixed, so Γ′

is combinatorially equivalent to Γ. We show that we can extend Γ′ to an upward-planar drawing
of Gst. To this end, we insert the vertex t and then insert the edges in Est into Γ′ one after the other.
Let Y denote the greatest y-coordinate of any vertex in Γ′. Insert t into Γ′ with y-coordinate Y + 1.

Let (u, v) be an edge in Est. The idea is that it is possible to walk from any vertex x on the
boundary of f upwards to tf . If x is incident to an outgoing edge (x,w) incident to f follow that
edge to w. Because Γ′ is an upward-planar drawing this segment is y-monotone. Then continue
walking up from w to tf . Otherwise, if x is not incident to an outgoing edge incident to f , it is a
sink switch of f . There are two cases.

1. It is ∠Γ′,f (x) > π. Then walk up vertically from x within f . If f is an inner face of Γ′, this
walk will meet either a vertex w or an edge (x′, w). In the former case continue walking up
from w. The latter case has two subcases. The first subcase is (x′, w) 6∈ Est. Then (x′, w)
is incident to f , so follow the edge to w and then continue walking up from w. The second
subcase is (x′, w) ∈ Est. Then (x′, w) is an edge that was inserted into f in Γ′ previously.
Note that all edges inserted into f have endpoint tf , i.e., w = tf = v, so follow (x′, w) to its
endpoint w to complete the drawing of (u, v).

If f is the outer face of Γ′, either one of the previous situations occurs, or we could walk
vertically up infinitely without meeting an edge or a vertex. Note that this means v = t. In
this case stop walking up when the y-coordinate is Y , bend and then connect to t with a
straight line segment.

2. It is ∠Γ′,f (x) < π. From Lemma 3 it follows that x = tf .

�

We now have a set of edges that can be used to complete G into Gst. If a multilevel-planar
drawing for the given combinatorial embedding of G respecting ` exists, then it must also exist
for Gst. However, the property of ` being in normal form might not be fulfilled anymore in Gst
because of the added edges. We therefore need to bring ` into normal form `′ again. Lemma 1 tells
us that this does not impact multilevel planarity. We conclude that G is multilevel planar with
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respect to ` if and only if Gst is multilevel planar with respect to `′. The final property we need is
that Gst is level planar with respect to any level assignment γ (recall that γ is a level assignment
of Gst if for each directed edge (u, v) in Gst it is γ(u) < γ(v)). The following lemma is due to
Leipert [26, Theorem 5.1 and page 121], who notes that an algorithm for drawing upward planar
graphs by Di Battista and Tamassia [12, Theorem 3.5] can be adapted for the level-planar setting.

Lemma 6 Let G be an st-graph on n vertices together with a level assignment γ. Then for any
combinatorial embedding of G there exists a combinatorially equivalent drawing of G that is level
planar with respect to γ. Moreover, such a drawing has O(n) size and can be computed in O(n)
time.

If `′ is in normal form, `′(v) 6= ∅ is a necessary and sufficient condition that there exists a level
assignment γ : V → Z with γ(v) ∈ `′(v) for all v ∈ V . Setting γ(v) = min `′(v) is one possible such
level assignment. Then G is level planar with respect to γ and therefore multilevel planar with
respect to `, resulting in the characterization of multilevel-planar st-graphs:

Corollary 1 Let G be an st-graph together with a multilevel assignment ` in normal form. Then
there exists a multilevel-planar drawing for any combinatorial embedding of G if and only if `(v) 6= ∅
for all v.

For a constructive multilevel-planarity testing algorithm, we now first take the edge set computed
by the algorithm by Bertolazzi et al. [7] and modify it using Lemma 5 to complete any sT -graph to
an st-graph. Note that for this step, we need a fixed combinatorial embedding to be given, as is
required by the second property of Lemma 3. Once arrived at an st-graph, we check the premise of
Corollary 1. Then, we either output that the graph is not multilevel planar or use Lemma 6 to find
a multilevel-planar drawing in linear time. This concludes the testing algorithm:

Theorem 2 Let G be an sT -graph with a multilevel assignment ` together with a combinatorial
embedding and an outer face. Then it can be decided in linear time whether there exists a combina-
torially equivalent multilevel-planar drawing of G. If so, such a drawing can be computed within the
same running time.

