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TU Berlin, Faculty IV, Algorithmics and Computational Complexity

Submitted: February 2021 Reviewed: August 2021 Revised: August 2021

Accepted: October 2021 Final: October 2021 Published: October 2021

Article type: Regular Paper Communicated by: M Nöllenburg

Abstract. Editing a graph into a disjoint union of clusters is a standard op-
timization task in graph-based data clustering. Here, complementing classical work
where the clusters shall be cliques, we focus on clusters that shall be 2-clubs, that is,
subgraphs of diameter at most two. This naturally leads to the two NP-hard prob-
lems 2-Club Cluster Editing (the editing operations are edge insertions and edge
deletions) and 2-Club Cluster Vertex Deletion (the editing operations are ver-
tex deletions). Answering an open question from the literature, we show that 2-Club
Cluster Editing is W[2]-hard with respect to the number of edge modifications, thus
contrasting the fixed-parameter tractability result for the classical Cluster Editing
problem (considering cliques instead of 2-clubs). Then, focusing on 2-Club Cluster
Vertex Deletion, which is easily seen to be fixed-parameter tractable, we show that
under standard complexity-theoretic assumptions it does not have a polynomial-size
problem kernel when parameterized by the number of vertex deletions. Nevertheless,
we develop several effective data reduction and pruning rules, resulting in a competitive
solver, outperforming a standard ILP formulation in most instances of an established
biological test data set.
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1 Introduction

Graph-based data clustering is among the most important application domains for graph modifi-
cation problems [36]. Roughly speaking, the goal herein is to transform a given graph into (usually
disjoint) clusters, thereby performing as few modification operations (edge deletions, edge inser-
tions, vertex deletions) as possible. Problems of this type are typically NP-hard. The perhaps
most prominent problem herein is Cluster Editing (also known as Correlation Cluster-
ing), where the clusters are requested to be cliques and one is allowed to perform both edge
insertions and edge deletions. Cluster Editing and its variants have applications in, among
others, bioinformatics, information retrieval, and psychometrics [1, 2, 38].

There has been a lot of algorithmic work on Cluster Editing, e.g., see the surveys by Böcker
and Baumbach [4] and by Crespelle et al. [9]. In addition, also the variant where one modifies the
input graph by vertex deletions received significant interest [8, 14, 24, 37].

Arguably, for many data science applications the request that the clusters have to be cliques
is too rigid. Hence, the consideration of clique relaxations for defining clusters gained attention
in graph-based data clustering [3, 20, 30, 32]. In this work, we focus on so-called 2-clubs as
clusters [30, 32]: these are diameter-at-most-two graphs (thus, cliques are 1-clubs). As opposed to
finding cliques, finding 2-clubs of size at least k is fixed-parameter tractable with respect to k [22,
23, 35]. Note that 2-clubs have been used in the context of biological data analysis [26, 33].
Moreover, 2-clubs have been studied in the context of covering vertices in a graph [11, 12, 13].

Closest to our work is the one by Liu et al. [30]: they studied the edge editing variant (referred
to as 2-Club Cluster Editing) and the vertex/edge deletion variants (referred to as 2-Club
Cluster Vertex/Edge Deletion). In particular, Liu et al. [30] proved the NP-hardness of all
three variants and provided search-tree algorithms based on extensive case distinctions that run
in 3.31k ·nO(1) time for 2-Club Cluster Vertex Deletion and in 2.74k ·nO(1) time for 2-Club
Cluster Edge Deletion (thus showing that both variants are fixed-parameter tractable); here
k denotes the required number of edge/vertex deletions and n denotes the number of vertices in the
input. Continuing and complementing this work, we contribute the following three main results:

1. Answering an open question of Liu et al. [30], in Section 2 we show that 2-Club Cluster
Editing is W[2]-hard with respect to the number of modified edges (deletions and inser-
tions), hence most likely not fixed-parameter tractable. This stands in sharp contrast to the
problems Cluster Editing [19] and the more general s-Plex Cluster Editing [20]1,
both known to be fixed-parameter tractable for the parameter number of edge modifications.
The W[2]-hardness seems surprising when considering the fact that while Cluster Editing
is fixed-parameter tractable [4] and 2-Club Cluster Editing is presumably not, by way
of contrast finding cliques is presumably not fixed-parameter tractable (since W[1]-hard [15])
while finding 2-clubs is.

2. Complementing fixed-parameter tractability and kernelization results for Cluster Vertex
Deletion [8, 24, 37] and s-Plex Cluster Vertex Deletion [3], in Section 2 we show
that, other than these related problems and despite being easily seen to be fixed-parameter
tractable for the parameter solution size, 2-Club Cluster Vertex Deletion is unlikely
to have a polynomial-size problem kernel.2

1This is the generalization of Cluster Editing where the clusters are requested to be s-plexes (and not cliques);
an s-plex is a subgraph where each vertex is connected to all other vertices of the s-plex except for at most s − 1
vertices. Notably, a clique is a 1-plex.

2It has been featured as an open problem whether the edge deletion variant s-Club Cluster Edge Deletion
has a polynomial-size problem kernel [9, 30].
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3. In Sections 3 to 5, we explore the fixed-parameter tractability of 2-Club Vertex Dele-
tion from a more practical angle and develop several efficient data reduction rules together
with effective search-tree pruning rules. Performing an empirical evaluation with standard
biological data, we show that our tuned algorithmic approach (based on branching and data
reduction) in most relevant cases clearly outperforms a standard ILP formulation solved
with CPLEX, thus providing a state-of the art software tool for the vertex deletion variant
of graph-based data clustering with 2-clubs.

Preliminaries. All graphs considered in our work are undirected and simple. For a graph G =
(V,E) we set n := |V | and m := |E|. We denote with

(
V
2

)
the set of all two-element subsets of V .

For a vertex v ∈ V , we denote by NG(v) := {w ∈ V | {v, w} ∈ E} the open neighborhood of v and
by NG[v] := NG(v)∪ {v} the closed neighborhood of v. The degree of v is degG(v) := |NG(v)|. For
a vertex subset V ′ ⊆ V , let NG[V

′] :=
⋃

v∈V ′ NG[v]. If it is clear from the context, then we omit G
from the subscripts. We denote by G[V ′] the subgraph of G induced by the vertex set V ′ ⊆ V and
by G[E′] the subgraph of G with edge set E′ ⊆ E, that is, G[E′] := (V,E′). The graph G − v is
obtained by deleting v ∈ V from G, that is G− v := G[V \ {v}].

A path P in G is an ordered sequence of pairwise distinct vertices v1, v2, . . . , vk+1 ∈ V such
that {vi, vi+1} ∈ E for all i ∈ {1, . . . , k}. It is also an induced path if these are the only edges
between its vertices. The length of P is k. We denote by Pn a path on n vertices. The distance of
two vertices s, t ∈ V , denoted by distG(s, t), is the length of a shortest path connecting s and t if
one exists, and∞ otherwise. The diameter of a graph is the maximum distance of any two vertices,
formally maxs,t∈V distG(s, t). A graph is said to be connected if there exists a path between all
pairs of its vertices. A (connected) component of a graph G is a maximal vertex set S ⊆ V such
that G[S] is connected.

s-Clubs. An s-club is a graph of diameter at most s. A clique is a 1-club. Furthermore, an
s-club cluster graph is a graph in which each component is an s-club. In this paper, we consider
the following two problems, where E△F := (E \ F )∪ (F \E) denotes the symmetric difference of
two sets E and F .

s-Club Cluster Editing
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Is there an edge set F ⊆

(
V
2

)
with |F | ≤ k such that G[E△F ] is an s-club cluster

graph?

s-Club Cluster Vertex Deletion
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Is there a vertex subset S ⊆ V with |S| ≤ k such that G[V \S] is an s-club cluster

graph?

