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Abstract. We study drawings of plane quadrangulations such that every inner
face realizes a prescribed area. A plane graph is area-universal if for every assignment
of non-negative weights to the inner faces, there exists a straight-line drawing such
that the area of each inner face equals the weight of the face. It has been conjectured
that all plane quadrangulations are area-universal. We develop methods to prove area-
universality via reduction to the area-universality of related graphs. This allows us to
establish area-universality for large classes of plane quadrangulations. In particular,
our methods are strong enough to prove area-universality of all plane quadrangulations
with up to 13 vertices.

1 Introduction

A plane graph is a planar graph together with a crossing-free drawing. Let G be a plane graph and
let F ′ be its set of inner faces. An area assignment is an assignment of a non-negative real number
to every face f ∈ F ′, i.e., a function A : F ′ → R+

0 . A (potentially degenerate) planar straight-line
drawing D of G realizes the area assignment A if for every f ∈ F ′ the area of f in D is A(f). A
plane graph G is area-universal if it has a realizing drawing for every area assignment A.

Ringel [18] considered straight-line drawings of plane graphs such that all faces have the same
area. He gave an example of a plane triangulation that has no equiareal drawing, hence, a triangula-
tion which is not area-universal. Thomassen [19] proved that plane cubic graphs are area-universal.
Biedl and Velázquez [3] showed area-universality for the class of plane 3-trees, also known as stacked
triangulations and Apollonian networks. Concerning counter examples, Kleist [12, 13] introduced
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a simple counting argument to show that no Eulerian triangulation is area-universal. Moreover,
she showed that every plane graph is area-universal in the class of drawings where one bend per
edge is allowed. For triangulations with special vertex orders, Kleist [14] presented a su�cient
criterion for their area-universality that only requires the investigation of one area assignment.
Interestingly, if the su�cient criterion applies to one plane triangulation, then all embeddings of
the underlying planar graph are also area-universal. Dobbins et al. [6] investigated the complexity
of deciding whether a given graph is area-universal and several related problems. They conjecture
that the problem is complete for the complexity class ∀∃R.

In this paper, we focus on plane bipartite graphs. Because the property of area-universality is
preserved under edge-deletions (see also Observation 1), we consider edge-maximal plane bipartite
graphs known as quadrangulations. Regarding the area-universality of quadrangulations little is
known. Evans et al. [9] showed that the m×n grid is area-universal for all m,n ≥ 2, even with the
additional requirement that the outer face of the drawing is a rectangle. Kleist [12] showed that
2-degenerate quadrangulations are area-universal and that in the class of drawings where one bend
per edge is allowed all quadrangulations have realizing drawings for all area assignments where
only half of the edges have a bend.

The study of drawings in various drawing modes with prescribed face areas is summarized under
the name cartograms. Cartograms date back to at least 1934 when Raisz [17] studied rectangular
population cartograms, where the US population was visualized by representing the states with
areas proportional to their population. This kind of visualization is particularly useful when
showing geo-referenced statistical data in order to provide insight into patterns, trends and outliers
in the world around us [22]. Cartograms have been intensely studied for duals of triangulations
and rectilinear drawings with bends. The number of sides of the polygons representing a face has
been improved in a series of papers from 40 sides [5], to 34 sides [11], to 12 sides [2]. Finally,
Alam et al. [1] showed how to construct drawings with 8-sided faces, which is known to be optimal.
Chang and Yen [4] studied contact representations of 2-connected outerplaner graphs and construct
contact representations with 4-gons of prescribed area. Note that in the cartogram literature the
problem is usually treated in the dual setting, i.e., weights are assigned to the vertices. We refer
to Nusrat and Kobourov [16] for a survey of the cartogram literature.

Area-universality has also been studied in the context of rectangular layouts, these are dissec-
tions of a rectangle into rectangles with prescribed contacts between the rectangles of the dissection.
Eppstein et al. [8] showed that a rectangular layout is area-universal if and only if it is one-sided.
The key ingredient in their proof is that the weak equivalence class of any rectangular layout is
area-universal. The weak equivalence class is obtained by prescribing the contacts between the seg-
ments. The area-universality of the weak equivalence class has been shown by di�erent techniques
[7, 10, 21]. This area-universality result is very special because, up to a�ne transformations, the
rectangular layout realizing a given area assignment is actually unique.

The class of drawings: We study area-universality of plane quadrangulations. To realize non-
negative face areas, we extend the set of planar straight-line drawings of a plane quadrangulation
by all drawings which can be obtained as the limit of a sequence of planar straight-line drawings
(e.g. speci�ed by the coordinates of the vertices). In particular, we allow degenerate drawings in
which vertices and edges sharing a face may (partially) coincide; if two edges partially coincide
their union forms a segment.

In various cases, considering this enriched set of drawings allows for simpler proofs [9, 13, 19].
For example, the counting argument by Kleist [13] greatly bene�ts from allowing face area 0 and
degenerate drawings. In the case of triangulations, degeneracies occur if and only if some face has
area 0 and the set of realizable area assignments is closed [13, Lemma 4], i.e., allowing or disal-
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lowing face area 0 and degenerate drawings does not in�uence whether or not all considered area
assignments are realizable. For examples of how to obtain non-degenerate realizing drawings from
degenerate drawings, we refer to 1-bend drawings of plane graphs [13, Theorem 3 & Theorem 6]
and table cartograms [9, Theorem 2].

Outline of this paper: In Section 2, we investigate operations that preserve area-universality.
In Section 3, we use one of these operations, the edge contraction, to show area-universality of grids
and large classes of angle graphs. In particular, we consider angle graphs of triangulations that are
close to being area-universal. In Section 4, we study strong area-universality, i.e., area-universality
within a prescribed outer face. Strong area-universal graphs may serve as building blocks for
constructing area-universal quadrangulations. We show that not every plane bipartite graph is
strongly area-universal and present families of strongly area-universal graphs. Shape restrictions
are also the subject of Section 5 where we study convex drawings. We present both a large family
of quadrangulations that are not convex area-universal and examples of strongly convex area-
universal graphs. In Section 6, we use our tools to show area-universality of all quadrangulations
with at most 13 vertices. In some cases the argument relies on the known area-universality of the
class of double stacking graphs.

2 Area-Universality Preserving Operations

We begin with an easy observation which can also be found in [3] and [13].

Observation 1 A subgraph of an area-universal plane graph is area-universal.