Our algorithm uses the fact that to augment sT -graphs to st-graphs, only edges connecting sinks
to other vertices need to be inserted. For graphs with multiple sources and multiple sinks, further
edges connecting sources to other vertices need to be inserted. The interactions that occur then are
very complex: In Section 5, we show that deciding multilevel planarity is NP-complete for embedded
multi-source graphs. In the next section, we identify oriented cycles as a class of multi-source
graphs for which multilevel planarity can be decided efficiently.

4 Oriented Cycles

In this section, we present a constructive multilevel-planarity testing algorithm for oriented cy-
cles, i.e., directed graphs whose underlying undirected graph is a simple cycle. We start by
giving a condition for when an oriented cycle G = (V,E) together with some level assign-
ment γ admits a level-planar drawing. This condition yields an algorithm for the multilevel-
planar setting. In this section, γ is always a level assignment and ` is always a multilevel
assignment. Define max γ = max{γ(v) | v ∈ V } and min γ = min{γ(v) | v ∈ V }. Further
set max ` = max{max `(v) | v ∈ V } and min ` = min{min `(v) | v ∈ V }. Let Smin ⊂ V be sources
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Figure 6: Augmenting the oriented cycle in (a) to an st-graph in (b). See the proof of Lemma 7.

with minimal level, i.e., Smin = {v ∈ V | γ(v) = min γ}, and let Tmax ⊂ V be the sinks with
maximal level. We call sources in Smin minimal sources (these are the sources that must lie on the
minimal level), sinks in Tmax are maximal sinks (these are the sinks that must lie on the maximal
level). We say that γ is separating when there exist two edge-disjoint oriented paths in G so that
one contains all minimal sources and the other contains all maximal sinks.

Lemma 7 Let G be an oriented cycle with a level assignment γ. Then G is level planar with
respect to γ if and only if γ is separating.

Proof: The “only if” part is due to Healy et al. [18, Theorem 7]. For the “if” part, augment G
to a planar st-graph as follows. See Figure 6 (a) for a cycle and (b) for the augmented st-graph.
Let pt be the oriented path of minimal length that contains all sinks in Tmax and no vertex in Smin,
and let t1, t2 ∈ Tmax denote its endpoints. Fix some vertex smin ∈ Smin and cancel every source v
on pt by adding an edge from smin to v. Because smin ∈ Smin it is γ(smin) < γ(v) and the graph
remains acyclic. Introduce a new sink t with γ(t) = γ(t1) + 1 and cancel every sink v on pt by
adding an edge from v to t. Because γ(v) < γ(t) the graph remains acyclic. Let p1 denote an
oriented path from t1 to smin and let p2 denote an oriented path from smin to t2 so that p1 and p2

share no edge. Note that the paths pt, p1, p2 are pairwise disjoint except in common endpoints.
Cancel every sink v on p1 or p2 by adding an edge from v to t1 or t2, respectively. Introduce a new
source s with γ(s) = γ(smin)− 1 and cancel every source v on p1 or p2 by adding an edge from s
to v. Because γ(s) < γ(v) the graph remains acyclic. Finally add the edge (s, t) to make the graph
an st-graph.

To see that the augmented graph is planar observe that the cycle is trivially planar. Furthermore,
all augmentation edges incident to t are incident to vertices on pt and no augmentation edges
incident to s are incident to vertices on pt (except, possibly, for t1 and t2). Moreover, the interior of
the circle is partitioned into three regions corresponding to the oriented paths pt, p1, p2. In Figure 6
these regions are separated by the black dashed edges, the area corresponding to pt is shaded in
blue whereas the areas corresponding to p1 and p2 are shaded in red. The regions are disjoint
and all augmentation edges in one region have the same endpoint, therefore they do not cross.
Because pt, p1, p2 are disjoint except in common endpoints the augmentation edges of different
areas do not cross. Hence, the augmented graph is a planar st-graph and then Lemma 6 yields
that G is level planar with respect to γ. �

Recall that any multilevel-planar drawing is a level-planar drawing with respect to some level
assignment γ. Lemma 7 states a necessary and sufficient condition for γ so that the drawing is
level planar. Given a multilevel assignment `, we therefore find a separating level assignment γ, or
determine that no such level assignment exists. It must be `(v) 6= ∅ for all v ∈ V ; otherwise, G
admits no multilevel drawing. We find a level assignment γ that keeps the sets Smin and Tmax as
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small as possible, because such a level assignment is, intuitively, most likely to be separating. To
this end, let Smay ⊂ V contain each source s′ of G with min `(s′) = min `. Further, let Smust ⊆ Smay

contain each source s′′ of G with `(s′′) = {min `}. Likewise, let Tmay ⊂ V contain each sink t′ of G
with max `(t′) = max ` and let Tmust ⊆ Tmay contain each sink t′′ of G with `(t′′) = {max `}.