An edge set F ⊆
(
V
2

)
such that G[E△F ] is an s-club cluster graph is called an s-club editing set

and a vertex set S ⊆ V such that G[V \ S] is an s-club cluster graph is called an s-club vertex
deletion set.

2-Clubs. A 2-club is a graph with diameter at most two. This means that for all pairs of
vertices u, v ∈ V it holds that u and v are adjacent or have at least one common neighbor. Note
that 2-clubs are non-hereditary, that is, if G is a 2-club, then deleting vertices from G may destroy
this property. This is a significant difference in comparison with cliques.
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Using terminology of Liu et al. [30], we call a path stuv in G a restricted P4 if distG(s, v) = 3.
That is, a restricted P4 is a shortest path connecting s and v and is thus also an induced P4. The
following characterization is easy to verify:

Observation 1 ([30, Lemma 3]) A graph G is a 2-club cluster graph if and only if it contains
no restricted P4.

Parameterized Algorithmics. We use standard notation and terminology from parameterized
complexity. A parameterized problem Π ⊆ Σ∗ × N is a set of pairs (I, k), where I denotes the
problem instance and k is the parameter. Problem Π is fixed-parameter tractable (FPT) if there
exists an algorithm solving any instance of Π in f(k)·|I|c time, where f is some computable function
and c is some constant. A parameterized reduction from a parameterized problem Π ⊆ Σ∗ × N
to a parameterized problem Π′ ⊆ Σ∗ × N is a function which maps any instance (I, k) ∈ Σ∗ × N
to another instance (I ′, k′) ∈ Σ∗ × N such that (1) (I ′, k′) can be computed from (I, k) in FPT
time, (2) k′ ≤ g(k) for some computable function g, and (3) (I, k) ∈ Π ⇐⇒ (I ′, k′) ∈ Π′. If Π
is W[t]-hard, t ≥ 1, then such a parameterized reduction shows that also Π′ is W[t]-hard, that is,
presumably not fixed-parameter tractable. A reduction to a problem kernel is a parameterized self-
reduction (from Π to Π) such that (I ′, k′) can be computed in polynomial time and |I ′| ≤ g(k). If g
is a polynomial, then (I ′, k′) is called a polynomial kernel. Problem kernels are usually achieved
by applying data reduction rules. Given an instance (I, k), a data reduction rule computes in
polynomial time a new instance (I ′, k′). We call a data reduction rule safe if (I, k) ∈ Π ⇐⇒
(I ′, k′) ∈ Π.

Organization of the Paper. We prove in Section 2 the W[2]-hardness of 2-Club Cluster
Editing and that 2-Club Cluster Vertex Deletion does not admit a polynomial kernel with
respect to k unless NP ⊆ coNP / poly. We then present in Section 3 an ILP-formulation and a
branch&bound algorithm for 2-Club Cluster Vertex Deletion. In Section 4, we provide
implementation details for the solver which we experimentally evaluate in Section 5. We conclude
in Section 6.

2 Hardness Results

It is easy to see that 2-Club Cluster Vertex Deletion is fixed-parameter tractable with
respect to solution size k [30]: By Observation 1, it is enough to recursively search for a re-
stricted P4 stuv and delete a vertex to separate s and v. In contrast, we subsequently show that
2-Club Cluster Editing is W[2]-hard with respect to solution size k, answering an open ques-
tion of Liu et al. [30]. Intuitively, the hardness is due to the fact that there is a “non-local” way
of destroying a restricted P4 with edge insertions, see Fig. 1 for an illustration.

The basic idea of our parameterized reduction from Dominating Set3 is inspired by a param-
eterized reduction by Gao et al. [18, Theorem 1] who showed hardness for the problem of reducing
the diameter of a given graph to two by inserting at most k edges. In our reduction we need
to take care of the possibility to delete edges, which changes several details of the construction.
Dominating Set remains W[2]-hard with respect to k for graphs with diameter two [31]. Thus
we can assume that the Dominating Set instance has diameter two.

3Given an undirected graph G = (V,E) and an integer k, the question is whether there is a dominating set V ′ ⊆ V
(that is, N [V ′] = V ) of size at most k.
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Figure 1: Top left: The six “local” modifications to destroy a restricted P4. Any edge that is
inserted (dashed edges) or deleted (dotted edges) has both its ends in {s, t, u, v}.
Bottom left: A non-local modification (the two inserted edges are dashed), where b can be any
vertex other than s, t, u, and v.
Right: The dashed edge {c, d} indicates the single optimal solution (inserting the edge, the resulting
Petersen graph has diameter two) which is a non-local modification. Since the distance between c
and d was four, the insertion of edge {c, d} is not part of any local modification.

Theorem 1 2-Club Cluster Editing is W[2]-hard with respect to k, even if the input graph
has diameter three, a minimum cut larger than k, and deleting one vertex results in a 2-club.

Proof: Let G = (V,E) be a graph with diameter two. We construct a graph G′ in such a
way that G has a dominating set of size at most k if and only if G′ has a 2-club editing set of
size at most k. The graph G′ = (V ′, E′) consists of the following parts: the original graph G,
a clique C ⊆ V ′ of cardinality (n + 1)2, and a single vertex x. We assign two indices for the
vertices ci,j ∈ C such that i, j ∈ {0, . . . , n}. The vertices in V only have one index: vi ∈ V ,
i ∈ {1, . . . , n}. In addition to the existing edges in G and C, add the following edges:

� for each j ∈ {0, . . . , n}, add {x, c0,j}, and

� for each ci,j ∈ C, i ̸= 0, add {vi, ci,j}.

The resulting graph G′ has O(n4) edges and O(n2) vertices and can be constructed in polynomial
time; see Fig. 2 for an example. Note that G′ has diameter three, a minimum cut of n + 1 > k,
and deleting x results in a 2-club (recall that G has diameter two).

We claim that there exists a dominating set of size at most k for G if and only if there exists
a 2-club editing set of size at most k for G′ (which only inserts edges).

“⇒”: Let D be a dominating set for G with |D| ≤ k, and F := {{x, v} | v ∈ D}. Let H :=
G′[E′△F ]. For every vi ∈ V , either vi ∈ D and then distH(x, vi) = 1, or vi /∈ D and then vi has a
neighbor in D and thus distH(x, vi) = 2. This means that H is a 2-club cluster graph and F is a
2-club editing set for G′ with |F | ≤ k.

“⇐”: Let F be a 2-club editing set for G′ with |F | ≤ k and H = G′[E′△F ] be the resulting 2-
club cluster graph. Assume without loss of generality that F is minimal. Removing any edge would
only be optimal if H contained more than one 2-club cluster. Note that the size of a minimum cut
of G′ is n+ 1 and that k < n. Hence, there is only one 2-club cluster in a solution and no edge is
removed.