Therefore, a proof for the area-universality of plane quadrangulations, i.e., maximal plane
bipartite graphs, would imply area-universality of all plane bipartite graphs. The following lemma
extends Observation 1 with a new operation. A set of edge contractions in a plane graph G is
face-maintaining if the contractions do not change the number of faces in G, i.e., for a face of
degree d at most d− 3 edges are contracted.

Lemma 1 Let G be a plane graph that can be transformed into an area-universal plane graph G′

by inserting vertices, inserting edges, and performing face-maintaining edge contractions. Then G
is area-universal.

Proof: Let A denote an area assignment of G. A face f in G corresponds to a (non-empty)
collection of faces Cf in G′. We de�ne A′ such that for each inner face f of G it holds that
A(f) =

∑
f ′∈Cf

A′(f ′). Since G′ is area-universal, there exists an A′-realizing drawing D′ of G′.

Simply deleting all vertices and edges of G′ which are not in G yields a (degenerate) drawing D
of G. By de�nition of A′, D is A-realizing. �

There exists a further operation that preserves area-universality and is based on decomposition.
For an illustration consider Figure 1. From a plane graph G with a simple cycle C, we obtain two
plane graphs Gi and Ge by decomposing along C: Gi is the subgraph of G consisting of C and its
interior, while Ge is the subgraph of G consisting of C and its exterior. Reversely, we obtain G
from Gi and Ge by identifying the outer face of Gi with the inner face of Ge whose boundary is C.

A plane graph G is strongly area-universal if for every area assignment A of G and every �xed
polygonal placement of the outer face of area ΣA, there exists a realizing straight-line drawing of G
within the prescribed outer face. Here we have used ΣA to denote the sum of all assigned areas,
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+

Ge
Gi

G

C

C

C

Figure 1: Decomposing G along C yields two plane graphs Ge and Gi. If Ge is area-universal and
Gi strongly area-universal, then G is area-universal.

i.e., ΣA :=
∑

f∈F ′ A(f). Since all triangles are a�ne equivalent, a plane graph with a triangular
outer face has a realizing drawing (if it exists) within every triangle of correct area [13]. It follows
that:

Observation 2 Plane graphs with triangular outer faces (e.g. triangulations) are area-universal
if and only if they are strongly area-universal.

A similar result for quadrangulations would be a pleasant surprise.

Lemma 2 Let G be a plane graph with a simple cycle C, and Gi and Ge obtained by decomposing
G along C. If Ge is area-universal and Gi is strongly area-universal, then G is area-universal.
Moreover, if Ge is strongly area-universal, then G is also strongly area-universal.

Proof: Let A be an area assignment of G. For i ∈ {i,e}, Ai denotes the induced area assignment
of Gi. Note that the interior of C is a face f of Ge. Particularly, it holds that Ae(f) = ΣAi.
Because Ge is area-universal, there exists an Ae-realizing drawing De of Ge. Since Gi is strongly
area-universal, we �nd an Ai-realizing drawing Di of Gi whose outer face is the polygon represent-
ing C in De. Thus, identifying De and Di along C yields an A-realizing drawing of G. �

The ideas of this lemma have been used in [13] to show the strong area-universality of 2-
degenerate quadrangulations. Recall that a graph is k-degenerate if and only if every subgraph
contains a vertex of degree at most k.

Proposition 3 (Kleist [13], Proposition 15) Every 2-degenerate quadrangulation is strongly
area-universal.

It is easy to see that K4 is area-universal, i.e., a vertex of degree 3 can be inserted into a triangle
so that the three small triangles partition the big triangle in any prescribed ratio. This yields the
following lemma.

Lemma 4 Let T be a plane graph and T+ the plane graph where a vertex of degree 3 is inserted
(stacked) into a triangle of T . Then T is area-universal if and only if T+ is area-universal.

Since a plane 3-tree is obtained from a triangle by iteratively stacking vertices into faces,
Lemma 4 yields the result from [3]: Plane 3-trees are area-universal.
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3 Area-Universality via Edge Contractions

In this section, we discuss some implications of the edge contractions of Lemma 1.
Firstly, we show an alternative proof for the area-universality of grid graphs. The grid G(m,n)

is the Cartesian product Pm×Pn of paths Pm and Pn onm and n vertices, respectively. Figure 2(a)
illustrates the grid G(9, 6). Area-universality of grid graphs was �rst proved in the context of table
cartograms where additionally the outer face is required to be a rectangle [9]. Our new proof does
not yield a rectangular outer face; however, it is straight-forward and very simple. The reader is
invited to check that Proposition 3 does not imply the area-universality of grid graphs, because
G(m,n) is not a subgraph of a 2-degenerate quadrangulation if n,m ≥ 3.

m

n

(a)

A B

C

1 2 3 4

(b)

Figure 2: Illustration of Proposition 5 and its proof. (a) The grid graph G(m,n) and (b) an
area-universal triangulation `containing' it.

Proposition 5 Every grid is area-universal.

Proof: The idea of this proof is easy to convey by picture; see Figure 2. Contract the edges of
every second column of G(m,n) to super vertices that are labeled by 1, . . . , k from left to right.
Then, we add vertices and edges to enhance the resulting graph to a triangulation G as depicted in
Figure 2(b). The graph G is a stacked triangulation since the interior of each triangle (i, i + 1, C)
with 1 ≤ i ≤ k−1, and the graph induced by A,B,C, 1, . . . , k is a stacked triangulation. Thus, G is
area-universal. Therefore, every grid graph can be transformed into a subgraph of an area-universal
graph using face-maintaining edge contractions. Hence, by Lemma 1, grids are area-universal. �

The angle graph of a plane graph G is the graph QG with vertex set consisting of the vertices
and faces of G and edges corresponding to face-vertex incidences. If G is 2-connected, then QG

is a quadrangulation. Clearly, an angle graph is bipartite where the two bipartition classes are
the vertices V and the faces F of G. In the following we consider angle graphs of triangulations.
For a plane graph G and its angle graph Q, their union (graph) G + Q, consists of the union of
the vertex and edge sets of G and Q. Note that the union is again a plane graph: Indeed, the
vertex set of G + Q coincides with the vertex set of Q. Hence, G + Q can be understood as the
quadrangulation Q together with the edges between the vertices of one bipartition class, namely V .

Proposition 6 The angle graph Q of an area-universal triangulation T is area-universal.