Construct a level assignment `′ from ` as follows. First, consider the case that Smust, Tmust 6= ∅.
Let p denote the unique inclusion-minimal path that contains all vertices in Smust and no ver-
tex in Tmust—if no such path exists there exists no separating level assignment, i.e., G is not
multilevel planar by Lemma 7. Set `′(s) = {min `} for all vertices s ∈ Smay that lie on p
and `′(s) = `(s)\{min `} for all vertices s ∈ Smay that do not lie on p. Next, set `′(t) = `(t)\{max `}
for all vertices t ∈ Tmay that lie on p. And set `′(t) = {max `} for all vertices t ∈ Tmay that do
not lie on p. Now consider the case Smust = ∅. If Smust = ∅, choose an arbitrary source s ∈ Smay,
define p as the path that consists of only s and proceed as in the previous case. The case Tmust = ∅
is symmetric by vertically mirroring. For each remaining vertex v set `′(v) = `(v). Finally, bring `′

into normal form.
We now show that `′(v) 6= ∅ for all v ∈ V . Non-empty intervals are explicitly assigned to all

vertices in Smay and Tmay. We are left to show that bringing `′ into normal form does not create
empty intervals. Changing the upper bound of a source’s interval does not affect the intervals of that
source’s neighbors. The same applies to changing the lower bound of a sink’s interval. Increasing
the lower bound of a source’s interval by one may increase the lower bound of the intervals of that
source’s neighbors (and, recursively, all vertices dominated by that source). However, because ` is
in normal form this creates no empty intervals. Likewise, decreasing the upper bound of a sink’s
interval by one may decrease the upper bound of the intervals of all vertices that dominate that sink
but creates no empty intervals. Moreover, there exists no vertex for whose interval both the lower
bound and the upper bound is changed in this way. To see this, observe that the existence of such
a vertex is equivalent to the existence of a directed path from a source s with `′(s) = `(s) \ {min `},
i.e., not on p to a sink t with `′(t) = `(t) \ {max `}, i.e., on p. Such a directed path cannot exist
because p is delimited by sources s1, s2 with `′(s1) = `′(s2) = {min `} by construction.

Together with the fact that every level assignment that can be obtained from `′ is separating by
construction and Lemma 7 we conclude the following.

Theorem 3 Let G be an oriented cycle together with a multilevel assignment `. Then it can
be decided in linear time whether G admits a drawing that is multilevel planar with respect to `.
Furthermore, if such a drawing exists, it can be computed within the same time.

5 Hardness Results

Recall Theorem 1, which states that multilevel-planarity testing is in general NP-complete. Theo-
rem 1 is a direct consequence of the fact that multilevel-planarity is a generalization of upward-
planarity testing, which is known to be NP-complete [16]. We now show that multilevel-planarity
testing is NP-complete even in very restricted cases, namely for sT -graphs without a fixed com-
binatorial embedding, for oriented trees and for embedded multi-source graphs with at most two
possible levels for each vertex.

5.1 sT -Graphs with Variable Embedding

In Section 3, we showed that testing multilevel planarity of embedded sT -graphs is feasible in
linear time, because for every inner sink there is a unique sink switch to cancel it with. We now
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Figure 7: An instance of the Srtd problem that consists of the tasks T = {t1, t2, t3}, the re-
lease times r1 = 1, r2 = 3, r3 = 4, the deadlines d1 = 8, d2 = 9, d3 = 8 and the processing
times p1 = 3, p2 = p3 = 2 (a). A task gadget (b) for each task and one base gadget (c) that
provides the single source are used to turn the Srtd instance (a) into a multilevel-planarity testing
instance (d).