For any inserted edge {a, b} ∈ F exactly one of the following cases applies, since the distance
between x and some vi ∈ V has to be reduced by means of inserting {a, b} .
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G :

G′ :

x

C

G

Figure 2: Left: A C4 as an example for a Dominating Set instance G with k = 2.
Right: The constructed graph G′ consisting of the C4 (vertices within the dotted box), vertex x,
and clique C (small black vertices within gray background); for clarity, edges within the clique
are not drawn. The two dashed edges indicate a possible solution for G′, that is, after inserting
the two dashed edges G′ will be a 2-club and the corresponding endpoints (excluding x) form a
dominating set in G.

� {a, b} = {vi, x}: Then distH(x, vi) = 1 and for a ∈ NG(vi) we have distH(x, a) ≤ 2. We
interpret this as vi being a dominating vertex in G.

� {a, b} = {vi, c0,j}: This edge enables a path of length two from vi to x via c0,j . This means
that this edge is only of benefit to vi. Then F ′ = (F \ {vi, c0,j}) ∪ {x, vi} is also a 2-club
editing set with |F | = |F ′|.

� {a, b} = {vi, vj}: This means that one of the vertices has an edge to x. Without loss of
generality assume that {x, vi} ∈ F . Note that F is only minimal if {x, vj} /∈ F , as the
edge {vi, vj} is only of benefit to vj and no other vertices since it enables a path of length
two from vj to x via vi. Then F ′ = (F \ {vi, vj}) ∪ {x, vj} is also a 2-club editing set
with |F | = |F ′|.

� {a, b} = {vi, cj,k} , j ̸= i, j ̸= 0: This means that there is an edge {x, cj,k} ∈ F , otherwise F
would not be minimal. The edge {vi, cj,k} enables a path of length two from vi to x via cj,k.
This means that the edge is of no benefit to any other vertices. Then F ′ = (F \ {vi, cj,k}) ∪
{x, vi} is also a 2-club editing set with |F | = |F ′|.

� {a, b} = {x, ci,j} , i ̸= 0: This edge enables a path of length two from vi to x via ci,j . In the
previous case, we have seen that there exists an F ′ with {x, ci,j} ∈ F ′ such that there exists
no edge {vℓ, ci,j} ∈ F ′ with ℓ ̸= i. This means that the edge {x, ci,j} is of no benefit to any
other vertices. Then F ′′ = (F ′ \{x, ci,j})∪{x, vi} is also a 2-club editing set with |F | = |F ′′|.

Altogether, we know that there exists an F ′ with |F ′| = |F | such that F ′ is a 2-club editing set
of the form {{x, v} | v ∈ D} for some D ⊆ V . This means that D is a dominating set for G with
|D| ≤ k.

Summarizing, the reduction from (G, k) to (G′, k) is a parameterized reduction from Domi-
nating Set for graphs with diameter two to 2-Club Cluster Editing. Since Dominating
Set is W[2]-hard for graphs of diameter two [31], this yields that 2-Club Cluster Editing is
also W[2]-hard. □
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No Polynomial Kernel for 2-Club Cluster Vertex Deletion. Next, we use the OR-cross-
composition framework of Bodlaender et al. [7] to prove that 2-Club Cluster Vertex Deletion
does not admit a polynomial kernel with respect to the solution size k. To this end, we introduce
some notions used in the proof. Given an NP-hard problem L, an equivalence relation R on the
instances of L is a polynomial equivalence relation if

(i) one can decide for any two instances in time polynomial in their sizes whether they belong
to the same equivalence class, and

(ii) for any finite set S of instances, R partitions S into at most (maxx∈S |x|)O(1) equivalence
classes.

Definition 1 Given an NP-hard problem L, a parameterized problem P , and a polynomial equiva-
lence relation R on the instances of L, an OR-cross-composition of L into P (with respect to R) is
an algorithm that takes ℓ R-equivalent instances I1, . . . , Iℓ of L and constructs in time polynomial
in

∑ℓ
i=1 |Iℓ| an instance (I, k) such that

1. k is polynomially upper-bounded in max1≤i≤ℓ |Ii|+ log(ℓ) and

2. (I, k) is a yes-instance for P if and only if there is at least one ℓ′ ∈ [ℓ] such that Iℓ′ is
yes-instance for L.

If a parameterized problem P admits an OR-cross-composition for some NP-hard problem L,
then P does not admit a polynomial kernel with respect to its parameterization, unless NP ⊆
coNP / poly [7].

Theorem 2 2-Club Cluster Vertex Deletion does not admit a polynomial kernel with re-
spect to k unless NP ⊆ coNP /poly.

Proof: To show the result, we provide an OR-cross-composition from 2-Club Cluster Vertex
Deletion to itself. To this end, we define R as follows: two instances (G1, k1), (G2, k2) of 2-Club
Cluster Vertex Deletion are equivalent with respect to R iff k1 = k2. Since the solution size
is at most n, this gives a polynomial equivalence relation.

Given ℓ R-equivalent instances (G1 = (V1, E1), k), . . . , (Gℓ = (Vℓ, Eℓ), k), we construct a new
instance (G′ = (V ′, E′), k′) as follows. Without loss of generality, assume that ℓ is a power of two
(otherwise copy instances until ℓ is a power of two). We set k′ := k + log ℓ. To describe G′, we
need a simple selection-gadget consisting of two stars with k′ +1 leaves each where the two center
vertices are adjacent. Observe that in the selection-gadget the leaves of one star are at distance
three to the leaves of the other star. Moreover, since each star has more than k′ leaves, the only
possibility to transform a selection-gadget into a 2-club cluster graph is to delete one of the two
center vertices.

We can now define G′: To this end, we recursively create an “instance-selector” that forces
the selection of exactly one instance Gi as shown in Fig. 3. First, add a selection-gadget with the
two center vertices cL and cR (left and right). Second, recursively build the two graphs GL, GR

composing G1, . . . , Gℓ/2 and Gℓ/2+1, . . . , Gℓ respectively until GL, GR consist of only one input
instance. Make every vertex in GL (in GR) adjacent to cL (to cR). Note that this recursive
procedure has recursion depth log ℓ.

The construction of (G′, k′) can clearly be done in polynomial time. It remains to show the
correctness, that is, (G′, k′) is a yes-instance if and only if there is a yes-instance (Gi, k), i ∈ [ℓ].
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G1 G2 G3 G4 G5 G6 G7 G8

Figure 3: Illustration of the construction for Theorem 2 exemplified for ℓ = 8. Star-shaped vertices
have k′+1 additional leaves and are connected to all vertices in the gray-shaded area below them.

“⇒:” Let S′ ⊆ V ′ be a minimal solution of size at most k + log ℓ for G′. Observe that, by
construction of G′, at least one of the two center vertices cL and cR of the “topmost” selection-
gadget has to be in S′. Assume without loss of generality that cL ∈ S (the other case is completely
analogous). Observe that the connected component CR in G′ − cL containing cR is a 2-club
since cR is a universal vertex in CR. Since S′ is minimal, it follows that S′ contains no vertex
in CR. By construction, the connected component containing the graphs G1, . . . , Gℓ/2 contains a
selection-gadget where again one of the two center vertices has to be in S′. By induction on the
recursion depth one can show that S′ contains exactly log ℓ center vertices of the selection-gadgets.
Moreover, there is exactly one graph Gi such that all log ℓ center vertices adjacent to the vertices
in Gi are in S′. Since S′ is a solution for G′ it follows that S′ ∩ Vi is a solution of size at most k
for Gi.

