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Abstract. The Tree Containment problem has many important applications in
the study of evolutionary history. Given a phylogenetic network N and a phylogenetic
tree T whose leaves are labeled by a set of taxa, it asks if N and T are consistent. While
the case of binary N and T has received considerable attention, the more practically
relevant variant dealing with biological uncertainty has not. Such uncertainty manifests
itself as high-degree vertices (“polytomies”) that are “jokers” in the sense that they are
compatible with any binary resolution of their children. Contrasting the binary case,
we show that this problem, called Soft Tree Containment, is NP-complete, even
if N is a binary, multi-labeled tree in which each taxon occurs at most thrice. On the
other hand, we reduce the case that each label occurs at most twice to solving a 2-SAT
instance of size O(|T |3). This implies NP-completeness and polynomial-time solvability
on reticulation-visible networks in which the maximum in-degree is bounded by three
and two, respectively.

1 Introduction
With the dawn of molecular biology also came the realization that evolutionary trees, which have
been widely adopted by biologists, are insufficient to describe certain processes that have been
observed in nature. In the last decade, the idea of reticulate evolution, supporting gene flow
from multiple parent species, arose [3, 17]. A reticulation event can be caused by, for example,
hybridization (occurring frequently in plants) and horizontal gene transfer (a dominating factor
in bacterial evolution). Reticulate evolution is described using “phylogenetic networks” (see the
monographs by Gusfield [14] and Huson et al. [15]). A central question when dealing with both
phylogenetic trees and networks is whether or not they represent consistent information, formulated
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as the question whether or not the network “displays” the tree. This problem is known as Tree
Containment and it has been shown NP-hard [16, 19]. Due to its importance in the analysis of
evolutionary history, attempts have been made to identify polynomial-time computable special
cases [2, 6, 8, 10, 12, 16, 19, 20], as well as moderately exponential-time algorithms [11, 20]. However,
all of these works are limited to binary networks and trees.

In reality, we cannot hope for perfectly precise evolutionary histories. In particular, speciation
events (a species splitting off another) occurring in rapid succession (only a few thousand years
between speciations) can often not be reliably placed in the correct order they occurred. The fact that
the correct order of bifurcations is unknown is usually modeled by multifurcating vertices and, to tell
them apart from speciation events resulting in multiple species, the former are called “soft polytomies”
and the latter are called “hard polytomies”. Of course, the same argument holds for non-binary
reticulation vertices indicating uncertainty in the order of hybridization events. Soft polytomies
have a noteworthy impact on the question of whether a tree is compatible with a network: since a
soft polytomy (also called “fan”) on the taxa a, b, and c represents lack of knowledge regarding their
history, we would consider any binary tree on the taxa a, b, and c compatible with it. In this work, we
present first algorithmic results for Tree Containment with soft polytomies (which we call Soft
Tree Containment). We consider the case where the network is a multi-labeled tree and show that
the problem is cubic-time solvable if each label occurs at most twice (by reduction to 2-SAT) and
NP-complete, otherwise. This implies corresponding results for (single-labeled) “reticulation-visible”
networks, depending on their maximum in-degree. Despite being an intermediate step in proving
results for networks, multi-labeled trees are themselves important, for example when handling gene
trees, in which different versions of a gene may be found in the same species.

Finally, our problem can be seen to be a generalization1 of the Cluster Containment
problem [15], implying that our algorithms can be used to attack the latter as well.

Preliminaries. A phylogenetic network (or network for short) on a set X of taxa is a rooted,
leaf-labeled DAG in which all vertices with in-degree (number of predecessors) at most one have
out-degree (number of successors) exactly one. These vertices are called reticulations and the others
are called tree vertices. A network without reticulations is called a (phylogenetic) tree. The degree
of a vertex u in N is the sum of its in-degree and its out-degree. Suppressing a vertex u in N with
unique parent p and unique child c refers to the act of removing u and adding the edge pc, unless
this edge already exists (suppressing u is the inverse of subdividing pc with u). A network is called
binary if all vertices except the root have degree at most three and the root has degree two. A
binary network NB on three leaves a, b, and c is called a triplet and we denote it by ab|c if c is
a child of the root of NB. NB is called binary resolution of a network N if N is a contraction of
NB . In this case, there is a surjective function χ : V (NB)→ V (N) such that, contracting all edges
uv of NB with χ(u) = χ(v) results in N (more formally, for each x, y ∈ V (N), the edge xy exists
in N if and only if NB contains an edge from a vertex in χ−1(x) to a vertex in χ−1(y)). We call
such a function a contraction function of NB for N . We suppose that all binary resolutions are
minimal, that is, they do not contain biconnected components C with exactly one incoming and
one outgoing edge and |

⋃
v∈C χ(v)| = 1.

By default, no label occurs twice in a network, and we will make exceptions explicit by calling
networks in which a label may occur up to ` times `-labeled (or multi-labeled if ` is unknown

1Given a binary network N on the taxa X and some Y ⊆ X, Cluster Containment asks if N displays any
binary tree T in which L(u) = Y for any u. This is equivalent to N softly displaying the tree T in which all taxa in
X \ Y are children of the root and there is another child u of the root with children Y (see preliminaries for the
notions of (soft) display, binary trees, etc).
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or infinite). In this sense, “networks” are exactly the special multi-labeled networks with ` = 1
(1-labeled networks). In 1-labeled networks, we use leaves and labels (taxa) interchangeably. We
abbreviate {x, y} to xy, and {x, y, z} to xyz. We denote the set of vertices in a network N by V (N)
and define a relation “≤N” on subsets of V (N) such that U ≤N W if and only if N contains a
w-u-path for each u ∈ U and w ∈ W . If U is just a singleton {u}, then we write u ≤N W (and
likewise for W ). If u ≤N w, we call u a descendant of w and w an ancestor of u. For each v ∈ V (N),
we define Nv as the subnetwork of N induced by {u | u ≤N v} and we denote the set of labels
in Nv by L(Nv) (or L(v) is N is clear from the context) and abbreviate n := |L(N)|. For any
X ⊆ V (N), we let LCAN (X) be the set of least common ancestors of X, that is, the minima
(wrt. ≤N ) among all vertices u of N with X ≤N u (in particular, if N is a tree, LCAN (X) is a
single vertex, not a set). If clear from context, we may drop the subscript. Note that, in trees, the
LCA-set of any three vertices has a unique minimum. For any U ⊆ V (N), we denote the result
of removing all vertices v that do not have a descendant in U by N |U and N ||U is the result of
suppressing all degree-two vertices in N |U . Note that N ||U can be assumed to be computable in
O(|U |) time (see, for example [4, Section 8]). Note that, if N is a tree, then N |L is the smallest
subtree of N containing the vertices in L and the root of N and N ||L is the smallest topological
minor of N containing the vertices in L and the root of N . A vertex u in N is called stable on v if
all ρN -v-paths contain u, where ρN denotes the root of N . If, for each reticulation u in N there is
some leaf ` such that u is stable on `, then N is called reticulation visible.

If N contains a subgraph S that is isomorphic2 to a tree T , then we simply say that N contains
a subdivision of T . Slightly abusing notation, we consider each vertex v ∈ V (T ) equal to the vertex
of S (and, thus, of N) that v is mapped to by an isomorphism. Thus, S consists of V (T ) and some
vertices of in- and out-degree one. The following definition is paramount.

Definition 1 (see Figure 1) Let N be a network and let T be a tree. Then,
• N firmly displays T if N contains (as a subgraph, respecting leaf-labels) a subdivision of T and
• N softly displays T if there are binary resolutions NB of N and TB of T such that NB firmly

displays TB.

Definition 1 is motivated by the concept of “hard” and “soft” polytomies (that is, high degree
vertices): In phylogenetics, a polytomy is called firm or hard if it corresponds to a split of multiple
species at the same time and soft if it represents a set of binary speciations whose order cannot
be determined from the available data. In this sense, a soft polytomy is compatible with another if
and only if there is a biological “truth”, that is, a binary resolution, that is common to both. Note
that, for binary N and T , the two concepts coincide. Furthermore, for trees on the same label-set,
the concepts of display and binary resolution coincide.