show that dropping the requirement that the combinatorial embedding is fixed makes multilevel-
planarity testing NP-hard. To this end, we reduce the Scheduling With Release Times And
Deadlines (Srtd) problem, which is strongly NP-complete [15], to multilevel-planarity testing.
An instance of this scheduling problem consists of a set of tasks T = {t1, . . . , tn} with individual
release times r1, . . . , rn ∈ N+, deadlines d1, . . . , dn ∈ N+ and processing times p1, . . . , pn ∈ N+

for each task so that
∑n
i=1 pi is bounded by a polynomial in n. See Figure 7 (a) for an ex-

ample. The question is whether there is a non-preemptive schedule σ : T → N that specifies
the start time for each task, such that for each i ∈ {1, . . . , n} we get (1) σ(ti) ≥ ri, i.e., no
task starts before its release time, (2) σ(ti) + pi ≤ di, i.e., each task finishes before its deadline,
and (3) σ(ti) < σ(tj)⇒ σ(ti)+pi ≤ σ(tj) for any j ∈ {1, . . . , n}\{i}, i.e., no two tasks are executed
at the same time.

Create for every task ti ∈ T a task gadget Ti that consists of two vertices u, v together with
a directed path Pi = (w1

i , w
2
i , . . . , w

pi
i ) of length pi − 1; see Figure 7 (b). For each vertex wji

on Pi set `(wji ) = [ri, di − 1], i.e., all possible points of time at which this task can be executed.
Set `(u) = `(v) = {0}. Join all task gadgets with a base gadget. The base gadget consists of
three vertices s, u, v and two edges (s, u), (s, v), where u is placed to the left of v; see Figure 7 (c).
Set `(s) = {−1} and, again, set `(u) = `(v) = {0}. Identify the common vertices u and v of all
gadgets; see Figure 7 (d). Because Srtd is strongly NP-complete, the size of the resulting graph is
polynomial in the size of the input. The idea of the construction is that because the task gadgets
may not cross in a planar drawing and because their common vertices u and v are identified, they
are stacked on top of each other, inducing a valid schedule of the associated tasks. Contrasting
linear-time tests of upward planarity and level planarity for sT -graphs we show the following.

Theorem 4 Testing sT -graphs for multilevel planarity is NP-complete.

Proof: Clearly, the problem is in NP. We reduce Srtd to multilevel-planarity testing. To this end,
we show that the graph G as described above is multilevel planar if and only if there is a valid
one-processor schedule for the Srtd instance. To see this, start with a valid schedule σ. Define
a level assignment γ as follows. Start by setting γ(s) = −1, γ(u) = γ(v) = 0. And for 1 ≤ i ≤ n
and 1 ≤ j ≤ pi, set γ(wji ) = σ(ti)+j. Since σ is non-preemptive, it induces a total order on the tasks,
without loss of generality σ(t1) < . . . < σ(tn). Order the edges to the task gadgets T1, T2, . . . , Tn
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Figure 8: The base (a) and the task gadget (b) to transform a Srtd instance into a multilevel-
planarity testing instance with G being a tree. An example (c) with two task gadgets (in red and
green).

from right to left at u, and from left to right at v. Observe that any sink of G is the endpoint of a
directed path of a task gadget. For 1 ≤ i < n cancel the sink wpii by connecting it to w1

i+1. This
is possible because the schedule is valid. Then Lemma 6 implies that there exists a drawing of G
that is level-planar with respect to γ. Because it is γ(v) ∈ `(v) for all v ∈ V by construction, G is
multilevel planar with respect to `.

For the reverse direction, consider a drawing Γ of G that is multilevel planar with respect to `.
Let γ denote the level assignment induced by Γ. Further, let π be the permutation of {1, 2, . . . , n}
so that the counter-clockwise order of edges around u is (s, u), (u,w1

π(1)), (u,w
1
π(2)), . . . , (u,w

1
π(n)).

For 1 ≤ i < n let j = π(i) and j′ = π(i+ 1). The vertices w
pj
j and w1

j′ are incident to a common
face f . Note that G is an sT -graph and because s is not incident to f it is an inner face, i.e.,
Property 2 of Lemma 3 applies. Because w

pj
j is incident to only one edge it is ∠Γ,f (w

pj
j ) > π.

Because w
pj
j and w1

j′ are the only sink switches of f it is ∠Γ,f (w1
j′) < π, i.e., w1

j′ is the vertex with

the greatest y-coordinate among all vertices incident to f . In particular, it is γ(w
pj
j ) < γ(w1

j′).

For 1 ≤ i ≤ n and j = π(i) set σ(tj) = γ(w1
i ). For j = π(i) with i < n it is σ(tj) + pj < σ(tj′).