“⇐:” Let i ∈ [ℓ] be such that (Gi, k) is a yes-instance and let S ⊆ Vi be the solution for Gi,
|S| ≤ k. The solution S′ ⊆ V ′ for G′ consists of S and every adjacent center vertex in a selection-
gadget. Observe that |S′| ≤ k + log ℓ since, by construction, there are log ℓ selection-gadgets that
contain a vertex adjacent to Gi. Thus, it remains to show that G′−S′ is a 2-club cluster graph. To
this end, observe that, by assumption, Gi − S is a 2-club cluster graph. Note that each graph Gj ,
i ̸= j, is in G′−S′ in a connected component with a center vertex c of a selection-gadget such that
the other center vertex of this gadget is in S′. Note that each such center vertex c is a universal
vertex in its connected component in G′ − S′. Thus a connected component containing c forms a
2-club. Since each connected component of G′ − S′ contains vertices of at least one graph Gj , it
follows that G′ − S′ is a 2-club cluster graph. □

3 Algorithms for 2-Club Cluster Vertex Deletion

In this section, we first formulate 2-Club Cluster Vertex Deletion as an Integer Linear
Program (ILP) and then introduce a branch&bound algorithm solving a generalization of 2-Club
Cluster Vertex Deletion. The basis of our branch&bound algorithm is a simple search tree
(see Section 3.1), which is refined by data reduction rules (see Section 3.2) and lower bounds
(see Section 3.3). We use the ILP-formulation in our experiments to evaluate our branch&bound
algorithm.
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ILP Formulation. By Observation 1, a graph is a 2-club cluster graph if and only if it contains
no restricted P4. Recall that a restricted P4 is an induced P4 stuv that is also a shortest path
between s and t. Thus, there exists no vertex w ∈ N(s) ∩N(v) in the common neighborhood of s
and v. The deletion of a vertex cannot create any new induced path but it might “promote” an
induced P4 to a restricted P4. Hence, if N(s) ∩ N(v) = ∅ for any induced P4 stuv in G, then at
least one vertex from stuv must be deleted.

We introduce a variable xv for each vertex v ∈ V . This variable has a value of 1 if and only
if v is in the 2-club vertex deletion set. This leads to the following 0/1-ILP formulation:

min:
∑
v∈V

xv

such that xs + xt + xu + xv +
∑

b∈N(s)∩N(v)

(1− xb) ≥ 1 for all induced P4’s stuv in G,

xv ∈ {0, 1} for all v ∈ V.

3.1 Search Tree

A graph is a 2-club cluster graph if and only if there exists no restricted P4 (Observation 1).
This observation yields a straight-forward search tree of size O(4k) for 2-Club Cluster Vertex
Deletion. To shrink the search tree, we employ the concept of permanent vertices. A vertex is
permanent if it is not allowed to be removed from the graph. Additionally, we introduce weights
on the vertices. These two concepts will allow us to apply a wider range of data reduction rules
and lower bounds in the search tree algorithm. The resulting problem is defined as follows:

Generalized 2-Club Cluster Vertex Deletion (Gen2CVD)

Input: An undirected graph G = (V,E), an integer k ∈ N, a set F ⊆ V of permanent
vertices, and a weight function w : V → N+.

Question: Is there an S ⊆ V with w(S) ≤ k and S ∩ F = ∅ such that G[V \ S] is a 2-club
cluster graph?

Note that an instance (G, k) of 2-Club Cluster Vertex Deletion is clearly equivalent to
the instance (G, k, ∅, w ≡ 1) of Gen2CVD.

Our algorithm uses a simple branching rule that takes a restricted P4 and branches into all
four cases of deleting one vertex which implies updates of the set F of permanent vertices in each
branch. If some vertex of the restricted P4 stuv is already in F , then we skip the corresponding
case in the branching. Thus, the branching itself “grows” the set F of permanent vertices that will
reduce the cases to be considered later in the branching. Moreover, if more than one restricted P4

exists, then the algorithm chooses one with most vertices in F and uses the weights of the vertices
as tiebreaker.

Branching Rule 1 Let I = (G, k, F,w) be an instance of Gen2CVD. If G is not a 2-club cluster
graph, then find a restricted P4 stuv and split I into four smaller instances Is, It, Iu, Iv as follows:

� Is = (G− s, k − w(s), F, w),

� It = (G− t, k − w(t), F ∪ {s} , w),

� Iu = (G− u, k − w(u), F ∪ {s, t} , w),
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� Iv = (G− v, k − w(v), F ∪ {s, t, u} , w).

If an instance Ix was derived by removing a permanent vertex x ∈ {s, t, u, v} ∩ F , then do not
branch on Ix.

Lemma 1 Branching Rule 1 is correct.

Proof: If G is already a 2-club cluster graph, then there is nothing to do. Otherwise, assume
that G contains stuv, a restricted P4. We have to show that I is a yes-instance if and only if at
least one of the instances Is, It, Iu, Iv is a yes-instance.

“⇐”: Let S′ be a 2-club vertex deletion set for one of the four instances where the vertex x ∈
{s, t, u, v} was deleted. Because all four instances have a set of permanent vertices that is a superset
of F , the set S := S′ ∪ {x} is a 2-club vertex deletion set for I unless x is permanent, in which
case the instance Ix would have been skipped.

“⇒”: If I is a yes-instance, then at least one of the vertices s, t, u, or v has to be deleted.
Let S be a 2-club vertex deletion set for G with w(S) ≤ k and S ∩ F = ∅. If s ∈ S, then Is is
clearly a yes-instance; otherwise if t ∈ S, then It is a yes-instance; otherwise if u ∈ S, then Iu is a
yes-instance; otherwise v ∈ S and Iv is a yes-instance. □

An additional feature of Branching Rule 1 is that we can skip branches where a permanent
vertex would have been deleted. Combining Branching Rule 1 with the fact that one can find a
restricted P4 by running a breadth-first-search starting from each vertex, we arrive at the following.

Proposition 3 Generalized 2-Club Cluster Vertex Deletion can be solved in O(4k ·nm)
time.

3.2 Data Reduction Rules

Data reduction rules may be considered the most valuable contribution of parameterized algo-
rithmics to algorithm engineering [27]. In this section, we will introduce polynomial-time data
reduction rules that can be applied in each step of our search tree algorithm. We categorize these
rules into two types: The first type removes vertices and shrinks the graph. The second type
increases the set of permanent vertices, which in turn can trigger data reduction rules of the first
type, and decreases the number of branches

Shrinking the Graph. We start with describing rules of the first type. First, note that we can
always safely remove a connected component of the graph that is already a 2-club.

Reduction Rule 1 If a graph contains a connected component C that is a 2-club, then delete all
vertices in C.

Now, consider a graph with k + 1 restricted P4’s that only overlap in one vertex v as shown
in Fig. 4. We clearly have to delete v. This basic observation can be generalized to the case
with vertex weights and some overlap in the the restricted P4’s: Let P be a set of restricted P4’s
overlapping in v (and possibly other vertices) with a lower bound of at least k + 1 on the cost of
resolving the P4’s in P without removing v. Then, we can delete v. In here, we need to specify the
mentioned lower bound. To this end, our idea is that if each vertex u is contained in at most w(u)
many restricted P4’s in P, then each restricted P4 requires a cost of at least one to remove, thus
resolving P costs at least |P|. If each vertex u in a restricted P4 is contained in less than w(u)
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Figure 4: A graph with k + 1 restricted P4’s that overlap only in vertex v.

many restricted P4’s in P, then this lower bound is not tight. We improve the lower bound by
allowing P to be a multiset, that is, we count some restricted P4’s in P more than once towards
the lower bound on the cost. Formally, we arrive at the following data reduction rule.