Proof: The graph T +Q can be seen as T where a vertex of degree 3 is inserted in every face. By
Lemma 4, T + Q is area-universal. Thus, Observation 1 implies that Q is area-universal. �
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Note that the same approach shows that angle graphs of equiareal triangulations are equiareal.
Moreover, a straightforward consequence of Proposition 6 is that angle graphs of stacked triangu-
lations are area-universal.

In order for its angle graph to be area-universal, it su�ces for a triangulation to be close to area-
universal. As shown in [12], every plane graph has an area-universal subdivision. The subdivision
number s(G) of a plane graph G is the minimum number of subdivision vertices to be inserted into
G such that it becomes area-universal. If G is area-universal, then clearly s(G) = 0. To generalize
Proposition 6, we introduce the notion of a re�ned area assignment. If G1 is a subgraph of G2,
then every face f of G1 corresponds to a collection of faces Cf in G2. An area assignment A1 of G1

is re�ned by an area assignment A2 of G2 if A1(f) =
∑

s∈Cf
A2(s). We also say A2 re�nes A1.

Theorem 7 The angle graph Q of a plane triangulation T with s(T ) ≤ 1 is area-universal.

Proof: Figure 3(a) illustrates the proof. Let e be an edge of T such that subdividing e yields the
area-universal graph T◦. The strategy is as follows: For an area assignment A of Q, we de�ne a
re�ning area assignment A′ of the union U := Q + T◦. Let A◦ be the unique area assignment of
T◦ such that A′ re�nes A◦. The drawing of T◦ realizing A◦ yields an A′-realizing drawing of U .

U := Q+T◦
qe

f1

f2

(a) The graph U := Q + T◦ where T is
the octahedron graph.

0 0

00

A(q1) A(q2)

A(q4) A(q3)

q1 q2

q4 q3
qe qe

A(q1) A(q2)

A(q4) A(q3)

q1 q2

q4 q3

(b) Faces in the neighborhood of the subdivided edge e.

Figure 3: Illustration of Theorem 7 and its proof.

For the de�nition of A′, note that every face f of Q corresponds to two faces in U . Let qe
denote the face of Q that is split by the subdivided edge e in U . We arbitrarily partition the area
A(q) assigned to face q between the two corresponding faces in U , for all faces q in Q except the
four faces q1, q2, q3, and q4 sharing a boundary edge with qe. Let f1 and f2 denote the two faces
adjacent to e in T . For qi, 1 ≤ i ≤ 4, assign area A(qi) to the triangular face from U which is
neither incident to f1 nor to f2 in U ; assign an area of 0 to the triangular faces incident to f1 or
f2. This de�nes the area assignment A′ and A◦ is the area assignment of T◦ that is re�ned by A′
of U .

Let D◦ be an A◦-realizing drawing of T◦. Since each vertex f ∈ F − {f1, f2} of U acts as a
vertex of degree 3 stacked into a face of T◦, we can insert f in D◦ by Lemma 4 such that the
areas of A′ are realized. To obtain an A′-realizing drawing of U , it remains to insert f1 and f2.
We call the highlighted (thick, red) edges in Figure 3(b) incident to f1 and f2, the red edges of f1
and f2, respectively. By de�nition of A′, the red edges must be contracted in every A′-realizing
drawing of U . Consequently, given a drawing T◦, we easily insert f1 and f2 at the same location as
the already placed vertex of the red edges, respectively. This yields an A′-realizing drawing of U .
Since A′ re�nes A, deleting the edges of T◦ yields an A-realizing drawing of Q. �
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This ties in with a result based on an operation called diamond addition. Let G be a plane
graph and e an edge incident to two triangular faces consisting of e and the vertices u1 and u2,
respectively. Applying a diamond addition of order k on edge e of G results in a graph G′ in which
the edge e is subdivided by vertices v1, . . . , vk which are also adjacent to u1 and u2, as illustrated
in Figure 4.

u1

e

u2

v1 v2 v3

G G′

u1

u2

Figure 4: A diamond addition on edge e.

Two diamond additions are disjoint if the partitioned triangles are di�erent. For instance, in
the left graph of Figure 5, diamond additions on the edges Au and vw are disjoint, while diamond
additions on the edges Au and uv are not. Together with Theorem 7, the following theorem implies
that the angle graphs of area-universal triangulations on which one diamond addition has been
applied are area-universal.

v

1 2...`

1′
2′

...

k′

C

A B

v

C

A B

u w

Figure 5: A double stacking graph H`,k.

Theorem 8 (Kleist [15], Theorem 33) Let G be a graph obtained from an area-universal graph G′

by (multiple disjoint) diamond addition(s) adding k vertices in total. Then, s(G) ≤ k.

As a special case of graphs obtained by diamond additions, Kleist [14] studied double stacking
graphs H`,k that can be obtained from the plane octahedron graph. Labeling the octahedron as in
Figure 5, H`,k is obtained by applying one diamond addition of order `−1 on Au and one diamond
addition of order k − 1 on vw. The octahedron graph is the smallest graph of this class and has
parameters ` = k = 1.

In the following we use ideas similar to those used in the proof of Theorem 7, to show the area-
universality of angle graphs obtained from area-universal triangulations on which several diamond
additions have been applied. We start by considering a special con�guration that appears in the
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neighborhood of an edge on which a diamond addition has been performed. A tent graph Tk is a
plane graph with the outer face v, x0, x1, x2, . . . , xk+1 and inner vertices y0, y1, . . . , yk where yi is
incident to xi, xi+1 and v. Figure 6(a) depicts the tent graph T3.

v

x0 xk+1x1 x2 . . .

y0 y1 yk. . .

(a) A tent graph Tk.

v

. . .b0 b1 bk

. . .a0 a1 ak+1

`

(b) An A-realizing drawing of Tk.

Figure 6: Illustration of Lemma 9 and its proof.

Lemma 9 Every area assignment A of a tent graph Tk has an A-realizing drawing within each
triangle that has area ΣA and corners v, x0, xk+1. Moreover, the length of every segment xixi+1

can be made proportional to the area of the incident triangle.

Proof: We denoted the assigned areas of Tk by ai and bi as depicted in Figure 6(b). We position
xi on the segment x0xk+1 such that

‖xi+1 − xi‖ =
bi∑
j bj
‖xk+1 − x0‖.