Moreover, σ(tj) ≥ rj and σ(tj) + pj ≤ dj is ensured by the multilevel assignment. Hence, σ is a
valid schedule. �

5.2 Oriented Trees

We show NP-completeness of oriented trees with a very similar reduction as for sT -graphs with-
out a fixed combinatorial embedding. As in Section 5.1, we reduce from Scheduling with
Release Times and Deadlines, the required gadgets are only slightly different. Consider a
Srtd instance T = {t1, . . . , tn}, r1, . . . , rn, d1, . . . , dn and p1, . . . , pn, where

∑n
i=1 p is bounded by

a polynomial in n. Again we initialize G with the base gadget shown in Figure 8 (a) and for each
task we add one task gadget as shown in Figure 8 (b). The base gadget consists of two vertices u
and v on level 0 both connected to one vertex c1 on level 1, which in turn is connected to the final
vertex c2 on level dmax + 1, where dmax = maxi∈{1,...,n} di is the maximum deadline among all tasks.
The task gadget is the same as in the previous section, except that v is replaced by a separate
vertex ai per gadget. The base gadget and all task gadgets share one common vertex u, which is
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identified in G. The resulting graph G is a tree and because Srtd is strongly NP-complete the size
of G is polynomial in the size of the Srtd instance.

Theorem 5 Testing oriented trees for multilevel planarity is NP-complete.

Proof: The proof is very similar to the proof of Theorem 4. Clearly, the problem is in NP. Again,
we reduce Srtd to multilevel-planarity testing. We show that the graph G as described above is a
multilevel planar if and only if there is a valid one-processor schedule for the Srtd instance. To
see this, start with a valid schedule σ. Define a level assignment γ as follows. Set γ(u) = γ(v) = 0
and for i ∈ {1, 2, . . . , n} set γ(ai) = γ(bi) = 0. Moreover, set γ(c1) = 1 and γ(c2) = dmax + 1. And
for 1 ≤ i ≤ n and 1 ≤ j ≤ pi set γ(wji ) = σ(ti) + j. Since σ is non-preemptive it induces a total
order on the tasks, without loss of generality σ(t1) < σ(t2) < · · · < σ(tn). Place v, u, a1, a2, . . . , an
in this order from left to right on level 0. Connect the edges incident to u from left to right in
the order (u, c1), (u,w1

n), (u,w1
n−1), . . . , (u,w1

1). Observe that any sink of G except for c2 is the
endpoint of a directed path of a task gadget. For 1 ≤ i < n cancel the sink wpii by connecting it
to w1

i+1. This is possible because the schedule is valid. Cancel the sink wpnn by connecting it to c2.
Create a new vertex s and cancel all sources by connecting s to them. Then Lemma 6 implies
that there exists a drawing of G that is level-planar with respect to γ. Since it is γ(v) ∈ `(v) for
all v ∈ V by construction, G is multilevel planar with respect to `.

For the reverse direction, consider a drawing Γ of G that is multilevel planar with respect to `.
Obtain an sT -graph G′ together with a multilevel planar drawing Γ′ from G and Γ by adding a new
vertex s on level −1 and connecting it to u, v and all ai. Let γ denote the level assignment induced
by Γ′. Further, let π be the permutation of {1, 2, . . . , n} so that the counter-clockwise order of edges
around u is (u, c1), (u,w1

π(1)), (u,w
1
π(2)), . . . , (u,w

1
π(n)). For 1 ≤ i < n let j = π(i) and j′ = π(i+ 1).

The vertices w
pj
j and w1

j′ are incident to a common face f of Γ′. Because γ(c2) = max γ the
edge (c1, c2) implies that all vertices ai for 1 ≤ i ≤ n lie on the same side of u on level 0 and v
lies on the other side. This means that f is an inner face. Together with the fact that G′ is
an sT -graph this means that Property 2 of Lemma 3 applies. Because w

pj
j is incident to only one

edge it is ∠Γ′,f (w
pj
j ) > π. Because w

pj
j and w1

j′ are the only sink switches of f it is ∠Γ′,f (w1
j′) < π,

i.e., w1
j′ is the vertex with the greatest y-coordinate among all vertices incident to f . In particular,

it is γ(w
pj
j ) < γ(w1

j′). For 1 ≤ i ≤ n and j = π(i) set σ(tj) = γ(w1
i ). For j = π(i) with i < n

it is σ(tj) + pj < σ(tj′). Moreover, σ(tj) ≥ rj and σ(tj) + pj ≤ dj is ensured by the multilevel
assignment. Hence, σ is a valid schedule. �

This also contrasts the results for upward planarity and level planarity, because every oriented
tree is upward planar and all level graphs can be tested for level planarity in linear time.