Reduction Rule 2 Let P be a multiset of restricted P4’s that each contain the vertex v and such
that each vertex u ∈ V other than v is contained in at most w(u) many restricted P4’s in P.
If |P| ≥ k + 1, then delete v and decrease k by w(v).

Lemma 2 Reduction Rule 2 is safe.

Proof: Let v and P be as above. Clearly, deleting v would eliminate all restricted P4’s in P.
Let u ∈ V be some other vertex. Denote by ℓ the number of P4’s in P that contain u, which
means that deleting u eliminates ℓ P4’s in P. The cost of deleting u is w(u) ≥ ℓ. This means that
eliminating all P4’s in P without deleting v has a cost of at least |P| ≥ k + 1, which exceeds the
budget of k. □

For the next data reduction rule, we consider twins, that is, two vertices with either the same
closed neighborhood or the same open neighborhood.

Observation 2 If a graph is a 2-club and contains two twins u, v, then after deleting one of them,
the graph remains a 2-club. Likewise, a 2-club to which a twin is added remains a 2-club.

Due to Observation 2, we can delete one of the twins because in an optimal solution they are
always in the same 2-club.

Reduction Rule 3 Given two vertices u, v ∈ V such that either N [u] = N [v] or N(u) = N(v),
delete v and set w(u) to w(u) + w(v).

Lemma 3 Reduction Rule 3 is safe.

Proof: We have to show that (G,w, k) is a yes-instance if and only if (G′, w′, k) is a yes-instance.
“⇐”: Let S′ be an optimal 2-club vertex deletion set with w′(S′) ≤ k. If S′ removes u,

then S = S′ ∪ {v} is a 2-club vertex deletion set for G with w′(S′) = w(S). Otherwise, by
Observation 2, S′ is also a 2-club vertex deletion set for G.

“⇒”: Let S be an optimal 2-club vertex deletion set with w(S) ≤ k and H = G[V \ S]. We
claim that S either removes both u and v or neither of them. Assume without loss of generality
that S only removes u. Then, by Observation 2, the set S′ = S \ {u} would be a 2-club vertex
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deletion set as u and v would be twins in H ′ = G[V \ S′]. Since S′ is smaller than S, this is a
contradiction to the optimality of S. □

If a restricted P4 stuv has to be eliminated, then one has to potentially branch into four cases.
If some of the vertices of stuv are permanent, then this decreases this number branches. If three
vertices of stuv are permanent, then there is only one possible branch.

Reduction Rule 4 If a graph contains a restricted P4 stuv such that only one vertex x ∈ {s, t, u, v}
is not permanent, then delete x and decrease k by w(x).

The next rule can be used to shrink some subgraphs in which all vertices are permanent.

Reduction Rule 5 Let v be a vertex in G that is not permanent. Let C be a component of G− v
that is a 2-club with its vertices being marked permanent. Let d be the maximum distance of a
vertex in C to v. Replace C with d new permanent vertices that together with v induce a path of
length d.

Lemma 4 Reduction Rule 5 is safe.

Proof: Let C and v be as in Reduction Rule 5. Note that the vertices in C are all marked
permanent. If any vertex u ∈ C is part of a restricted P4, then v must also be part of the
restricted P4. This means that only the distance between u and v is important and the path with
at most d+1 vertices that starts in v is sufficient to represent all vertices that have some distance
(which is at most three) to v. □

Increasing the set of Permanent Vertices. Note that Reduction Rules 4 and 5 both require
permanent vertices in order to be triggered. So far, the only way to add new permanent vertices
is with Branching Rule 1. Subsequently, we discuss a faster way of producing permanent vertices
via data reduction rules.

For the following data reduction rule, we need the concept of a bridge vertex. We call a vertex b
a bridge vertex if for some s, v ∈ N(b) there exists an induced P4 stuv for some t, u ∈ V . We say
that b bridges stuv.

A vertex v ∈ V is a cut vertex if the deletion of V increases the number of connected compo-
nents. If a 2-club C becomes isolated by removing a cut vertex v, then the vertices of C can be safely
excluded from the solution (by marking them as permanent) under the following premise: If any
vertex from that 2-club C was included in the solution, then it can be replaced by v to yield another
solution of the same size. This premise holds if v is not a bridge vertex and if w(v) ≤ minu∈C w(u)
see Fig. 5a. For an example of the application of the corresponding Reduction Rule 6.

Reduction Rule 6 Let v be a cut vertex in G that is not a bridge vertex and not permanent and
let C be a component in G− v. If C is a 2-club and w(v) ≤ minu∈C w(u), then mark the vertices
in C as permanent.

Lemma 5 Reduction Rule 6 is safe.

Proof: If C is a 2-club, then it contains no restricted P4. If any vertex in C is part of a restricted P4,
then v must be on this path. Suppose that an optimal solution S removes some vertices F ⊆ C,
F ̸= ∅. Removing F is only needed to eliminate P4’s that start in C, which also necessarily
contain v. If v ∈ S, then S is not optimal. Otherwise, we claim that S′ = (S \ F ) ∪ {v} is
another optimal solution. This holds true because v eliminates the same P4’s as F does, has
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(a) Reduction Rule 6 can be applied on ver-
tex v. The gray area contains vertices that can
be marked as permanent.
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(b) Reduction Rule 6 cannot be applied on ver-
tex v because v is a bridge for a and b.

Figure 5: Examples of graphs with a cut vertex v (all vertex weights are one). The gray area is a
2-club that is isolated from the rest of the graph after deleting v. Note that in the left graph the
removal of v increases the distance of a and b to five. Thus no induced P4 exists between a and b.
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Figure 6: An example to demonstrate robustness (all vertex weights are one). For instance, we have
robust(a, d) = 2 because vertices e and f have to be deleted to “promote” the induced P4 abcd to a
restricted one. Other robustness values are: robust(f, j) = robust(h, k) = 0 and robust(h, j) =∞.
Two optimal 2-club cluster vertex deletion sets are {e, j} and {i, k}.

weight w(v) ≤ w(F ), and because v is not a bridge vertex. Hence, it follows that removing v
cannot contribute to the creation of a restricted P4. □

See Fig. 5b for an example why we require v to be a non-bridge vertex in Reduction Rule 6.
Reduction Rule 6 can be slightly generalized. To this end, we define the robustness of two

vertices s and v as the number of vertices that need to be deleted before a restricted P4 can be
created between s and v:

robust(s, v) :=

{
∞ if there is no induced P4 stuv for any t, u ∈ V ,

w(N(s) ∩N(v)) otherwise.

For an example see Fig. 6. An induced P4 stuv is a restricted P4 if and only if robust(s, v) = 0.
For the induced P4 stuv the set U := N(s) ∩ N(v) of vertices needs to be deleted before stuv is
“promoted” to a restricted P4. We will say that the deletion of the vertices in U contributes to the
creation of the restricted P4 stuv.