Then, in a realizing drawing the vertices yi lie on a line ` parallel to the segment x0xk+1 such that
for each point x on ` the triangle x0xk+1x has area

∑
i bi. Note that, by the placement of xi, each

position of yi on ` realizes bi. Thus, we may use the freedom to realizing ai when placing yi on `
with the following procedure: De�ning y−1 as the intersection of the segment vx0 with the line `,
we suppose that yi−1 is placed already when we consider yi for i ≥ 0. Move yi rightwards on the
line ` starting at yi−1 and observe the area of the face vyi−1xiyi. Clearly, it starts at 0 and increases
continuously. The intermediate value theorem guarantees a position, where the area equals ai. We
place yi at the corresponding position and continue with yi+1. Due to the correct total area, the
area of ak+1 is realized if all other face areas are correct. Thus, we obtain an A-realizing drawing
of Tk. �

In the following theorem, we not only consider several disjoint diamond additions, but also
groups of non-disjoint diamond additions that are far apart. A set of edges of a plane triangula-
tion T is called far apart if the subgraph of the dual graph induced by the duals of these edges
and their vertices is a collection of stars; see Figure 7(a) for an example.

Theorem 10 The angle graph Q of a plane triangulation T is area-universal if one of the following
holds:
(i) T is obtained from an area-universal triangulation T ′ by several disjoint diamond additions

of an arbitrary order.
(ii) T has a set of edges that is far apart such that subdividing each of them at most once yields

an area-universal subdivision T◦.
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(a) The set of thick edges is far apart. (b) A set of subdivided edges that is far apart.

Figure 7: Illustration of (subdivided) edges that are far apart.

Proof: To prove (i), we consider a diamond addition of order k applied on an edge (u,w) of T ′.
Let T ′◦ denote the graph obtained from the triangulation T ′ by subdividing the edge (u,w) with k
additional vertices as in T ; in other words the edge (u,w) is replaced by a path P with k+1 edges.
Let A and B denote the two common neighbors of u and w in T ′ such that Auw and Buw are faces
in T ′. Recall that Q is the angle graph of T and consider the union U := Q+ T ′◦. De�ne H as the
restriction of U to the interior of AuBw. Figure 8 depicts H for a diamond addition of order 3.

u wu w
1
2c1

1
2c2

1
2c3

1
2c4

1
2c1

1
2c2

1
2c3

1
2c4

B

A

Figure 8: The graph H for a diamond addition of order 3; together with AH .

Given an area assignment A of Q, we construct an area assignment A′ of T ′ and an area
assignment AU of U that re�nes both A and A′. Observe that every face q of Q is either a face
of U or corresponds to two faces of U .

In the latter case, we partition the prescribed area of q equally between its two faces in U and
obtain the area assignment AU of U . The restriction of AU to H is denoted AH . We de�ne A′
of T ′ as the area assignment re�ned by AU , where we identify the path P and the edge (u,w).
From an A′-realizing drawing D′ of T ′, we construct an AU -realizing drawing of U as follows:
First, we add all face vertices not adjacent to P using Lemma 4; recall that they act as vertex of
degree 3 in a triangle.

Observe that splitting H along P results in two tent graphs Tk. Consequently, we may use
Lemma 9 to reinsert each of the two tent graphs of H. By de�nition of AH , the subdivision
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vertices on (u,w) are placed consistently when applying Lemma 9 to the two tent graphs when
splitting H along P . Here we use the fact that the assigned areas of Q were split equally into two
when de�ning AU . Since AU re�nes A, we obtain an A-realizing drawing of Q by deleting the
edges of T ′◦. This proves (i).

Now, we show (ii). First, we consider the case when the set of subdivided edges of T forms
only one dual star, i.e. T has a face f◦ such that subdividing each edge incident to f◦ (at most
once) yields an area-universal graph T◦. Theorem 7 shows the claim if exactly one edge of f◦ is
subdivided. In the following, we show how to deal with the case of three subdivision vertices.
The case of two subdivision vertices can be handled by a slight modi�cation which is explained
afterwards.

We denote the three faces incident to subdivision vertices in T◦ by f◦, f1, f2, and f3 as
illustrated in Figure 9; thecorresponding vertices in Q are denoted by fv

◦ , f
v
1 , f

v
2 , f

v
3 . Moreover, we

let v1, v2, v3 be the vertices of f◦ and let wi be the third vertex of fi as depicted. Note that two of
the w-vertices may coincide implying that a v-vertex has degree 3. However, at most one v-vertex
has degree 3; otherwise T is the complete graph on four vertices which is area-universal. Therefore,
it remains to consider two cases: One v vertex has degree 3 and none v-vertex has degree 3.

f1

f◦

f2f3

w3 v3 w2

v2v1

w1

(a) Neighborhood of f◦ in T◦.

fv
1

fv
◦

fv
2fv

3

w3 v3 w2

v2v1

w1

(b) Neighborhood of fv
◦ in U , where T◦ is de-

picted in black and Q in gray.

Figure 9: Illustration of the notation for the proof of Theorem 10(ii).

We �rst consider the case that v3 has degree 3. Figure 10(a) illustrates the neighborhood
of f◦ in this case. Our strategy is as follows: For an area assignment A of Q, we de�ne an area
assignment AU of the union U := Q + T◦. This yields a unique area assignment A◦ of T◦ such
that AU of U re�nes A◦ of T◦. From an A◦-realizing drawing of T◦, we construct an AU -realizing
drawing of U . Deleting the edges of T◦ results in an A-realizing drawing of Q.

For a given area assignment A of Q, we construct an area assignment AU of U such that the
area of every face q of Q is partitioned between the two faces of T◦. Let B denote the edges of T◦
bounding the region formed by the faces f1, f2, f3, f◦ in T◦; note that B has four edges since the
common vertex of f◦, f2, f3 has degree 3. The edges of B divide four faces of Q in U . For all faces
outside B (and not incident to B), the face areas of Q are partitioned arbitrarily between the two
faces of U . The area of each of the four faces of Q divided by B is assigned to the subface outside B
as indicated in Figure 10(b). We de�ne A◦ of T◦ as the unique area assignment re�ning AU .