5.3 Embedded Multi-Source Graphs

We show that multilevel-planarity testing for embedded graphs with multiple sources is NP-
complete by reducing from planar monotone 3-Sat, which is known to be NP-complete [9]. An
instance I = (V, C, E) of this problem consists of a set of variables V , a set of clauses C and a planar
drawing E of a so-called variable-clause graph, and it obeys the following restrictions. Each clause
consists of at most three literals and it is monotone, i.e., it is either positive or negative, meaning
that it consists of either only positive or only negative literals, respectively. We also assume that C
contains at least one positive and at least one negative clause. The variable-clause graph consists
of the nodes V ∪ C. Two nodes are connected by an undirected arc if one of the nodes is a clause
and the other node is a variable that appears as a literal in the clause. The drawing E of the
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Figure 9: A planar monotone 3-Sat instance together with a rectilinear embedding of its variable-
clause graph.

variable-clause graph is such that all variables lie on the horizontal straight line with y-coordinate 0,
positive and negative clauses are drawn as horizontal line segments with integer y-coordinates
below and above that line, respectively, and arcs connecting clauses and variables are drawn as
non-intersecting vertical line segments; see Figure 9. We call E a planar rectilinear drawing.

Transform the variable-clause graph and its rectilinear drawing E into a multilevel graph by
replacing each positive or negative clause with a positive or negative clause gadget and identifying
common vertices (namely those vertices that are variables). The drawing E directly induces a
combinatorial embedding and an outer face of the multilevel graph obtained in this way. Figure 10 (b)
shows the gadget for a positive clause (xa ∨ xb ∨ xc). The vertices xa, xb and xc are variables in V .
We call vertex pi the pendulum. A variable x ∈ V is set to true (false) if it lies on level 1 (level
0). In a positive clause gadget pi must lie on level 0. The idea is that it forces one variable to
lie on level 1, i.e., be set to true. This is achieved by arranging the variables xa, xb, xc together
with auxiliary vertices vi,1, vi,2, vi,3 on a cycle vi,1, xa, vi,2, xb, vi,3, xc, vi,1. This cycle encloses
an inner face, the edge (vi,1, pi) connects the pendulum to the cycle and the fixed embedding
around vi,1 ensures that the pendulum lies within this face. Let y denote the y-coordinate of the
clause (xa ∨ xb ∨ xc) in E . Set `(vi,1) = {2y} and `(vi,2 = `(vi,3) = {2y + 1}. This ensures that
the variable gadgets corresponding to distinct positive clauses do not intersect. The gadget for a
negative clause (¬xa ∨ ¬xb ∨ ¬xc) works symmetrically; the idea is that its pendulum forces one
variable to lie on level 0, i.e., be set to false; see Figure 10 (a). To obtain the multilevel graph,
replace each positive or negative clause with a positive or negative clause gadget and identify
common vertices, namely those vertices that are variables. Figure 10 (c) shows the multilevel graph
obtained from the planar monotone 3-Sat instance shown in Figure 9. In order for this graph to be
multilevel planar, it must be possible to place the vertices that are variables on of the two possible
levels so that all pendulums can be embedded within their gadgets, i.e., all clauses are satisfied.

Theorem 6 Testing embedded graphs for multilevel planarity is NP-complete, even when restricted
to multilevel assignments ` with |`(v)| ≤ 2 for each vertex v.

Proof: Clearly, the problem is in NP. We reduce planar monotone 3-Sat to multilevel-planarity
testing. To this end, we show that the multilevel graph G derived from (V, C, E) is multilevel planar
if and only if (V, C, E) is satisfiable.