Observation 1 Let T and TB be trees on the same leaf-label set and let TB be binary. Then, T
softly displays TB if and only if TB is a binary resolution of T .

Throughout this work we will mostly use the soft variant and we will refer to it simply as
“display” for the sake of readability. Note that a binary tree displays another binary tree if and
only if they are isomorphic. Thus, in the special case that N is a tree, the “display” relation is
symmetrical, leading to the following observation.

Observation 2 A tree T displays a tree T ′ on the same label-set if and only if T ′ displays T .
2In this work, “isomorphic” always refers to isomorphism respecting leaf-labels, that is, all isomorphisms must

map a leaf of label λ to a leaf of label λ.
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Figure 1: Illustration of firm and soft display (black vertices are reticulations, white vertices are
tree-vertices, round vertices are inner vertices, boxes are leaves (with labels)). (a) A network N .
(b) Trees T1 and T2. The former is firmly and, thus, softly displayed by N . The latter is softly, but
not firmly displayed by N . (c) A binary resolution NB of N displaying T1 and T2 softly, but not
firmly. (d) A binary resolution TB of T1 that is (firmly and, thus, softly) displayed by NB (and,
thus, softly displayed by N).

Finally, the central problem considered in this work is the following.

Soft Tree Containment
Input: A network N and a tree T
Question: Does N softly display T?

As a side-note, all considered problems are in NP, since a mapping of the vertices of T to the
vertices of N constitutes a polynomial-time checkable certificate for the fact that N firmly/softly
displays T . For (Soft) Cluster Containment, the tree T is also part of the certificate. Thus,
all proofs of NP-hardness actually imply NP-completeness.

2 Display with Soft Polytomies
In this section, all trees and networks are single-labeled. For binary trees (in particular, triplets),
the concept of “display” is well-researched.

Observation 3 ([5]) Let TB be a binary tree and let a, b, c ∈ L(TB). Then, TB displays ab|c if
and only if LCA(ab) < LCA(bc) = LCA(ac). Indeed, TB is uniquely identified (up to subdivision
and suppression of degree-two vertices) by the set D of displayed triplets, that is, TB is the only
binary tree displaying the triplets in D.

However, the “display”-relation with soft polytomies lacks a solid mathematical base in the literature.
In this section, we develop alternative characterizations of the term “(softly) display”. To do this,
we use the following characterization of isomorphism for binary trees.

Observation 4 Binary trees T and T ′ on the same label-set are isomorphic if and only if, for
each u ∈ V (T ) and each Y ⊆ L(Tu), u has a child v with L(Tv) = Y if and only if LCAT ′(L(u))
has a child v′ with L(T ′v′) = Y .
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For a vertex u with children C and two given v, w ∈ C, we denote the operation of removing the
arcs uv and uw, introducing a new vertex x, and inserting the arcs ux, xv, and xw as splitting v
and w from u.

Lemma 1 Let N and T be trees on the same label-set. Then, N softly displays T if and only if,
for all u ∈ V (T ) and v ∈ V (N), it holds that L(u) ⊆ L(v), L(u) ⊇ L(v) or L(u) ∩ L(v) = ∅.

Proof: Since each label appears only once in N and T , it holds that N softly displays T if and
only if there are binary resolutions NB of N and TB of T such that NB and TB are isomorphic.

“⇒”: Let N softly display T . Towards a contradiction, assume that there are u ∈ V (N) and
w ∈ V (T ) such that L(Nu) * L(Tv), L(Nu) + L(Tv) and L(Nu) ∩ L(Tv) 6= ∅, that is, there are
x ∈ L(Nu) \ L(Tv), y ∈ L(Nu) ∩ L(Tv), and z ∈ L(Tv) \ L(Nu). Since there are isomorphic binary
resolutions NB and TB of N and T , respectively, there is a vertex uB in NB with L(NB

uB ) = L(Nu)
and a vertex vB in TB with L(TBvB ) = L(Tv). However, since x, y ∈ L(Nu) = L(NB

uB ) and
z /∈ L(Nu) = L(NB

uB ), we have LCA(xy) ≤NB uB < LCA(yz) = LCA(xz), that is, NB displays
xy|z. Likewise, TB displays yz|x. But then, Observation 3 contradicts the fact that TB and NB

are isomorphic.
“⇐”: Assuming that L(u) ⊆ L(v), L(u) ⊇ L(v) or L(u) ∩ L(v) = ∅ holds for all u ∈ V (T )

and v ∈ V (N), we will construct a binary tree B on the labels of N and T that is a resolution of
both N and T , using Observation 3. Consider any set {a, b, c} of three labels and observe that
it cannot happen that LCAN (ab) <N LCAN (ac) = LCAN (bc) and LCAT (ac) <T LCAT (ab) =
LCAT (bc) as this implies the existence of v = LCAN (ab) and u = LCAT (ac) with c ∈ L(Tu)\L(Nv),
b ∈ L(Nv) \ L(Tu), and a ∈ L(Tu) ∩ L(Nv), a contradiction to our assumption. To construct the
binary tree B, we start with N and replace all high-degree vertices by binary trees. If LCAN (ab) <N
LCAN (ac) = LCAN (bc) and LCAT (ab) ≤T LCAT (ac) = LCAT (bc), then we already display ab|c
in N . If LCAN (ab) = LCAN (ac) = LCAN (bc) and LCAT (ab) ≤T LCAT (ac) = LCAT (bc), then we
split the children of LCAN (ab) that are ancestors of a and b, respectively, from LCAN (ab). The
resulting tree displays ab|c. Let B denote the result of iterating the above process for all leaf-triples
in L(N) = L(T ) and observe that B is binary. Observe further that N is a contraction of B and, by
Observation 1, N softly displays B. Since B displays exactly the triplets that are firmly displayed
by N or T , we could also perform the same procedure but start with T (and deciding similarly
whenever there are multiple options), obtaining a binary tree B′ that displays exactly the same
triplets as B but is displayed by T . By Observation 3, B and B′ are the same tree as binary trees
are uniquely defined by their displayed triplets. Hence B is displayed by N and T and, as B is
binary, N softly displays T by definition. �

We can relate the two forms of “display” for triplets in non-binary trees.

Observation 5 Let T be a tree and let a, b, c ∈ L(T ). Then,
(a) T softly/firmly displays ab|c if and only if T |abc does.
(b) T firmly displays ab|c if and only if LCA(ab) <T {LCA(ac),LCA(bc)}.
(c) T firmly displays ac|b or bc|a if and only if T does not softly display ab|c.

Lemma 2 A tree T on X softly displays a tree T ′ on X if and only if, for all a, b, c ∈ X,

T firmly displays ab|c⇒ T ′ softly displays ab|c, and
T ′ firmly displays ab|c⇒ T softly displays ab|c
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Proof: “⇒”: By Observation 2, it suffices to show the first of the claimed implications, so
let LCAT (ab) <T LCAT (abc) and assume towards a contradiction that T ′ does not softly display ab|c.
By Observation 5, we can suppose without loss of generality that T ′ firmly displays ac|b. But
then, for u := LCAT (ab) and v := LCAT ′(ac), we have a ∈ L(u) ∩ L(v), b ∈ L(u) \ L(v), and
c ∈ L(v) \ L(u). But since T softly displays T ′, this contradicts Lemma 1.

“⇐”: Towards a contradiction, assume that T does not softly display T ′. By Lemma 1,
there are u ∈ V (T ) and v ∈ V (T ′) and a, b, c ∈ X such that a ∈ L(u) ∩ L(v), b ∈ L(u) \ L(v),
and c ∈ L(v) \ L(u). Thus, LCAT (ab) <T LCAT (abc) and LCAT ′(ac) <T ′ LCAT ′(abc). By
Observation 5, T firmly displays ab|c and T ′ firmly displays ac|b. With the implications of the
lemma, we get that T ′ softly displays ab|c and T softly displays ac|b, contradicting Observation 5.