Given an A◦-realizing drawing of T◦, note that every vertex of Q outside B is of degree 3 and
can be inserted with Lemma 4. We will redraw all vertices inside B. By de�nition of AU , two
incident triangular faces of fv

1 are supposed to be 0. Hence, we must place fv
1 at the same location
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w3 = w2

v3

v2v1

w1

(a) Neighborhood of f◦ in T◦ when
v3 has degree 3.

fv
1

fv
◦

fv
2fv

3

w3 = w2

v3

v2v1

w1

0 0

0 0

(b) Neighborhood of fv
◦ in U ; AU

is given in orange.
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(c) The graph G.

Figure 10: Illustration of the proof of Theorem 10(ii) for three subdivision vertices if there exists
a vertex of degree 3.

as w1. Then, we place the vertex fv
◦ as a vertex of degree 2 in the quadrangle v1f

v
1 v2w2 such that

the area of the quadrangle v1f
v
1 v2f

v
◦ is correct, this is possible by Proposition 3. It remains to

realize the graph G illustrated in Figure 10(c). We later show that every area assignment of G is
realizable within any �xed outer face of correct total area: This follows from Lemma 13 and the
fact that G is the core of c(S3).

Now, we turn to the case that no vi has degree 3. This implies that all wi are distinct. The
resulting neighborhood of fv

◦ is illustrated in Figure 11(a). Let A be an area assignment of Q. In
a �rst step, we de�ne an area assignment AU of the union Q + T◦ =: U . Note that every face
of Q corresponds to two faces in U . Except for the faces incident to fv

◦ , f
v
1 , f

v
2 , f

v
3 , we arbitrarily

partition the area A(q) of a face q of Q between its two faces in U . For the faces incident to fv
◦ ,

fv
1 , f

v
2 , f

v
3 , we assign their area as depicted in Figure 11(b).
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f2f3
a b

c

0
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w1

(a) Neighborhood of f◦ in T◦ and A◦.
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0
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0
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3

w3 w2
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(b) Neighborhood of f◦ in Q+ T◦ and AU .

Figure 11: Illustration of the proof of Theorem 10(ii) for three subdivision vertices of high degree.

Let A◦ be the area assignment of T◦ re�ning AU . Since T◦ is area-universal there exists an
A◦-realizing drawing D◦ of T◦. Most face-vertices of Q act as vertices of degree 3 stacked into
triangles of T◦. Hence, by Lemma 4 and we can insert them in D◦ such that they realize the area
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of AU . It remains to insert the vertices fv
1 , f

v
2 , f

v
3 and fv

◦ . By de�nition of AU , we must place fv
i

as to coincide with wi, i.e., such that the edge fv
i wi is contracted. To place fv

◦ in D◦, we need
some geometric considerations.

The area of f◦ in D◦ is 0, therfore at each vi the two boundary edges of f◦ are collinear. If the
slopes of the 3 supporting lines are pairwise di�erent, then the triangle formed by the three lines is
in f◦, whence the triangle has area 0 which means that the three lines intersect in a point p. This
point is the position of the three subdivision vertices in the drawing D◦ and can be used for fv

◦ . If
two of the lines have the same slope, then because they share one of the subdivision vertices they
coincide. If the third line has a di�erent slope, then the intersection point of the lines is a good
position for fv

◦ . If all three lines coincide there are many di�erent foldings of the boundary of f◦,
we leave it as an exercise to show that in each case there is a position for fv

◦ such that the edges
to v1, v2, v3 can be drawn `inside' f◦.

If there are two subdivision vertices on the boundary of f◦ we use the area assignment AU and
the corresponding A◦ as in the previous case. In the drawing D◦ we pretend that the third edge
of f◦. The considerations for the case of three subdivided edges show that there is a good position
for fv

◦ .

Since the set of subdivided edges is far apart, every subdivided edge belongs to a star. We
handle each star separately as described above; in particular, the star consists of one, two or
three edges since T is a triangulation. By the independence, for every two stars, the edges of T
surrounding the regions of the stars are disjoint; these edges form a so-called boundary cycle of a
star. For an example consider Figure 7(b).

Note that in all cases, when de�ning AU from A, only the areas inside and adjacent to the
boundary cycle are a�ected. Since these sets of faces in U are disjoint, the subdivision vertices can
be handled independently. This �nishes the proof. �

The results of Proposition 6 and Theorems 7, 8 and 10 imply the area-universality of several
classes of angle graphs.

Corollary 11 The angle graph of a plane triangulation T is area-universal if
• T is a stacked triangulation,
• T is 4-connected and has at most ten vertices, or
• any (possibly a di�erent) embedding of T is a double stacking graph H`,k.

Proof: Stacked triangulations are area-universal, hence Proposition 6 implies the area-universality
of its angle graphs. Theorem 8 can be used to show that triangulations with at most nine vertices
and all embeddings of `k-double stacking graphs have subdivision number at most 1 [15]. Con-
sequently, Theorem 7 implies that their angle graphs are area-universal. Moreover, 4-connected
plane triangulations on ten vertices can be obtained from area-universal triangulations by at most
two disjoint diamond additions. Thus, their area-universality follows from Theorem 10(i). �

4 Strongly Area-Universal Quadrangulations

In this section, we study strongly area-universal quadrangulations. Recall that a quadrangulation
is strongly area-universal if it is area-universal within every �xed outer face of the correct total
area. A nice property of this class is that we can stack any strongly area-universal into a face of an
(strongly) area-universal quadrangulation to obtain an (strongly) area-universal quadrangulation.
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Therefore, few small strongly area-universal quadrangulations can serve as building blocks in order
to construct in�nite and rich families of area-universal quadrangulations.

Note that for n > k, the area of a convex n-gon strictly exceeds the area of any contained
k-gon. Therefore, we immediately obtain that the plane bipartite graph depicted in Figure 12(a)
is not strongly area-universal: Fixing the outer face as a regular hexagon, there exists no drawing
in which the inner 4-face covers more than 2/3 of the area.

Observation 3 Not all plane bipartite graphs are strongly area-universal.

(a) A plane bipartite graph that is not strongly
area-universal.

G GG

(b) Illustration of the proof of Proposition 12.

Figure 12

In contrast, we do not know of a quadrangulation that is not strongly area-universal. Neither
do we know of an area assignment that requires a convex outer face. In fact these two questions
are closely related.

Proposition 12 If there exists a plane quadrangulation G and an area assignment A such that
every realizing drawing has a convex outer face, then there exists a plane quadrangulation H that
is not area-universal. Moreover, if G is 3-connected, we can ensure that H is 3-connected.