In Reduction Rule 6, the deletion of v cannot decrease the robustness of any two vertices
because v is not a bridge vertex. However, we do not want to restrict consideration to just vertices
that cannot decrease robustness. We adapt this rule to also allow v to be a bridge vertex, but we
still need to guarantee that the deletion of v cannot contribute to the creation of a restricted P4. For
this we consider our remaining budget k and conclude that if the robustness in the neighborhood is
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sufficiently high, then we can still mark the 2-clubs as permanent. Additionally, we do not need to
consider how removing v affects the robustness between vertices in 2-clubs that would be isolated,
because we already know that they are 2-clubs and do not have restricted P4’s.

Reduction Rule 7 Given a vertex v in G that is not permanent. Let C1, . . . , Cℓ be the com-
ponents of G − v that are 2-clubs, and H = G − v − C1 − · · · − Cℓ. If for all pairs of ver-
tices a, b ∈ NG(v) ∩ V (H) robustG(a, b) > k and for all 2-club components Ci, i ∈ {1, . . . , ℓ}, we
have w(v) ≤ minu∈Ci w(u), then mark all vertices in C1, . . . , Cℓ as permanent.

Lemma 6 Reduction Rule 7 is safe.

Proof: If Ci is a 2-club, then it contains no restricted P4. If any vertex in Ci is part of a
restricted P4, then v must be on this path. Suppose that an optimal solution S removes some
vertices F ⊆ Ci with F ̸= ∅. Removing F is only needed to eliminate P4’s that start in Ci, which
also necessarily contain v. If v ∈ S, then S is not optimal. Otherwise we claim that S′ = (S\F )∪{v}
is another optimal solution. Deleting v reduces the robustness between its neighbors. However,
deleting v cannot create a restricted P4. If deleting v created a restricted P4, then this P4 would
need to start and end in two neighbors of v. Deleting v cuts off the 2-clubs C1, . . . , Cℓ which means
no restricted P4’s were created in them, which means the neighbors of v in these 2-clubs need not be
considered further. The only other vertices that could be affected are those in U = NG(v)∩V (H).
Because the pairwise robustness of vertices in U is at least k + 1, this means that vertices with a
total budget greater than k need to be removed before there can be a restricted P4 that starts and
ends in U . Because the budget k does not allow this to happen, replacing F by the single vertex v
with w(v) ≤

∑
u∈F w(u) to obtain S′ results in another optimal solution. □

A 2-club vertex deletion set S is clearly not optimal if a vertex v can be removed from it
and S′ = S \ {v} remains a 2-club vertex deletion set.

Observation 3 Let S be a 2-club vertex deletion set of G. If N [v] ⊆ S for some v ∈ V , then S\{v}
is also a 2-club vertex deletion set.

One could use Observation 3 as a simple test of whether a 2-club vertex deletion set S is minimal.
Clearly we do not have to wait until we have found a 2-club vertex deletion set S to apply this
test. A partial 2-club vertex deletion set S′ is a set of vertices which were removed from G along
the way from the root to a branching node of the search tree. The test can be applied to S′ in
the same way as if it would be applied to S. Additionally, if the removal of any vertex in G would
cause this test to fail, then this vertex must not be removed.

Reduction Rule 8 Let S′ be a partial 2-club vertex deletion set of G constructed at some stage
of the branching. If |N(v) \ S′| = 1 for any v ∈ S′, then mark the unique vertex x ∈ N(v) \ S′ as
permanent.

Lemma 7 Reduction Rule 8 is safe.

Proof: Let S′ and x be as above. Any 2-club vertex deletion set S with (S′ ∪ {x}) ⊆ S is not
a minimal deletion set by Observation 3. This implies that x cannot be in any minimal solution
containing S′ and hence we can mark x as permanent. □
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3.3 Lower Bounds

Another way to shrink the size of a search tree are lower bounds. A lower bound can be thought
of as a function ℓ(G) of the graph G such that ℓ(G) ≤ |S|, where S is an optimal 2-club vertex
deletion set for G. Lower bounds are a very practical way to shrink the size of the search tree,
because if once for the solution size parameter k it holds that k < ℓ(G), then we know that there
is no solution. The basic idea behind our first lower bound was already used in Reduction Rule 2
(see also discussion before Reduction Rule 2).

Lower Bound 1 Let P = {p1, . . . , pℓ} be a multiset of restricted P4’s in G such that each ver-
tex v ∈ V is contained in at most w(v) many restricted P4’s in P. Then a minimum vertex deletion
set for G has size at least ℓ.

Proof: Let P be as above and v ∈ V be any vertex. Denote by r the number of restricted P4’s in P
that contain v, which means deleting v eliminates r restricted P4’s in P. The cost of deleting v
is w(v) ≥ r. This means eliminating all restricted P4’s in P has a cost of at least |P|. Clearly, if a
restricted P4 in P is not eliminated, then the graph is not a 2-club cluster graph. □

Next, we exploit the size of a minimum vertex cut set. A cut set D of a graph G is a set of
vertices such that G −D is disconnected. We know that an optimal 2-club vertex deletion set S
for G splits it into one or more 2-clubs. This means that S must be a vertex cut set or G− S is a
single 2-club. The following lower bound incorporates these options:

Lower Bound 2 Let G be a connected graph with vertex weights, let C be the maximum-weight
2-club in G, and let D be the minimum-weight vertex cut set of G. Then a minimum-weight 2-club
vertex deletion set for G has size at least min(w(V \ C), w(D)).

Proof: Let S be an optimal 2-club vertex deletion set and let G′ := G[V \ S] be the resulting
2-club cluster graph. If G′ contains at least two components, then S is a vertex cut set for G
and w(S) ≥ w(D). If G′ has only one component, then V \ S = V (G′) is the maximum-weight
2-club in G and w(S) = w(V \ C). □

4 Implementation of the Branch&Bound Algorithm

In this section, we discuss some implementation details of our algorithm for Gen2CVD that have
been left open in Section 3. For example we did not say how to compute a set of restricted P4’s
used in Lower Bound 1. It is clear that ideally we would like to find such a set with maximum
size. This is likely an NP-hard problem (refer to Itai et al. [25]), which is why in a practical
implementation we would rather have a fast heuristic that offers good results in most cases. We
will now discuss heuristics used in our solver (see Section 5 for corresponding experimental results)
and other implementation challenges of interest.

Determining the Minimum 2-Club Vertex Deletion Set Size. In order to find the min-
imum 2-club vertex deletion set size we simply try increasing values for the budget k, as can be
seen in Algorithm 1. Naturally, our solver also outputs the 2-club vertex deletion set that was
found.
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Algorithm 1 Finding a minimum 2-club vertex deletion set.

Input: An undirected graph G = (V,E)
Output: A minimum 2-club vertex deletion set of G
1: initialize the weight function w with w(v) = 1 for each v ∈ V
2: (G′,∞, F ′, w′) ← apply data reduction rules to (G, k =∞, F = ∅, w)
3: k ← lower bound(G′, w′, F ′)
4: while (G′, k, F ′, w′) is a no-instance of Gen2CVD do // Algorithm described in Section 3
5: k ← k + 1

6: return found solution of size k

Branching Rule 1. This is the branching rule that allows us to mark some vertices as permanent
and to skip branches in which a permanent vertex would have been deleted (see Section 3.1). It
also allows us to freely choose any restricted P4 to branch on. It is highly advantageous to choose
a P4 that contains permanent vertices because for each permanent vertex we are allowed to skip
one out of a total of four branches. For this reason we select a restricted P4 that contains the most
permanent vertices, and if there is more than one, then we select the one in which the average
weight of non-permanent vertices is the highest (ties broken arbitrarily) because then on average k
is decreased by a larger value in the branches and thus the search tree is smaller.