�

The final ingredient to our alternative characterization is the observation that, in (multi-labeled)
trees, edge contraction does not change the ancestor relation.

Observation 6 Let T be a tree, let T ′ be the result of contracting any arc in T , and let Y and Z
be sets of leaves common to T and T ′. Then,
(a) LCAT (Y ) ≤T LCAT (Z) ⇐⇒ LCAT ′(Y ) ≤T ′ LCAT ′(Z) and
(b) LCAT (Y ) <T LCAT (Z)⇐ LCAT ′(Y ) <T ′ LCAT ′(Z).

We can now prove the following alternative definition of “display”.

Lemma 3 Let T be a tree on the label-set X.
(a) T softly displays the leaf-triplet ab|c if and only if LCA(ab) ≤ {LCA(bc),LCA(ac)}.
(b) T softly displays a binary tree TB on X if and only if T softly displays all triplets that TB

displays firmly.
(c) T softly displays a tree T ′ on X (and vice versa) if and only if there is a binary tree TB on X

that is softly displayed by both T and T ′.
(d) A network N softly displays T if and only if N contains (as a subgraph) a tree T ′ on X that

softly displays T .

Proof: (a) By definition, T softly displays ab|c if and only if there is a binary resolution TB of T
displaying ab|c. By Observation 3, TB displays ab|c if and only if LCATB

(ab) <TB
LCATB

(abc) =
LCATB

(ac) = LCATB
(bc). Now, since TB is binary, we cannot have LCATB

(ab) = LCATB
(bc) =

LCATB
(bc) and, thus, LCATB

(ab) ≤TB
{LCATB

(ac),LCATB
(bc)} which, by Observation 6, is

equivalent to LCAT (ab) ≤T {LCAT (ac),LCAT (bc)}.
(b) “⇒”: Assume towards a contradiction that a triplet ab|c of TB is not softly displayed by T .

Then, {LCAT (ab),LCAT (ac),LCAT (bc)} has a unique minimum x and, by (a), x 6= LCAT (ab) (as,
otherwise, T displays ab |c). Without loss of generality, let x = LCAT (ac). As T has a binary
resolution that is isomorphic to TB , we know that T is a contraction of TB . Hence, Observation 6
applies to T and TB , showing that LCATB

(ac) <TB
LCATB

(abc) and, thus, TB displays ac|b. But
then, TB displays conflicting triples, contradicting Observation 3.

“⇐”: Assume towards a contradiction that T does not softly display TB . By Lemma 1, there are
vertices u ∈ V (T ) and vB ∈ V (TB) such that L(u) and L(vB) intersect, but are not in the subset
relation, that is, there are x ∈ L(u) \L(vB), y ∈ L(vB) \L(u) and z ∈ L(u)∩L(vB). Thus, x, z <T
LCAT (xz) ≤T u <T LCAT (xyz) and y, z <TB

LCATB
(yz) ≤TB

vB <TB
LCATB

(xyz). Then, by
(a), TB displays yz|x implying that T softly displays yz|x since all triplets displayed by TB are softly
displayed by T . By (a), we have LCAT (yz) ≤T LCAT (xz), implying x, y, z <T LCAT (xz) ≤T u,
which contradicts u <T LCAT (xyz).
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Figure 2: Illustration of the proof of
Lemma 3(d). Left: N with T ′ (bold)
and T ∗ (bold and dashed). Right:
NB with TB (bold) and T ∗B (bold and
dashed). The function χ maps each ver-
tex to itself except the encircled ones
that are mapped together.

(c) By definition, T softly displays T ′ if and only if there are binary resolutions TB and T ′B of T
and T ′, respectively, such that TB firmly displays T ′B . If such trees exist then they are equal since,
by (b), TB displays all triplets displayed by T ′B and, by Observation 3, TB = T ′B. Conversely, by
Observation 1, all binary trees on X that are softly displayed by T and T ′ are binary resolutions of
T and T ′.

(d) “⇒”: By definition, there are binary resolutions NB and TB of N and T , respectively,
such that NB displays TB , that is, there is a subdivision SB of TB that is a subgraph of NB . Let
χ : V (NB) → V (N) be the function mapping each vertex u in NB to the vertex χ(u) in N that
u is contracted to when forming N and note that, for each arc uv in NB with χ(u) 6= χ(v), the
arc χ(u)χ(v) exists in N . Note that, for all vertices w of N , the vertices in χ−1(w) form a weakly
connected component in NB . To show that they also form a weakly connected component in SB ,
assume that there are vertices u and v in SB with χ(u) = χ(v) =: w but the unique u-v-path in
the undirected graph underlying SB contains a vertex that is not in χ−1(w). Then, u and v are not
related by <SB

as, otherwise, N contains a directed cycle involving w. Now, let T ′ be the result of
contracting all arcs xy of SB with χ(x) = χ(y) and note that T ′ is a tree (since it results from a
tree by contracting weakly connected components). Further, each arc uv of SB with χ(u) 6= χ(v)
also exists in NB and N contains the arc χ(u)χ(v). Thus, T ′ is also a subgraph of N . Concluding,
N contains a subgraph T ′ whose binary resolution SB firmly displays the binary resolution TB of
T , that is, T ′ softly displays T .

“⇐”: By (c), there is a binary tree TB on X displayed by both T ′ and T . We construct a binary
resolution NB of N such that NB displays TB which, by Observation 1, is a binary resolution of T
(see Figure 2). To this end, let T ∗ be any spanning subgraph of N that is a tree and contains T ′ as
a subgraph, and let Y := E(N) \ E(T ∗) be the set of edges in N that are missing in T ∗. Since TB
is a binary resolution of T ′, there is a binary resolution T ∗B of T ∗ that contains a subdivision
of TB. Finally, we construct NB from T ∗B by adding representations of all edges uv ∈ Y . To this
end, let χ : V (T ∗B) → V (T ∗) be a function mapping each vertex x of T ∗B to a vertex of T ∗ such
that T ∗ can be obtained from T ∗B by contracting all edges uv in T ∗B with χ(u) = χ(v). Note that χ
is surjective. Let uv be some arbitrary edge in Y . In order to keep T ∗B binary while adding a
representation of uv, we will first create two new vertices uB and vB in T ∗B and then add the edge
uBvB . If |χ−1(u)| = 1, then let y be the unique vertex in χ−1(u) and, if y is the root of T ∗B , then
add a new root uB to T ∗B , and make y its only child, otherwise subdivide the edge between y and
its parent with a new vertex uB . In both cases, add uB to χ−1(u). If |χ−1(u)| > 1, then subdivide
any edge between vertices in χ−1(u), call the new vertex uB and add it to χ−1(u). Then, construct
a new vertex vB corresponding to v in an analogous way and add the edge uBvB . Let NB denote
the result of repeating this operation for all edges uv ∈ Y . Since NB results from T ∗B by a series of
subdivisions and edge additions, we know that NB contains a subdivision of T ∗B and, thus, displays
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Figure 3: Illustration of Lemma 4: (N,T ) left and (N1, T1) right.

TB. It remains to show that NB is a binary resolution of N , that is, N is a contraction of NB.
Indeed, we show that N is equal to the result N∗ of contracting all u, v ∈ V (NB) with χ(u) = χ(v).
First, since T ∗ spans N , the image of χ equals V (N) and, thus, V (N∗) = V (N). Second, assume
that N∗ contains an edge xy that is not in N and, thus, not in T ∗. Then, there exists an edge
xByB ∈ E(N∗B) such that χ(xB) = x and χ(yB) = y. Since xy is not in T ∗, we know that xByB is
not in T ∗B , so xByB has been added by the procedure above. By construction, there is an edge uv
in N such that xB ∈ χ−1(u) and yB ∈ χ−1(v), implying that u = x and v = y, contradicting xy
not being an edge of N . Third, assume that N contains an edge xy that is not in N∗. Then, xy is
not in T ∗. Hence, by the construction above, NB contains vertices xB ∈ χ−1(x) and yB ∈ χ−1(y)
such that xByB is an edge of NB . Thus, xy is an edge of N∗. �

Note that, if N contains a subdivision S of T , then any reticulation in N that is in S has in- and
out-degree one in S. Further, contracting an edge between two tree vertices of N cannot break
softly displaying T .