Proof: Suppose we are given a quadrangulation G and an area assignment A with the described
properties. Let H0 denote the plane graph of K2,4, i.e., H0 has three bounded faces each being a
quadrangle. For each bounded face of H0, we take a copy of G and identify the outer 4-cycle of
the copy of G with the boundary of the face. This yields the quadrangulation H as schematically
illustrated in Figure 12(b). If G is 3-connected, then H is also 3-connected.

Assigning A to each copy of G, we claim that H has no realizing drawing. Suppose, by
contradiction, that there exists a realizing drawing D. Due to the positive total area of the
central copy of G, either the right or the left copy of G has a non-convex boundary cycle in D.
Consequently, this copy induces an A-realizing drawing of G where the outer face is not convex
and thus, we obtain a contradiction. �

Now, we present a family of plane graphs that have the property of being strongly area-universal.
The family consists of the angle graphs of wheels, which are also known as pseudo-double wheels.
The pseudo-double wheel Sk has 2k + 2 vertices and consists of a cycle with vertices v1, v2, . . . , v2k
and a vertex v adjacent to all vertices on the cycle with odd index and a vertex w adjacent to all
vertices on the cycle with even index, see Figure 13(a). Up to the labeling, the plane embedding
of Sk is unique.

The smallest pseudo-double wheel S3 is also known as the cube graph. In this section, we show
that the cube graph � and more generally, all pseudo-double wheels � are strongly area-universal.
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v1

v2k

v

w

v6

v5 v7 . . .v2
v3

v4 v8

(a) Pseudo-double wheel Sk.

v

w

A B
b1 b2 bk. . .

a1 ak−1. . .

(b) The core c(Sk) of Sk with an area assignment.

Figure 13

We �rst study a subgraph of Sk, namely the plane graph c(Sk), called the core, which is obtained
by deleting v1. Figure 13(b) illustrates the core of S5.

Lemma 13 Let c(Sk) be the core of a plane pseudo-double wheel with an area assignment A. Let
q be a quadrangle of area ΣA containing the diagonal AB and whose corners are identi�ed with
the vertices A,w,B, v. Then, c(Sk) has a A-realizing drawing within q.

Proof: We distinguish two cases. We call the faces of c(Sk) incident to w the bottom faces and the
faces incident to v the top faces of c(Sk). For simplicity, we denote the vertices v2 and v2k by A
and B, respectively, and the face areas by ai for the top and by bi for the bottom faces. Consider
also Figure 13(b).

Case (i): If
∑

i bi > area(4AwB), we position the even vertices on the segment AB as
illustrated in Figure 14(a). Note that adding the edges of consecutive even vertices and Av and
Bv (and deleting w) results in a tent graph. We partition the face area bi of each bottom face into
b1i and b2i such that the ratio b1i/b2i coincides for all i and

∑
i b

2
i = area(4AwB). By Lemma 9,

the tent graph has a realizing drawing within the triangle vAB. Due to the same ratio, the vertex

w

0 0

b11
b21

b11
b21

=
b1i
b2
i

b12
b22

b1k
b2k. . .

. . .

v

(a) The layout in case (i).

w

a11 a12

a22

. . .

. . .

v

a1k−1

a1
1

a2
1
=

a1
i

a2
i

a21

(b) The layout in case (ii).

Figure 14: Illustration of the proof of Lemma 13. The gray disks indicate that the contained
vertices are placed at the same position, the center of the disk.
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placement on AB also realizes the area for triangles incident to w. Figure 14(a) visualizes the
realizing drawing of c(Sk).

Case (ii): If
∑

i ai > area(4vAB), we position the odd vertices on the segment AB as
illustrated in Figure 14(b). Note that the graph in the bottom triangle is a tent graph. Therefore,
we partition the area ai of a top faces into a1i and a2i such that the ratio a1

i/a2
i coincides for all i

and
∑

i a
1
i = area(4vAB). As in case (i), we use Lemma 9 to �nd a realizing drawing of the tent

graph. Figure 14(b) visualizes the realizing drawing of c(Sk). �

This lemma helps us to settle three out of four cases of Theorem 14.

Theorem 14 The pseudo-double wheel Sk, k ≥ 3, is strongly area-universal.

Proof: For an area assignment A of Sk, we consider an arbitrary but �xed quadrangle q of area ΣA
whose corners are identi�ed with v1v2wv2k. We distinguish two cases depending on the shape of q.
Note that q can be triangulated by the segment v2v2k or v1w (or both).

In case 1, the segment v2v2k lies inside q. We distinguish two subcases based on the assigned
areas a and b of the faces incident to v1 relative to the area of the triangle v1v2v2k.

Case 1(i): a + b ≤ area(v1v2v2k). We can position v such that the triangles v1v2v and v1vv2k
realize a and b, respectively. The remaining graph corresponds to the core Sk which we realize
in the quadrangle vv2wv2k containing the segment v2v2k by applying Lemma 13. Figure 15(a)
visualizes the resulting layout.

v1

v2k

v

w

v2

v3 v2k−1
a b

(a) Case 1(i)

v1

v

w

v3
v2k−1

a b

v2kv2

(b) Case 1(ii)

Figure 15: Illustration of case 1 in the proof of Theorem 14 in which the segment v2v2k is contained
in q. In case 1(i) the face areas incident to v1 are small; in case 1(ii) the face areas incident to v1
are big. Both cases reduce to Lemma 13.

Case 1(ii): a+ b > area(v1v2v2k). We position v on the segment v2v2k such that v3 and v2k−1
are forced to be on a line parallel to the segment v2v2k, i.e., v partitions v2v2k according to the ratio
of a and b. The positions of v3 and v2k−1 on the line are such that the areas of the triangles v2wv3
and v2k−1wv2k realize b1 and bk. The graph induced by the vertices in the interior of vv3wv2k−1
is the core of a smaller pseudo-double wheel and contains the diagonal v3, v2k−1. Consequently,
Lemma 13 yields a realizing drawing, see Figure 15(b).