Suppose that ϕ is a satisfying truth assignment of the 3-Sat instance underlying (V, C, E).
Construct a drawing Γ of G that is multilevel planar with respect to ` by constructing a level
assignment γ as follows. Let v ∈ V be a variable. Recall that v is a vertex in G. If ϕ(v) = true,
set γ(v) = 1. Otherwise, set γ(v) = 0. Let ci ∈ C be a positive clause. Draw the pendulum pi
of ci below a vertex vi with ϕ(vi) = true. Because ϕ is a satisfying truth assignment such a vi
exists. Now let cj ∈ C be a negative clause. Draw the pendulum pj of cj above a vertex vj
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Figure 10: Gadgets for the clauses (¬xa ∨¬xb ∨¬xc) (a) and (xa ∨xb ∨xc) (b). A multilevel-planar
drawing of the graph constructed from the planar monotone 3-Sat instance shown in Figure 9 (c).
The shaded faces correspond to the gadgets that substitute the clauses. In this multilevel-planar
drawing, vertices x1, x3 and x5 are on level 0, so variables x1 = x3 = x5 = false. On the other
hand, vertices x2 and x4 are on level 1, so variables x2 = x4 = true.

with ϕ(vj) = true. Since cj is a negative clause, a positive literal in cj corresponds to a variable set
to false, and because ϕ is a satisfying truth assignment such a vj exists. The resulting drawing is
then level planar with respect to γ and therefore multilevel planar with respect to `.

Now assume that Γ is a combinatorially equivalent drawing of G and is multilevel planar with
respect to `. Due to the construction rules and because C contains at least one positive clause
and one negative clause there exists exactly one face that is incident to both the vertex vmin

with `(vmin) = min ` and the vertex vmax with `(vmax) = max `. This face must be the outer face;
see Figure 10 (c). Let γ denote the level assignment induced by Γ. Construct a truth assignment ϕ
as follows: Set the variable v ∈ V to true or false depending on whether it is γ(v) = 1 or γ(v) = 0,
respectively. Because it is `(v) = {0, 1}, this always assigns a truth value to v. Consider the
pendulum pi of a positive clause ci ∈ C. In a positive gadget, pi forces one of the variables in ci,
say vi, to level 1, i.e., ϕ(vi) = true. Because ci is a positive clause it is then satisfied. In a negative
gadget for a negative clause cj ∈ C, pendulum pj forces one of the variables in cj , say vj , to level 0,
i.e., ϕ(vj) = false. Because cj is a negative clause, it is then satisfied. Hence, ϕ is a satisfying truth
assignment of (V, C, E). �

6 Conclusion

We introduced and studied multilevel planarity, a generalization of both upward planarity and
level planarity. We started by giving a linear-time algorithm to decide multilevel planarity of
embedded sT -graphs. The correctness proof of this algorithm uses insights from both upward
planarity and level planarity. In contrast to this, we showed that deciding the multilevel planarity
of sT -graphs without a fixed embedding is NP-complete. We also gave a linear-time algorithm to
decide multilevel planarity of oriented cycles, which is interesting because the existence of multiple
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sources makes many related problems NP-complete, e.g., testing upward planarity, partial level
planarity or ordered level planarity. This positive result is contrasted by the fact that multilevel-
planarity testing is NP-complete for oriented trees. Whether multilevel-planarity testing becomes
tractable for trees with a given combinatorial embedding remains an open question. Deciding
multilevel planarity remains NP-complete for embedded multi-source graphs where each vertex is
assigned either to exactly one level, or to one of two adjacent levels. This contrasts the existence
of efficient algorithms for testing upward planarity and level planarity of embedded multi-source
graphs. The following table summarizes our results for multilevel planarity and relates them to
existing results for upward planarity and level planarity.

fixed combinatorial embedding

st-Graphs sT -Graphs arbitrary

Upward Planarity O(1) [6] O(n) [6] P [6]

Multilevel Planarity
O(1)

(Corollary 1)
O(n)

(Theorem 2)
NPC

(Theorem 6)

Level Planarity O(1) [23] O(n) [23] open

not embedded

Cycles sT -Graphs Trees

Upward Planarity O(n) [7] O(n) [7] O(1) [10]

Multilevel Planarity
O(n)

(Theorem 3)
NPC

(Theorem 4)
NPC

(Theorem 5)

Level Planarity O(n) [23] O(n) [23] O(n) [23]
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[22] E. Jeĺınková, J. Kára, J. Kratochv́ıl, M. Pergel, O. Suchý, and T. Vyskocil. Clustered planarity:
Small clusters in cycles and eulerian graphs. J. Graph Algorithms Appl., 13(3):379–422, 2009.
doi:10.7155/jgaa.00192.
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