Observation 7 Let N be a network that softly displays a tree T . Then, the result of contracting
an edge between two tree-vertices or two reticulations of N softly displays T .

Observe that, ifN softly/firmly displays T , then the result of removing any label fromN softly/firmly
displays the result of removing this label from T .

Observation 8 Let N be a network and let T be a tree on X. Then, N softly/firmly displays T if
and only if N |X′ softly/firmly displays T |X′ for each X ′ ⊆ X.

3 Single-Labeled Trees
In a first step, we suppose that N is a tree. While Lemma 1 already provides the means to solving
this case in polynomial time, we aim to be more efficient. If N and T are both binary, this special
case is solved using the folklore “cherry reduction”: remove a pair of leaves that are siblings in
both N and T and label their parents in N and T with the same new label λ. Here, we prove an
analog for non-binary trees that allows solving the case that N is a tree in linear time. Indeed,
the lemma holds true even if N is a network, so we state it in this, more general form.

Lemma 4 Let N be a network on X with root ρN , let T be tree on X, let uN ∈ V (N) and
uT ∈ V (T ) and let CN and CT be sets of children of uN and uT , respectively, such that
(a)

⋃
c∈CN

L(c) =
⋃
c∈CT

L(c) =: Y , and
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(b) for all ` ∈ Y , all ρN -`-paths contain uN .
Let λ ∈ Y , let N1 := N ||X\(Y−λ), let T1 := T ||X\(Y−λ), let N2 := N ||Y , and let T2 := T ||Y . Then,
N displays T if and only if N1 displays T1 and N2 displays T2 (see Figure 3).

Proof: Since “⇒” follows directly from Observation 8, we only show “⇐”. By Lemma 3, for each
i ∈ {1, 2}, there is a tree Qi in Ni (containing the root of Ni) that displays Ti and there is a binary
tree TBi that is displayed by both Qi and Ti. We show that the binary tree TB resulting from
replacing the leaf λ in TB1 by TB2 is displayed by both T and a subtree Q of N . To this end, let
Q be the result of deleting the leaf λ in Q1 and identifying the root of Q2 with uN in Q1 (note
that Q1 contains uN since it is the only parent of λ in N1) and note that Q is a subtree of N
(since Q2 contains the root of N2). By Lemma 3, it is sufficient to prove that T and Q display all
triplets displayed by TB Towards a contradiction, assume that TB displays a triplet xy|z that T or
Q does not display. Without loss of generality, let T or Q firmly display xz|y (see Lemma 2) that
is, LCAT (xz) <T LCAT (xyz) and LCAQ(xz) <Q LCAQ(xyz).

Case 1: none or all of x, y, z are in Y . Then, xy|z is already displayed by TBi but not by Ti or
Qi for some i ∈ {1, 2}. By Lemma 3(b), this contradicts TBi being displayed by both Ti and Qi.

Case 2: exactly one of x, y, z is not in Y . By construction of TB, this implies x, y ∈ Y
and z /∈ Y as, otherwise, TB cannot display xy | z. But then, by (b), LCAQ(xy) ≤Q uN ≤Q
{LCAQ(xz),LCAQ(yz)}. Further, LCAT (xy) ≤T uT ≤T {LCAT (xz),LCAT (yz)} since T is a tree.
Thus, by Lemma 3(a), both Q and T softly display xy|z, contradicting the assumption.

Case 3: exactly one of x, y, z is in Y . Suppose x ∈ Y . Then, by construction, TB also displays
λy | z and so does TB1 . Thus, by Lemma 3(b), T1 and Q1 both softly display λy | z, implying
LCAQ(λy) ≤Q LCAQ(λyz) and LCAT (λy) ≤T LCAT (λyz). By (b), the embedding of λy|z in Q
contains a uN -λ-path p which can be turned into an embedding of xy|z in Q by replacing p with a
uN -x-path in Q (which exists due to (b)). Thus, xy|z is softly displayed by Q and, analogously, by
T , contradicting our assumption. The cases the y ∈ Y and z ∈ Y are symmetrical. �

In the following, the operation of splitting off a subnetwork B with root u in a network N
means to insert a new vertex u′, replace each arc ux in N with x ∈ V (B) by u′x, and add a new
leaf labeled λ /∈ L(N) to u. This gives rise to the networks N1 (containing the new leaf λ) and N2.
To state the reduction rule implied by Lemma 4, let a subnetwork B of a network N be called
child-including if for all vertices v other than the root of B, all children of v are in B.

Rule 1 Let (N,T ) be an instance of Soft Tree Containment, let N ′ and T ′ be children-
including subnetworks of N and T , respectively, such that L(N ′) = L(T ′). Then, split off N ′ from
N and T ′ from T .

While, in general, finding N ′ and T ′ might be difficult, we do not need its full power to solve Soft
Tree Containment on 1-labeled trees.

Lemma 5 Let N and T be trees. There is an algorithm that either finds children-including
subnetworks N ′ and T ′ of N and T , respectively, such that L(N ′) = L(T ′) in O(|L(N ′)|) time, or
correctly concludes that N does not display T in O(|N |+ |T |) time.

Proof: Our strategy to find N ′ and T ′ is as follows. Start with N ′1 being any cherry in N with
root ρN ′1 and T ′1 the smallest child-including subtree of T containing a and b. Note that T ′1 can
be found in O(|T ′1|) time with a simple DFS. If T ′1 is a cherry in T , then we output N ′1 and T ′1.
Otherwise, assume that T ′1 contains a leaf c /∈ ab. Then, without loss of generality, T firmly
displays ac|b. If LCAN (ac) 6= ρN ′1 , then N firmly displays ab|c and, thus, cannot softly display



426 Bentert and Weller Tree Containment With Soft Polytomies

T . As this can be detected in O(1) time, we suppose that c ≤N ρN ′1 . Now, let N
′
2 be the smallest

child-including subtree of N containing L(T ′1) and note that its root is ρN ′2 = ρN ′1 . Now if there
is a leaf e ∈ L(N ′2) \ L(T ′1), then this leaf has been included because of a leaf d ∈ L(T ′1) \ L(N ′1).
Thus, N firmly displays both de|a and de|b. However, since d ∈ L(T ′1) and e /∈ L(T ′1), we know
that T firmly displays either ad|e or bd|e. Both cases imply that N does not display T . Thus, we
can either output N ′2 and T ′1 if L(N ′2) = L(T ′1) and reject the instance, otherwise. As this can be
checked in O(|N ′2|) time, the claimed running time follows. �

Theorem 1 Soft Tree Containment can be solved in linear time if N and T are trees.

4 Tree Containment in Multilabeled Trees
In this section, we consider the task of deciding if a 1-labeled tree T is softly contained in a
multi-labeled tree N . Note that, for multi-labeled networks and trees, leaves and labels no longer
correspond one-to-one. Thus, we define the set L(N) of labels in N , which may now differ from the
set L(N) of leaves in N . In the following, the sets L(Nv) for each v are called the clusters of N .
Then, we can formulate the “soft” version of the well-known Cluster Containment problem.

Soft Cluster Containment (SCC)
Input: a network N , some C ⊆ L(N)
Question: does N softly display a 1-labeled tree on L(N) of which C is a cluster?

We show that the Soft Cluster Containment problem, a special case of Soft Tree Con-
tainment, is NP-hard even on 3-labeled trees. We complement this result with an O(n3)-time
algorithm for 2-labeled trees.

To get started, observe that contracting arcs cannot introduce new clusters to trees.

Observation 9 Let T be a tree and let T ′ result from contracting an arc uv in T . Let C and C′ be
the clusters of T and T ′, respectively. Then, C′ ( C.