In case 2, the segment v1w lies inside q. We call the faces incident to v2 the left faces and the
faces incident to v2k the right faces. We say the left (right) faces are small if their assigned area is
at most the area of the triangle v1, v2, w (v1, w, v2k). Otherwise, we call the left (right) faces big.
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Note that the left or right faces must be small. By symmetry, we assume without loss of generality,
that the left faces are small. Then we can realize the left faces by triangular faces, by positioning
v3 accordingly.

v3

w

a

c d

b

x4 x6 x8

x5 x7

v2kv2

w

v
v1

(a) Case 2(i)

d

a

c

b

v

v2k−1
v3 v2kv2

w

v1

(b) Case 2(ii)

Figure 16: Illustration of case 2 in the proof of Theorem 14, in which the segment v1w is contained
in q. In case 2(i), the left and right faces are small; in case 2(ii), the left faces are small and the
right faces are big.

Case 2(i): the right faces are small as well; this case is illustrated in Figure 16(a). We reduce
this case to subgraphs of two stacked triangulations. To do so, we contract the edge vv1 and realize
the right faces by triangular faces with corner v2k−1. Denote the areas of the inner faces by xi as
illustrated in Figure 16(a). There exists an i with 4 ≤ i ≤ 2k − 1 such that

a + c +

i−1∑
j=4

xj ≤ area(4v1v2w) and

2k−1∑
j=i+1

xj + b + d ≤ area(4v1wv2k).

The exact layout depends on whether xi is the area of a top or bottom face of the core. If it is a
top face, then its unique vertex with odd index is placed at w. If xi belongs to a bottom face, then
the unique vertex with even index is placed at v. Afterwards we insert the remaining vertices. For
j < i, we iteratively insert vj such that it realizes the face area xj by triangular face with a �at
angle at vj+1 from left to right. For j > i, we follow the same strategy but in decreasing order.

Case 2(ii): the right faces are big. Figure 16(b) depicts this case. Recall that v3 has been �xed
already. Place v2k−1 on v1w such that the area of the quadrangle v1v3v2k−1v2k exceeds b but is not
enough to also realize all top faces of the core, i.e., the striped faces incident to v in Figure 16(b).
The remaining graph can be handled by Lemma 13: To do so, we choose vv3wv2k−1 as the outer
face and insert an arti�cial vertex on wv2k−1. �

We can combine Lemma 2 and Theorem 14 in order to construct further strongly area-universal
graphs. A graph is a stacked pseudo-double wheel if there exists a set of cycles such that decompo-
sition along these cycles yields several pseudo-double wheels. A generalized stacked pseudo-double
wheel can be decomposed into pseudo-double wheels and copies of the unique plane quadrangula-
tion Q5 on �ve vertices. Note that Q5 is the plane graph that can be obtained by starting with a
plane C4, inserting an edge between two non-incident vertices and then subdividing this new edge.
It is easy to see that Q5 is strongly area-universal [12]. Together with Lemma 2 and Theorem 14,
it follows that

Corollary 15 Generalized stacked pseudo-double wheels are strongly area-universal.



JGAA, 25(1) 171�193 (2021) 187

5 Quadrangulations and Convexity

A drawing of a planar graph is convex if each face is bounded by the boundary of a convex polygon.
Convexity is a visually appealing property of drawings of planar graphs which has therefore been
studied extensively in graph drawing. For example, Tutte's spring embeddings [20] guarantee
convex drawings for every 3-connected planar graph. In this section, we aim for convex realizing
drawings, i.e., given an area assignment A of a quadrangulation Q, we want to �nd an A-realizing
drawing of Q which is also convex. A planar graph is convex area-universal if for every area
assignment there exists a convex realizing drawing. Although convex area-universality seems to
be a very strong property, there are examples of convex area-universal graphs, such as the cube
graph.

Proposition (Kleist [12], Proposition 2) The cube graph is convex area-universal.

Indeed, this result can be generalized in two directions. First, the cube graph is convex area-
universal for every convex outer face. Second, this holds not only for the cube graph but also
for all pseudo-double wheels. We say a graph is strongly convex area-universal if for every area
assignment A and every convex drawing of the outer face with total area ΣA, there exists a realizing
drawing.

Theorem 16 The pseudo-double wheel Sk, k ≥ 3, is strongly convex area-universal.

In Theorem 14 we have shown that pseudo-double wheels are area-universal. The proof made
ample use of Lemma 13. Since drawings obtained by using this lemma may contain non-convex
faces we need an independent proof for Theorem 16; consider Figures 14(a) and 14(b) for an
illustration of the possible appearance of non-convex faces.

Proof: Let A be a given area assignment of Sk. We denote the areas assigned to the inner
faces adjacent to the outer edges by a, b, c, d and the remaining areas by x4, x5, . . . , x2k−1 where
x2k−1 = c as depicted in Figure 17.

v4

v1

v2k

v

w

v6

v3 v5 v7 . . .
v8

v2

x4 x6 x8

a d

b cx5 x7

Figure 17: A pseudo-double wheel Sk with a given area assignment.

Let q be a convex quadrangle of area ΣA with corners A,B,C,D which are identi�ed with
the outer vertices v1, v2, w, v2k of Sk, respectively. Considering the diagonal AC, shows that at
least one of the two following inequalities hold: a + b ≤ area(4ABC) or c + d ≤ area(4ACD).
By symmetry, we may assume that the �rst inequality holds. Hence, we may place v3 in the
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triangle ABC such that the areas a and b are realized by the triangular faces ABv3 and BCv3
where v and v4 are placed on Av3 and Cv3, respectively. Now we distinguish two cases.

Case 1: d ≤ area(4Av3D). By placing v on the segment Av3 we realize area d by a triangular
face. Split the quadrangle vv3CD into two parts by the diagonal vC and determine i ∈ [4, 2k − 1]
such that

i−1∑
j=4

xj ≤ area(4v3Cv) and

2k−1∑
j=i+1

xj ≤ area(4vCD).

For all j < i, we realize the area xj by a triangle, (namely uvj−1vj for u = v if j is even and u = w
if j is odd), by placing vj accordingly. Likewise for all j > i, we realize the area xj by a triangle,
(namely uvjvj+1 for u = v if j is even and u = w if j is odd), by placing vj accordingly. Finally,
by placing vi at v if i is odd and at w if i is even we the area xi with the convex quadrangle
vvi−1wvi+1. Figure 18(a) visualizes the resulting drawing.
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v2k
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(a) Case 1

v
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v9

v8
v6

v4

v7v5

v1

v2k

w

v2

(b) Case 2

Figure 18: Illustration of convex realizing drawings in the proof of Theorem 16.