Handling Multiple Connected Components. Each connected component can be solved sep-
arately, potentially reducing the search space drastically. However, we do not know how to dis-
tribute the budget k among these components. As in Algorithm 1, we try to solve each component
with as little budget as possible, first trying small values for k and then increasing it by one each
time. An improvement is to sort all components by size and when solving the last component to
give it all remaining budget, which prevents us from trying many different k-values for the last
component. In a single iteration, this is a only a minor improvement. However, the effect is much
more noticeable when the graph repeatedly decomposes into one large component and a few smaller
ones.

Disjoint Restricted P4’s. Reduction Rule 2 allows us to delete a vertex v if there is a multiset P
of k + 1 restricted P4’s that each contain v, but otherwise each vertex u can only be present in at
most w(u) many restricted P4’s. We would like to find a maximum set P and then test if its size
is at least k + 1. However, this proved to be quite challenging. For our implementation we use a
heuristic that does not guarantee finding a maximum set.

We focus on finding a maximum set that only contains those restricted P4’s that start in
vertex v. This means we do not try to find P4’s where v might be in the “middle” (see Fig. 4).
This can then be modeled as a simple maximum flow problem, see Algorithm 2 for pseudo code.
Because for a restricted P4 stuv the distance from v to u, t, and s is one, two and three,

respectively, we partition the vertices in the graph into three sets D1, D2, D3. No restricted P4 can
contain two vertices from the same Di, which is why our flow graph only contains edges from Di

to Di+1. We make sure that a vertex u is part of at most w(u) many P4’s by splitting it into two
vertices connected by an edge with w(u) capacity. As a result there can be only flow along paths
of type suin

1 uout
1 uin

2 uout
2 uin

3 uout
3 t, and sending a flow of value 1 along such a path means adding the

restricted P4 vu1u2u3 to P. The final maximum flow in Gflow does not uniquely identify a set P;
however, the value of the maximum flow tells us the size of all maximum size P’s. Because we are
only interested in the size of the set P, this is all we need.
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Algorithm 2 Heuristic for Reduction Rule 2

Input: A graph G = (V,E), with a weight function w, a vertex v and k ∈ N
Output: true if Reduction Rule 2 can be applied to remove v from G
1: Create a directed graph Gflow containing only the vertices s and t
2: for each i ∈ {1, 2, 3} // Split vertices into layers based on distance
3: Di ← all vertices with distance i to v in G
4: for each u ∈ D1 ∪D2 ∪D3 // Limit flow through a vertex
5: add the vertices uin and uout to Gflow

6: add the edge (uin, uout) with a capacity of w(u) to Gflow

7: for each u ∈ D1 // Connect layer 1 to source
8: add the edge (s, uin) with infinite capacity to Gflow

9: for each i ∈ {1, 2} // Connect the layers
10: for each u ∈ Di

11: for each x ∈ Di+1 with {u, x} ∈ E
12: add the edge (uout, xin) with infinite capacity to Gflow

13: for each u ∈ D3 // Connect layer 3 to sink
14: add the edge (uout, t) with infinite capacity to Gflow

15: f ← maximum s-t flow in Gflow

16: if f > k then return true

17: return false

Disjoint Restricted P4’s Lower Bound. Here we use a multiset P of restricted P4’s such that
each vertex v is present in at most w(v) many restricted P4’s. The size of this set is then the lower
bound. We compute the set P using a greedy heuristic. Each vertex has a counter initialized with
the value of its weight. This counter keeps track of how many times this vertex can be used in
a restricted P4. We iterate over all vertices in V by increasing degree and for each vertex s we
look for a restricted P4 stuv such that for all four vertices of this P4 their counter is positive. The
restricted P4 is not chosen randomly, but rather we select a P4 that minimizes the sum of degrees
of its vertices. Finding such a P4 takes O(n+m) time. The P4 stuv is then implicitly added to P
by decrementing the counter for s, t, u and v by one. If the counter for s remains positive, then we
repeat this step and search for another P4.

The reason for minimizing the sum of the degrees is that selecting a P4 which contains many
high-degree vertices might overlap with—and therefore likely exclude—many other restricted P4’s
(see Fig. 7).

5 Experimental Evaluation

In this section, we present experimental results for our Gen2CVD solver. In Section 5.1, we
describe the used solvers and their configurations. In Section 5.2, we discuss our biological dataset.
Then in Section 5.3, we describe our experiments.

5.1 Setup

We implemented our branch&bound algorithm (see Sections 3 and 4) for Generalized 2-Club
Cluster Vertex Deletion in C++ (we use the algorithm to solve 2-Club Cluster Vertex
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Figure 7: Two maximal sets of disjoint restricted P4’s in the same graph, the corresponding
restricted P4’s are represented by gray paths. The restricted P4 on the left contains the highest
degree vertices, each of which could have been in its own disjoint restricted P4 like on the right.
Our heuristic for Lower Bound 1 (see Section 3.3) prevents such a bad case.

Deletion).4 This solver (called solverALL in the following) computes a 2-club vertex deletion
set size of minimum cost and outputs the solution set. It uses all data reduction rules described
in Section 3.2 and Lower Bound 1.5 Note that the implementations of some data reduction rules
and lower bounds are based on heuristics; see Section 4 for details.

We will compare the performance of our solver against the ILP formulation from Section 3
solved using CPLEX (we will refer to this solver as CPLEX). All experiments were run on a machine
with an Intel Xeon W-2125 8-core, 4.0 GHz CPU and 256GB of RAM running Ubuntu 18.04. We
used a recent version of CPLEX, 12.8, for our experiments. Analogously to previous work for the
related Cluster Editing [6], we focus on implementations computing optimal solutions. Thus,
we also require CPLEX to compute optimal solutions.

We use mostly default parameters and only set mip tolerances mipgap and absmipgap to zero
and enabled emphasis numerical. CPLEX can use up to 32 threads by default. Even though we
had 8 cores available, in our experiments CPLEX usually only used four. This is an advantage of
CPLEX, because our solver was only written to use a single thread. Our solver only needs up to
20MB of RAM, but we have seen CPLEX to use even 30GB and more of RAM on the instances
described in Section 5.2. For the running time measurements of our solver and CPLEX we used
wallclock time. For running time measurements of CPLEX we excluded the time it takes to build
the ILP model, which can have Θ(n4) constraints. For instances with 250 vertices this process can
take 20 seconds, and sometimes even 60. However, in the vast majority of cases, the build time
was at most 30% of the total running time.

5.2 Dataset

For our analysis we used a real-world biological dataset6 that has been used for the evaluation
of Weighted Cluster Editing solvers [5, 34]. The vertices in the graphs represent protein
sequences and between each pair of vertices there is an edge whose weight represents some sort of
similarity of the proteins. The edge weights can be positive or negative.