With Observation 9, we can show that SCC is indeed a special case of Soft Tree Containment.

Proposition 1 ([7]) Let N be a 1-labeled network and let C ⊆ L(N). Let T be the tree with root
ρT that is parent to all leaves in L(N) \ C, as well as a vertex v that is parent to all leaves in C.
Then, N softly displays T if and only if N softly displays a tree with cluster C.

Proof: Since C is a cluster of T , it suffices to show “⇐”. Let T ′ be a tree with cluster C that is
softly displayed by N , that is, there is a binary resolution TB of T ′ that is softly displayed by N .
Now, T ′ can be contracted to T and, thus, TB can be contracted to T . But then, TB is a binary
resolution of T displayed by N . �

In the following, we reduce Monotone k-SAT to SCC on k-labeled trees. Since Monotone
k-SAT is well known to be NP-complete even for k = 3 [9], the desired hardness of SCC on 3-labeled
trees follows. Note that each clause in a monotone boolean formula is either “positive” (containing
only non-negated variables) or “negative” (containing only negated variables).

Construction 1 (See Figure 4) Given an instance ϕ of Monotone k-SAT on n variables
x1, x2, . . . , xn and m clauses c1, c2, . . . , cm. Let Z be the set of pairs (xi, cj) such that cj con-
tains xi or ¬xi. We construct a multi-labeled tree N on the vertex set {ρN} ∪

⋃
i{xi} ∪ Z and
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ρN

x1

(x1, c1)(x1, c3)

x2

(x2, c1)(x2, c2)(x2, c4)

x3

(x3, c2)(x3, c3)

x4

(x4, c1)(x4, c4)

x5

(x5, c2)(x5, c3)(x5, c4)

Figure 4: Illustration of Construction 1 for ϕ = (x1x2x4) ∧ (x2x3x5) ∧ (x1 x3 x5) ∧ (x2 x4 x5);
C = { , }.

arcs
⋃
i{(ρN , xi)} and {(xi, (xi, cj)) | (xi, cj) ∈ Z}. Further, each leaf (xi, cj) ∈ Z is labeled by cj.

Finally, the cluster C consists of all clauses containing only positive literals.

Construction 1 constructs k-labeled trees since each clause contains at most k variables.

Lemma 6 Construction 1 is correct, that is, the constructed tree N softly displays a tree T on
L(N) containing C as a cluster if and only if ϕ is satisfyable.

Proof: “⇐”: Let β be an assignment satisfying ϕ and let ψ map each clause cj to a variable xi
satisfying cj (that is, ψ maps cj to some xi with β(xi) = 0 ⇐⇒ xi occurs negated in cj). Note that
positive variables can only satisfy positive clauses, so β(ψ(cj)) = 1 ⇐⇒ cj ∈ C. Let T := N |ψ−1

be the result of deleting all leaves (xi, cj) with ψ(cj) 6= xi and let ρT be the root of T . Finally, let
B result from T by 1. adding a new vertex v with arc ρT v and 2. replacing each arc ρTxi for which
β(xi) = 1 with vxi. Observe that all labels occur in T and B and T is a contraction of B. To prove
the “⇐”-direction of the lemma, we show that L(Bv) = C, that is, C is already a cluster of B and,
thus, of any binary resolution of B. To this end, note that

Bv contains a label cj ⇐⇒ (ψ(cj), cj) <B v

⇐⇒ β(ψ(cj)) = 1
⇐⇒ cj ∈ C.

“⇒”: Without loss of generality, we suppose that each variable occurs non-negated in ϕ (that is,
all variables of ϕ occur in some clause of C) since variables that only occur negated can just be set
to false without affecting satisfyability. Let B be a binary resolution of some 1-labeled subtree T
of N on the same label set such that C is a cluster of B. Towards a contradiction, assume that
ϕ is not satisfyable. We construct an assignment β setting a variable xi to true if and only if
there is a label cj ∈ C such that (xi, cj) is a leaf of B. Assume towards a contradiction that some
clause cj of ϕ is not satisfied by β. Since B is on the same label set as N , we know that B contains
a leaf (xi, cj) labeled cj . If cj ∈ C, then cj is a positive clause and, by definition, β(xi) = 1, thereby
satisfying cj . Otherwise, cj /∈ C, implying that cj is a negative clause containing the literal ¬xi.
Since cj is not satisfied by β, we have β(xi) = 1, implying that there is a leaf (xi, c`) in B with
c` ∈ C. Since all variables occur in a clause in C, we know that T also contains a leaf (xi′ , c`′) with
i′ 6= i and c`′ ∈ C. By construction of N , we know that T firmly displays cjc`|c`′ and, by Lemma 2,
so does B, contradicting that C is a cluster of B. �

Theorem 2 Soft Cluster Containment is NP-hard even if the input network is a 3-labeled tree.

Corollary 1 Soft Tree Containment is NP-hard, even if the input network N is a 3-labeled tree.
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N T

Figure 5: Illustration of Construction 2. Left: the initial instance of 2-Union Independent Set
with 4 colors ( , , , ) and a size-4 solution encircled. Right: the non-binary tree T (boxes and
triangles indicating label i1 and i2 for a color i). Middle: the binary multi-labeled tree N with a
subdivision of T (bold, gray) corresponding to the solution to the left instance.

Binary Networks. The instance (N,T ) of Soft Tree Containment constructed by Con-
struction 1 and Proposition 1 uses polytomies in both N and T . We can, however, strengthen the
hardness to also work if N is a binary 3-labeled trees. To this end, we reduce 2-Union Independent
Set, which asks if a graph (V,E1 ∪E2) has a size-k independent set, and which is NP-hard even
if (V,E1) is a collection of k disjoint K2s and K3s and (V,E2) is a collection of disjoint P3s [18,
Lemma 2]. We reduce this version of 2-Union Independent Set to Soft Tree Containment
for multi-labeled trees. To this end, we use an equivalent formulation where each clique in (V,E1) is
represented by a color. The problem then becomes the following: Given a vertex-colored collection
of P3s, select exactly one vertex per color such that all selected vertices are independent. Note
that the number of occurrences of each color equals the size of its corresponding clique in (V,E1).
Further, in the construction of van Bevern et al. [18], no P3 contains the same color twice.

Construction 2 (See Figure 5) Given a vertex-colored collection G of P3s, we construct a multi-
labeled tree N and a tree T as follows. Construct T by first creating a star that has exactly one leaf
of each color occurring in G and then, for each leaf x with color i, adding two new leaves labeled i1
and i2, respectively, and removing the color from x. Construct N from G as v

u w

follows: For each P3 (u, v, w) where black, gray, and white denote the colors
of u, v, and w, respectively, construct the binary tree depicted on the right,
where a box or a triangle colored i represents color i1 or i2, respectively.
Then, add any binary tree on |V (G)| leaves and identify its leaves with the
roots of the constructed subtrees. Note that u, v, w ∈ V (G) ∩ V (N).

Lemma 7 Construction 2 is correct, that is, N displays T if and only if the given collection G of
P3s has a colorful independent set using each color exactly once.

Proof: Note that N is binary and let k be the number of colors in G.
“⇒”: Let N display T , that is, N contains a binary tree S displaying T which, by Lemma 3 is

equivalent to T displaying S. We show that the set Q of vertices of V (G) that are parents of leaves
in S contains all colors occurring in G and is independent in G (thus, it contains a size-k colorful
independent set of G). First, assume that Q avoids some color i. However, since S displays T , we
know that S contains leaves `1 and `2 with colors i1 and i2, respectively. But, by construction,
one of them has a parent in V (G), contradicting Q avoiding the color i. Second, assume that Q is
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not independent in G, that is, there are vertices u and v in Q such that u is the center of the P3
containing v. Let i and j be the respective labels of u and v. By construction, Su contains a leaf
labeled i1 and a leaf labeled j1. But then, j1i1|i2 is firmly displayed by S but not softly displayed
by T , thereby contradicting Lemma 3(b).