Case 2: d > area(4Av3D). In this case we place v at v3 and v4 at w. We place v2k−1 such
that the area c and d are realized. In decreasing order, we place vi such that xi is realized by the
triangle uvivi+1 with u = v if i is even and u = w if i is odd. This yields a realizing drawing within
every convex outer face, see Figure 18(b). �

5.1 Not all Quadrangulations are Convex Area-Universal

Plane drawings of K2,n have non-convex faces when n ≥ 4. Tutte's spring embedding theorem [20],
however, warrants that 3-connected quadrangulations have convex drawings. In [12], it was asked
whether all 3-connected quadrangulations are convex area-universal. Here we answer this question
in the negative.

Theorem 17 There is a 3-connected quadrangulation that is not convex area-universal.

Proof: We show that the 3-connected quadrangulation Q, depicted in Figure 19(b), has an area
assignment which does not allow for a convex drawing in any (even non-convex) outer face. The
construction is based on a non-realizable area assignment A of the octahedron graph G.

Theorem (Kleist [13], Theorem 1) For small enough ε > 0, the octahedron graph (with a
white/gray-coloring of its faces as illustrated in Figure 19(a)) has no drawing where the white faces
have area of at most ε and the gray faces have area of at least 1.
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(a) The octahedron graph G. There exists no
drawing of G in which each white face has area
0 and each gray face has area 1 [13, Theorem 1].

(b) The quadrangulation Q and its black subgraph
Q′. There exists no convex drawing of Q in which
each white face has area 0 and each gray face has
area 1/3.

Figure 19: Illustration of Theorem 17 and its proof.

We show that a convex drawing of Q induces an A-realizing drawing of G, yielding a contra-
diction. Let Q′ be the subgraph of Q which is induced by the black vertices in Figure 19(b). Note
that Q′ contains a 1-subdivision of the octahedron. We call the two bipartition classes of Q′ the
squared and circled vertices.

For the purpose of a contradiction, suppose that for every ε > 0, Q has a convex drawing in
which each white face has area ε/3 and each gray face area 1/3. Then the induced drawing of Q′ has
the following properties: the white faces have area ε, the gray faces have area 1, and each segment
between two squared vertices is contained in some white face. In the remainder, we show that for
small enough ε > 0, no such drawing of Q′ exists.

Suppose that Q′ has such a drawing D. Because each segment between two squared vertices is
contained in some white face, these segments together with the squared vertices form a straight-line
drawing D′ of G where the white faces have area at most ε and the gray faces have area of at
least 1. The red dotted graph in Figure 19(b) illustrates D′. The properties of D′ contradict the
above stated theorem. Consequently, Q is not convex area-universal. �

Remark. Because we did not use the shape of the outer face in the proof of Theorem 17, the
quadrangulation Q does not even have an A-realizing drawing where we only require that each
inner face is convex.

Remark. The construction of Q in the proof of Theorem 17 is based on a non-realizable area
assignment of the octahedron graph. More generally, a white/gray-coloring of the faces of any
Eulerian triangulation yields non-realizable area assignment [13, Theorem 1]. This fact allows the
construction of a large family of quadrangulations that are not convex area-universal.
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6 Small Quadrangulations

In this section we show that our methods are strong enough to prove area-universality for quad-
rangulations with up to 13 vertices via reductions to know area-universal graphs.

Theorem 18 Every quadrangulation on at most 13 vertices is area-universal.

Proof: First, it follows from Lemma 2 and Proposition 3 that a minimal non-area-universal
quadrangulation has minimum degree 3. Thus, the smallest quadrangulation of interest is the
cube graph on eight vertices. Figure 20 displays all quadrangulations on up to 13 vertices with
minimum degree 3. We denote them by Q1, . . . , Q9 as illustrated.

n = 13

n = 8 n = 10 n = 11

n = 12

Q1 Q2

Q4

Q3

Q5 Q6

Q7 Q8 Q9

Figure 20: The planar quadrangulations on up to 13 vertices with min-degree 3. A single (double)
checkmark indicates (strong) area-universality for all embeddings. The red edges form auxiliary
area-universal triangulations.

Since all embeddings of a pseudo-double wheel Sk are equivalent, Theorem 16 proves the
(strong) area-universality of pseudo-double wheels. Speci�cally, this shows the (strong) area-
universality of Q1 = S3, Q2 = S4 and Q4 = S5. Moreover, Q5 is a stacked cube graph and
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Q9 is obtained from the cube by �rst adding a subdivided diagonal to a face and then stacking
a cube graph in one of the two new faces. Since the cube graph is the double wheel S3, both
quadrangulations are area-universal by Corollary 15.

We reduce all remaining quadrangulations to area-universal triangulations. The quadrangula-
tion Q3 on eleven vertices is a subgraph of a stacked triangulation T , for which every embedding
of T is area-universal. In Figure 20, the vertices and edges of the stacked triangulation are high-
lighted in red.

The three remaining quadrangulations are subgraphs of an area-universal graph family which
was shown to be area-universal by Kleist [14].

Theorem (Kleist [14], Theorem 3) Any (embedding of a) double stacking graph H`,k is area-
universal if and only if ` · k is even.

More precisely, Q6, Q7, Q8 are subgraphs of an area-universal double stacking graph with some
additional vertices of degree 3 stacked into triangular faces. Thus, their area-universality follows
from Observation 1 and [14, Theorem 3]. In Figure 20 the vertices which remain after iterative
removal of degree-3 vertices are highlighted in red. The quadrangulation Q6 on twelve vertices
reduces to the double stacking graph H2,2; the quadrangulations Q7 and Q8 on 13 vertices reduce
to the double stacking graph H2,1. The vertices in the interior of red dotted curves in Figure 20
are added by diamond additions on the respective edge. �

7 Conclusions and Future Work

In this paper we develop several useful tools for the study of area-universality of plane quadran-
gulations. With the help of these tools we prove the area-universality of several non-trivial graph
classes, including grid graphs, tent graphs, some types of angle graphs of plane triangulations,
pseudo-double wheels and their generalization. We also prove that all quadrangulations with at
most 13 vertices are area-universal. Interestingly, pseudo-double wheels are also strongly area-
universal and convex area-universal, i.e., the outer face of the realizing drawings can be prescribed
or asked to have convex faces. However, these properties do not hold for all quadrangulations:
We present examples of quadrangulations and area assignments that admit no realizing draw-
ings with convex faces or a prescribed outer face, respectively. The natural question, whether all
quadrangulations are area-universal remains an interesting open problem.
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