“⇐”: Let Q be a size-k colorful independent set of G, let L be the set of leaves that, for each
u ∈ Q of color i, contains the leaves labeled i1 and i2 in Nu, and let S := N |L. Note that S
is a subgraph of N and, as N is binary, S is a subdivision of a binary tree. Since Q contains
exactly one vertex of each color in G, we know that S contains all labels that occur in T . We
show that S softly displays T . To this end, assume that S firmly displays a triplet xy|z that T
does not display softly. By Observation 5(c), T firmly displays xz |y or yz |x. Without loss of
generality, let T firmly display xz|y. By Observation 5(b), LCAT (xz) <T {LCAT (xy),LCAT (yz)}.
By construction, x = i1, z = i2, and y = j1 for some colors i 6= j. By Lemma 3(a), we have
LCAS(i1j1) ≤S LCAS(i1i2). Then, i1 and i2 cannot form a cherry in S and, thus, S|{i1,i2,j1,j2} is
the subtree (((j1, j2), i1), i2). By construction of S, this implies that Q contains two vertices of a P3
in G, one of color i and one of color j, and the latter is in the middle, contradicting independence
of Q in G. �

Theorem 3 Soft Tree Containment is NP-hard, even if N is a binary 3-labeled tree.

Note that the number of occurrences of each label in N equals the number of occurrences of
each color in G which, in turn, equals the size of a largest clique in (V,E1) (instance of 2-Union
Independent Set), which equals the size of a largest clause (instance of 3-Satisfyability). This
allows us to state the following generalization of Theorem 3.

Corollary 2 For each k, k-SAT reduces to Soft Tree Containment on binary k-labeled trees.
Further, CNF-SAT reduces to Soft Tree Containment on binary multi-labeled trees.

Corollary 2 immediately raises the question of what happens in the case that N is a 2-labeled tree
and we address this question in Section 4.1. Note that, for Soft Tree Containment, the case
that N is a multi-labeled tree reduces straightforwardly to the case that N is a reticulation-visible
network, simply by merging all leaves with the same label i into one reticulation and adding a new
child labeled i to it.

Corollary 3 Soft Tree Containment is NP-hard on reticulation-visible networks, even if the
maximum in-degree is three and the maximum out-degree is two.

Theorem 3 (Corollary 1) and Corollary 3 stand in contrast with results for (Strong) Tree
Containment, which is linear-time solvable in both cases [12, 20].

4.1 Solving k-Labeled Trees
To solve Soft Tree Containment for instances where N is a k-labeled tree, we compute a
mapping M : V (T )→ 2V (N) such that M(u) contains the at most k minima (with respect to ≤N )
among all vertices v of N such that Nv displays Tu. A 1-labeled subtree S of N that softly/firmly
displays T is called canonical for some u ∈ V (T ) if LCAS(L(Tu)) ∈M(u) (that is, for all proper
descendants w of LCAS(L(Tu)) in N , we have that Nw does not softly/firmly display Tu) and
canonical for T if it is canonical for all u ∈ V (T ). We show that, softly displaying is equivalent
to having such a canonical subtree.
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Lemma 8 A k-labeled tree N softly/firmly displays a 1-labeled tree T if and only if N has a
canonical subtree for T .

Proof: As “⇐” is evident, we just prove “⇒”. Let S be a 1-labeled subtree of N that softly/firmly
displays T and suppose that S is not canonical for T . Let u ∈ V (T ) have minimum distance to the
root of T among all vertices for which S is not canonical. We will construct a 1-labeled subtree S′ of
N that softly/firmly displays T where all vertices, for which S is canonical but S′ is not, are strict
descendants of u in T . Then, iterating this construction eventually yields a canonical subtree for T .

Let x be defined as LCAS(L(Tu)). Since Nx softly/firmly displays Tu, there is some y ∈M(u)
with y <N x and Ny softly/firmly displays Tu, that is, Ny contains a subtree S′y that softly/firmly
displays Tu. Let S′ result from S by 1. removing all vertices q <S x with L(S′q) ⊆ L(Tu), 2. attaching
the unique x-y-path in N to x, and 3. attaching S′y to y. To show that S′ softly/firmly displays T ,
consider leaves a, b, and c of T and recall that L(Tu) = L(S′y).

Case 1: Tu contains at most one of abc. Then S′|abc= S|abc and, thus, S′ softly/firmly displays
ab|c if and only if S does.

Case 2: Tu contains all of abc. Then, S′y also contains all of abc and S′ softly/firmly displays
ab|c if and only if S′y does.

Case 3: Tu contains exactly two of abc. Then, T softly/firmly displays ab |c if and only if
abc ∩ L(Tu) = ab if and only if T firmly displays ab|c if and only if abc ∩ L(S′y) = ab if and only if
S′ firmly displays ab|c.

For firm display, this directly implies that S′ firmly displays T . For soft display, Lemma 2
implies that S′ softly displays T . �

To compute M , we consider vertices u ∈ V (T ) and ρ ∈ V (N) in a bottom-up manner and check
if Nρ softly displays Tu. For each v ∈ V (Tu) \ {u} with parent p in Tu, each x ∈M(v) has at most
one ancestor y in M(p) since M contains only minima. For v = u, we set y := ρ. In both cases,
we call the unique x-y-path in Nρ the ascending path of x wrt. v and we omit mentioning v if it
is clear from the context. A crucial lemma about ascending paths is the following.

Lemma 9 Let N ′ be a multi-labeled tree displaying a 1-labeled tree T ′ and let S be a canonical
subtree of N ′ for T ′. Let u, v ∈ V (T ′) not be siblings in T ′. Let LCAS(L(T ′u)) and LCAS(L(T ′v))
have ascending paths r and q wrt. u and v, respectively. Then, r and q are arc-disjoint.

Proof: Note that, if u <T ′ v then LCAS(L(p)) ≤S LCAS(L(v)) where p is the parent of u in T ′.
Thus, the highest vertex of r (with respect to ≤N ′) is a descendant of the lowest vertex of q and,
hence, the lemma holds. Thus, we suppose in the following that u and v are incomparable in T ′.

Towards a contradiction, assume that r and q share an internal vertex z and thus, L(u)]L(v) ⊆
L(z). Further, since u and v are not siblings, one of u and v has a parent p <T ′ LCAT ′(uv). Without
loss of generality, let p be the parent of u, implying L(p) ∩ L(z) ⊇ L(u) 6= ∅ and L(z) \ L(p) ⊇
L(v) 6= ∅. Since S is canonical, we have y := LCAS(L(p)) ∈M(p) and, thus, r ends in y. As z is
an internal vertex of r, it holds that z <S y, implying L(p) \ L(z) 6= ∅. Since S displays T ′, the
three established relations between L(p) and L(z) contradict Lemma 1. �

Clearly, N displays T if and only ifM(ρT ) 6= ∅, where ρT is the root of T . Further, computation
of M(u) is trivial if u is a leaf. Thus, in the following, we show how to compute M(u) given M(v)
for all v ∈ V (Tu)− u.

In a first step, we compute N |L where L is the set of leaves of N whose label occurs in Tu.
Then, it holds for all v ∈ V (Tu) that M(v) ⊆ V (N |L). Second, we mark all vertices ρ in N |L such
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that, for each child ui of u in T , there is some xi ∈M(ui) with xi ≤N|L ρ. For each marked vertex
ρ in a bottom-up manner, we test whether Nρ displays Tu using the following formulation as a
k-SAT problem3.

Construction 3 Construct ϕu→ρ as follows. For each v ∈ V (Tu)− u,
(i) for each y ∈M(v), introduce a variable xv→y.
(ii) add the clause

∨
z∈M(v) xv→z

(iii) for each y, z ∈M(v) add the clause xv→y ⇒ ¬xv→z.
(iv) if the parent p of v in Tu is not u then,

for all y ∈M(v) and all z ∈M(p) with y �N z, add the clause xv→y ⇒ ¬xp→z.
(v) for each w ∈ V (Tu)− u that is not a sibling of v and each y ∈M(v) and each z ∈M(w) such

that the ascending paths of y and z in Nρ share an arc, add the clause xv→y ⇒ ¬xw→z.

By definition of M(u), no two vertices in M(u) can be in an ancestor-descendant relation. Thus,
we can assume that no strict descendant z of our current ρ satisfies ϕu→z.

Lemma 10 ϕu→ρ is satisfyable if and only if Nρ displays Tu.

Proof: “⇐”: Let S be a canonical subtree of Nρ for Tu and let β be an assignment for ϕu→ρ
that sets each xv→y to 1 if and only if y = LCAS(L(Tv)). Since the LCA of L(Tv) in S is
unique, all clauses of types (ii) and (iii) are satisfied by β. If a clause of type (iv) is not satisfied,
then there is some v with parent p in Tu such that y �N z for some y ∈ M(v) and z ∈ M(p)
and β(xv→y) = β(xp→z) = 1. Since L(Tp) ⊇ L(Tv), we know that y ≤S z and, as S is a subtree
of N , we have y ≤N z, contradicting y �N z. If a clause of type (v) is not satisfied, then there
are xv→y and xw→z such that v and w are not siblings in T , β(xv→y) = β(xw→z) = 1, and the
ascending paths of y = LCAS(L(Tv)) and z = LCAS(L(Tw)) in Nρ share an arc. This contradicts
Lemma 9.

“⇒”: Let β be a satisfying assignment for ϕu→ρ and let ψ := {(v, y) | β(xv→y) = 1}. Since
β satisfies the clauses of type (iii), ψ describes a function V (T ) → V (N). Let Y := ψ(V (T )) be
the image of ψ and let S := N |Y ∪{ρ}. Note that, for all v <T u with parent p 6= u, we know
that ψ(v) ≤N ψ(p), since β satisfies the clauses of type (iv). Thus, for all v, w ∈ V (Tu) − u,
we have w ≤T v, which implies ψ(w) ≤N ψ(v), which then implies that ψ(w) ≤S ψ(v). For all
(v, y) ∈ ψ ∪ {(u, ρ)}, we show that Sy is a canonical subtree of Ny for Tv. The proof is by induction
on the height of v in T . If v is a leaf in T , then M(v) contains all leaves in N (and, thus, the
leaf in S) with the same label and the claim follows from y ∈M(v). Otherwise, suppose that the
claim holds for all w <T v. Note that, if Sy displays Tv, then either v 6= u and we have y ∈M(v)
or v = u and we can assume that for no proper descendant z of u in N it holds that Nz displays Tu
(implying y ∈M(u) by definition). In both cases, it suffices to show that Sy displays Tv to show
that Sy is canonical for Tv. Towards a contradiction, assume that Sy does not display Tv. By
Lemma 1, there are w ∈ V (Tv) and z ∈ V (Sy) and leaves a ∈ L(Sz) \ L(Tw), b ∈ L(Tw) \ L(Sz),
and c ∈ L(Tw) ∩ L(Sz).

3The construction uses implications ((x⇒ y) := (¬x ∨ y)), which can be formulated as clauses with two variables
as shown.
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Since ψ(a), ψ(c) <S z, there is a highest ancestor α
ψ(pα)

z

ψ(γ)
ψ(α)

ψ(a) ψ(c)

Sy

w
pα

α

a

Tv

b c

γ

of a in T with ψ(α) ≤S z and a highest ancestor γ of c in
T with ψ(γ) ≤S z. Since b 6<S z, it holds that b 6≤S ψ(α)
and b 6≤S ψ(γ), that is, b /∈ LCAS(Tα) ∪ LCAS(Tγ), so
α <T w and γ 6≤T w, implying that α and γ are not
siblings in T . Further, there are parents pα and pγ of α
and γ, respectively, with ψ(pα) 6≤S z and ψ(pγ) 6≤S z
by the maximality of α and γ (see figure on the right).
But this means that the ascending paths of ψ(α) and
ψ(γ) in N share the arc that is incoming to z in S, contradicting (v). �

Theorem 4 In O((kn)3) time, we can decide if a k-labeled tree N softly displays a 1-labeled tree
T using O(kn) queries of size O((kn)2) to k-SAT.

Proof: As correctness follows from Lemma 10, we next analyze the running time and the number and
size of all of the k-SAT formulas. First, we precompute for each vertex w of N the sets of vertices and
leaves below w in N , as well as all pairwise lowest common ancestors in a simple bottom-up manner
in O(n2) time. Then, we compute M(u) for each leaf u of T in O(n) time using a map of labels to
leaves in T . During all computations, we maintain a graph G on the vertex set V (G) ⊆ V (T )×V (N)
containing an edge {(u, v), (x, y)} if and only if u and x are not siblings and the so-far constructed
ascending paths of v and y wrt. u and x, respectively, overlap. Since |M(u)| ≤ k for all u ∈ V (T ),
this graph contains O(kn) vertices and O((kn)2) edges at all times. To maintain G, each vertex
of N keeps track of the ascending paths it is contained in and from which child each path ascended.
To this end, whenever a k-SAT instance ϕu→ρ is deemed unsatisfiable, we first check each pair of
ascending paths from different children of ρ and add an edge to G if they correspond to non-siblings
in T . Second, we add all ascending paths that ρ is contained in to the bucket labeled ρ of its parent’s
path list. Whenever a k-SAT instance ϕu→ρ is deemed satisfyable, a new ascending path of ρ wrt.
u is noted in the list of ρ and all ascending paths wrt. children of u are deleted from the list of ρ.

In the follwing, we first argue why it suffices to check O(kn) such pairs to decide whether the root
of T is displayed in N and then we show how to construct ϕu→ρ for any pair (u, ρ) ∈ V (T )× V (N)
in O((kn)2) time. This also shows that G can be maintained in O((kn)3) time since for each of the
O(kn) k-SAT instances, we use O((kn)2) time to maintain G.

First, we argue that it suffices to construct O(kn) instances of k-SAT to decide whether N
softly displays T (see Algorithm 1). Since we need to know M(v) for all v <T u to compute
ϕu→ρ for any u ∈ V (T ) and ρ ∈ V (N), we will go bottom-up “simultaneously” in N and T . In
the following, let u ∈ V (T ) be such that M(ui) is known for all children ui of u in T . Using our
precomputed LCA-lookup table, we can find the at most k lowest vertices ρi in N that have a
descendant in M(ui) for each ui in O(k ·degT (u)) time4. Let C denote this set. If all ρi are distinct,
that is, |C| = k, then M(u) ⊆ V (N ||C) since no vertex ρ /∈ C has a path to a leaf in Tu that
avoids C. Thus, k k-SAT instances suffice in this case, summing to a total of O(kn) such instances.
In the following, suppose |C| < k and note that only subtrees of N intersecting C can softly display
Tu. Thus, for each ρ ∈ C, we can “climb” N looking at all ancestors p of ρ in ascending order. For
each such p, we test in O(n) time whether any child pi of p with ρ �N pi is ancestor of a leaf `
whose label occurs in Tu and, if so, we construct ϕu→p and test its satisfyability. In order to show
that the number of such constructions is O(kn), we show that such a construction can only occur

4This can be done by iteratively computing a set of candidates Ci by keeping the lowest nodes of N ||Ci−1∪M(ui)
that have a descendant in both Ci−1 and M(ui) (choosing C0 := M(u0)).
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Algorithm 1: Construction of O(k) k-SAT instances to compute M(u).
Input: A multi-labeled tree N , a tree T , and a vertex u ∈ V (T )
Output: M(u)

1 C := M(u0); // candidate set; |C| ≤ k at all times
2 foreach child ui of u do C := minN{LCAN (xy) | x ∈ C ∧ y ∈M(ui)};
3 compute N ||C ;
4 if |C| < k then
5 foreach ρ ∈ C do
6 while (ϕu→ρ is not satisfyable) and (ρ is not marked) do // O(kn) loops total
7 L′ := L(ρ);
8 while L(ρ) \ L′ contains no label in L(u) do // O(kn2) checks à O(n) time
9 mark ρ;

10 ρ← parent(ρ);

11 if ρ is not marked then add ρ to M(u);
12 return M(u)
13 else return {x ∈ V (N ||C) | ϕu→x satisfyable};

once for each leaf `. Towards a contradiction, assume that a leaf ` incurs two such constructions
and let u′ and u′′ be the vertices in T for which they occur, that is, there are p′, p′′ ∈ V (N)
such that ϕu′→p′ and ϕu′′→p′′ are constructed due to `. But then, ` is a leaf of both Tu′ and
Tu′′ so, without loss of generality, u′ <T u′′ (it is not hard to see that u′ 6= u′′ by the algorithm
described above), implying M(u′) ≤N M(u′′) by construction. Then, however, p ≤N M(u′) and
LCAN (

⋃
iM(u′′i )) <N p, contradicting M(u′) ≤N M(u′′). Thus, the overall number of k-SAT

instances constructed by the described algorithm is O(kn).
Finally, the size of ϕu→ρ is dominated by the O((kn)2) possible clauses of type (v), which can

be generated in constant-time per clause by considering the O((kn)2) edges of G and picking up a
clause xv→y ⇒ ¬xw→z for each edge {(v, y), (w, z)} with v <T u and w <T u. �

Corollary 4 A 2-labeled tree N can be verified to softly display a 1-labeled tree T in O(n3) time.

5 Extended NP-hardness
Complementing the main result of Section 4.1, we now show that Soft Tree Containment
remains NP-hard on even very restricted classes of 2-labeled networks. To this end, we will modify
Construction 2 to construct 2-labeled networks instead of 3-labeled trees. We will make heavy
use of the merge operation on two nodes x and y of N defined as removing Nx and making all
former parents of x new parents of y. We denote the result of this operation by N |x→y and note
that it still contains the vertex y. If x and y have the same label λ, then y retains this label. If at
most one of x and y has a label, then y gets no label. If x and y have different labels, the merge
operation is undefined.

Lemma 11 Let N be a multi-labeled network and let T be a 1-labeled tree. Let u, v ∈ V (N) and w ∈
V (T ) be distinct such that Nu, Nv, and Tw are isomorphic. Let x ≤N u and y ≤N v such that Nx
is isomorphic to a subtree of Ny. Then, N softly/firmly displays T if and only if N ′ := N |x→y does.
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Figure 6: Illustration of the multiplicity reduction for Soft Tree Containment. Removed leaves
are faded out and newly introduced arcs are bold. Note the tree-child property after expansion of
nodes with in- and out-degree two.

Proof: “⇒”: Let S be a 1-labeled subtree of N that softly/firmly displays T . Suppose that S
contains both u and v and let S′ be the result of replacing Su and Sv by Nu and Nv, respectively, in
S. Since S is a subtree of S′, we know that S′ is a multi-labeled tree that softly/firmly displays T .
By Lemma 8, S′ contains a canonical subtree S∗ displaying T and, since Nu = Nv = Tw, we know
that S∗ contains at most one of u and v. Thus, we can suppose without loss of generality that S
contains at most one of u and v. If S does not contain x, then S is a subtree of N − V (Nx), which
is a subtree of N ′. Otherwise, x ∈ V (S) implying u ∈ V (S) and, thus, v /∈ V (S) and y /∈ V (S).
Note that, by definition, Ny softly/firmly displays Sx. Now, since N ′y = Ny, there is a subtree S′y
of N ′y that softly/firmly displays Sx. Then, replacing Sx by S′y in S yields a subtree of N ′ that
softly/firmly displays T .

“⇐”: Let S′ be a 1-labeled subtree of N ′ that softly/firmly displays T . By Lemma 8, we
suppose that S′ is canonical for T . Further, we suppose that S′ contains an arc py where p is
a parent of x but not y in N as, otherwise, S′ is also a subtree of N . Let z := LCAS′(L(Tw))
and note that z ≥S′ y since L(S′r) ⊆ L(N ′r) ⊆ L(Nx) ∪ L(Ny) ⊆ L(Nu) ∪ L(Nv) = L(Tw). First,
if x = u (implying y = v), then N ′y = Ny = Nv = Tw. Further, z ≤S′ y since S′ is canonical
and N ′y = Ny = Tw. But then, the result S of replacing S′y with Nu in S′ yields a subtree S
of N that softly/firmly displays Tw. Second, if x <N u, then Nu contains the arc px. Then,
p ∈ V (S′) ∩ V (N ′u) \ V (N ′y), implying u ∈ V (S′) since Nu (and, thus, N ′u − V (N ′y)) is free of
reticulations. Further, L(S′u) ⊆ L(Nu) ∪ L(Ny) = L(Tw). Thus, S′u cannot softly/firmly display Tq
for any q 6≤T w. But then, replacing S′u with Nu in S′ yields a subtree S of N that softly/firmly
displays T . �

Lemma 11 can be used to turn multi-labeled trees into 2-labeled networks. In the following, we
show that, for the 3-labeled trees constructed by Construction 2, this can be done such that the
resulting network is tree-child. To this end, we construct a mapping γ that maps each leaf whose
label λ occurs thrice in N to a vertex u of N such that either u is a leaf labeled λ or u is the root
of a cherry containing a leaf labeled λ. Observe that the result of the merge is tree-child if no two
siblings in N are involved (in the domain or image) in a mapping in γ. The mapping γ is defined as
follows. Let i and i be two labels of the same color i in N (see Construction 2). First, suppose
i and i occur in leaves ` and ` that are at distance three in N . Then, either i and i occur
at most twice, or we can find occurrences `′ 6= ` and `′ 6= ` of i and i that are not siblings.
Then, we let γ map `′ to ` and `′ to ` . Second, suppose i and i occur only in cherries
together, then let {`j , `j } denote these cherries and let ρj be their roots, for 1 ≤ j ≤ 3. Then,
we let γ map `2 to `1 and `3 to ρ1 (see Figure 6). Note that, to merge `3 with ρ1, we apply
Lemma 11 with u = ρ3, x = `3 and v = y = ρ1. Further, note that we have to choose ρ1 among
the three cherries of color i such that its sibling is not chosen for some other color i′. Observe that
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we may assign one of two colors to such “double cherries”, but each color can be assigned to one of
three cherries. By Hall’s theorem, an assignment saturating the colors always exists and can be
found in polynomial time. Observe that, in this way, no two siblings in N are involved in γ.

In a similar way, Hall’s theorem also allows us to construct a mapping γ between the leaves of
any 3-labeled tree constructed by Construction 1 such that each color is mapped to two leaves and
all nodes have at most one child involved in γ.

Corollary 5 Soft Tree Containment is NP-hard, even on 2-labeled binary tree-child net-
works N . Soft Cluster Containment is NP-hard, even on 2-labeled tree-child networks N .

6 Conclusion
We initiated research into a practically relevant variant of the Tree- and Cluster Containment
problems handling soft polytomies. We lay the mathematical foundation to dealing with soft
polytomies and showed that the (classical) complexity of both problems are hard, even on classes for
which their “firm”-versions are polynomial-time solvable. Hope lies in the special case of 2-labeled
trees, which has been used as building block for algorithms for the “firm”-versions and which we
show to be solvable in cubic time. Multiple avenues are opened for future work. Motivated by our
hardness result, the search for parameterized or approximative algorithms is a logical next step.
Previous work for Tree Containment [11, 20] might lend promising ideas and parameterizations to
this effort. While multi-labeled trees were our starting point to analyze Soft Tree Containment,
only the hardness result (Corollary 3) is transferable to multi-labeled networks, leaving many open
questions in this direction. Finally, given the close relationship between Soft Tree Containment
and (FIRM) Cluster Containment, we hope to apply ideas and methods used for (FIRM)
Cluster Containment to also attack Soft Tree Containment. In particular, we hope that
the ideas in Theorem 4 can be adapted since Cluster Containment seems to exhibit a close
relationship to SAT [13]—similar to what we exploited to prove Theorem 4.
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