4The source code is available at https://fpt.akt.tu-berlin.de/software/two-club-editing/

two-club-vertex-deletion.zip and includes the source code for the ILP formulation using CPLEX.
5Our implementation of Lower Bound 2 in Section 3.3 was far too slow in order to be of use.
6The dataset is available at https://bio.informatik.uni-jena.de/data/#cluster_editing_data

https://fpt.akt.tu-berlin.de/software/two-club-editing/two-club-vertex-deletion.zip
https://fpt.akt.tu-berlin.de/software/two-club-editing/two-club-vertex-deletion.zip
https://bio.informatik.uni-jena.de/data/#cluster_editing_data
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Figure 8: Two graphs showing the number n of vertices in blue (lower line) and the number m
of edges in red (upper line) in the Bio33 (left) and Bio50 (right) instances (on a log-scale). The
instance numbers for the Bio33 and Bio55 instances were selected such that the number of edges
increases with the instance number. There are about 15 instances with more than 500 vertices,
the largest of which has nearly 9000 vertices.

A graph with weighted edges does not match the input of 2-Club Cluster Vertex Dele-
tion. Hartung and Hoos [21] used the following conversion for their (unweighted) Cluster Edit-
ing solver: first sort the edges by descending weight, keep the first c% of edges for some c ∈ [0, 100]
and discard their weight. We additionally delete degree zero vertices from the graphs. Hartung and
Hoos [21] used the values c = 33, c = 50, and c = 66, which is also what we did, and they obtained
three datasets, which we will refer to as Bio33, Bio50 and Bio66, respectively. Our experiment
results for Bio66 are fairly similar to Bio50, which is why we will only discuss results for Bio33 and
Bio50.

The Bio33 and Bio50 datasets each contain 3964 instances. See Fig. 8 for the number of vertices
and edges in the instances. The “noise” in the number of vertices is a result of deleting degree-zero
vertices from the graphs. In Fig. 8 we can see that these datasets contain many instances with less
than 50 vertices and a few with around 8000 vertices. Our results show that the vast majority of
instances with less than 100 vertices can be solved within less than a second. For this reason we
focused on the harder instances. From each dataset we only kept instances with 50–250 vertices.
(On the larger instances the main memory of 256GB in our machine was insufficient for solving
the ILP.) After this filtering, Bio33 contains 430 instances, whereas Bio50 contains 446 instances.

5.3 Results

We next analyze the performance of our solver in detail. To this end, we start with comparing
the theoretical bounds with the results of our experiments. The number of branches in our search
tree is far below the theoretical worst-case bound of 4k (even far below the 3.31k bound of the
search tree of Liu et al. [30]) given in Proposition 3 (see Fig. 9). This is a clear indication that the
data reduction rules and lower bounds have a strong impact on our solver. Another observation
derived from Fig. 9 is that the impact of the number of input graph vertices on the running time
is quite significant. The reason for this is the high polynomial running time for executing the
data reduction rules and computing lower bounds: Our best upper bound on the running time (in
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Figure 9: Diagrams illustrating the impact of k and n on the running time and number of branches
(that is, number of times the branching function is called). All four diagrams use the same scale
on the y-axis. The diagrams on top of each other also use the same x-axis. The values on the
x-axis are the optimal solution size (left two diagrams) and number of input graph vertices (right
two diagrams). The top two diagrams show the results for the Bio33-instances; the bottom two
for the Bio50 instances.

terms of n) of one recursive step (including data reduction and lower bounds) is O(n4). One of
the bottlenecks in the running time is Reduction Rule 2, where we solve up to n maximum flow
instances. We show subsequently that the high running-time cost for the data reduction rules is
justified.

Fig. 9 also displays that the Bio33 instances are in general harder for our solver than the Bio50
instances. The reason for this is that the Bio50 instances are more dense and allow to cluster into
less 2-clubs of larger size with fewer vertex removals.

Comparisons. We next compare our solver solverALL to several variants of itself where we
deactivate key features, and to CPLEX. The comparisons are illustrated in Fig. 10. The first row of
plots in Fig. 10 shows that if we deactivate the data reduction rules, then the performance becomes
much worse, especially on the harder instances that require more than 10 seconds to solve. On
average, solverALL (with all data reduction rules) is 6.7 times faster on the Bio33 instances and
3 times faster on the Bio50 instances than our solver without data reduction rules. This is in
stark contrast to the kernelization lower bound given in Theorem 2 and gives hope to find small
parameters based on which one may perform a mathematical analysis yielding polynomial kernel



JGAA, 25(1) 521–547 (2021) 541

10−2

10−1

100
101
102
103

w
/
o
r.

ru
le
s
[s
]

Bio33 Bio50

10−2

10−1

100
101
102
103

w
/o

p
er
m
.
[s
]

10−2

10−1

100
101
102
103

w
/
o
l.
b
o
u
n
d

10−2 10−1 100 101 102 103
10−2

10−1

100
101
102
103

solverALL [s]

C
P
L
E
X
[s
]

10−2 10−1 100 101 102 103

solverALL [s]

Figure 10: Running time comparison (in seconds) of different configurations of our solver and
CPLEX on two datasets (left: Bio33, right: Bio55). Each cross represents one instance with the x-
and y-coordinates indicating the running time of the respective solver (in seconds). Thus, a cross
above (below) the solid diagonal indicates that the solver on the x-axis (y-axis) is faster on the
corresponding instance. The diagonal lines mark running time factors of 1 (solid), 5 (dashed)
and 25 (dotted). Crosses on the solid horizontal red line (at 3600 seconds) indicate timeouts. In
each plot the running time of our solverALL is displayed at the x-axis. The y-axis shows in each
row of the plots a different solver; these are from top to bottom: Three configurations of our solver
where certain features are disabled (first all data reduction rules, then permanent vertices with
the corresponding data reduction rules that require permanent vertices (Reduction Rules 5 to 8),
finally without Lower Bound 1). The last row shows the comparison against CPLEX.
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sizes.

The plots in the second row of Fig. 10 show the effect of turning off permanent vertices and
the corresponding data reduction rules (Reduction Rules 5 to 8). Note that in the Bio50 dataset
the variant without permanent vertices is faster on most instances, very likely due to Reduction
Rule 7 being an expensive data reduction rule. However, the results for the Bio33 dataset show a
different picture. In fact, one can see in both data sets that turning off the feature of permanent
vertices solves the easier instances even faster and slows down the solver on the harder instances.
The lack of “hard” instances in the Bio50 dataset (see also Fig. 9) is the reason for the variant
without permanent vertices being faster there. On average, solverALL (with permanent vertices)
is 5 times faster on the Bio33 instances but 1.6 times slower on the Bio50 instances.

The plots in the third row of Fig. 10 show that the impact of Lower Bound 1 is much smaller
than the impact of the data reduction rules and the permanent vertices. While the solverALL

is faster on most instances, the gap does not improve for the harder instances as in the previous
two comparisons (see row one and two in Fig. 10). On average, solverALL (with lowerbounds) is
1.4 times faster on the Bio33 instances and 1.5 times faster on the Bio50 instances. This indicates
that the data reduction rules and permanent vertices are more impactful than Lower Bound 1.

The plots in the last row of Fig. 10 show that our solver is almost always faster than CPLEX
by a factor of 5–25 for Bio33 and a factor of 25–100 for Bio50. On average, solverALL is 29.3 times
faster on the Bio33 instances and 103.6 times faster on the Bio50 instances. For Bio33 it appears
that for harder instances CPLEX is not much slower than our solver. On Bio50, CPLEX does very
poorly compared to our solver. This is likely due to the minimum 2-club vertex deletion set size
(the parameter in our FPT-algorithm) on these graphs being smaller than for Bio33. Moreover, the
process for building the ILP model for CPLEX is usually fairly fast, but for larger instances it can
take up to 60 seconds. For example, in Bio50 there is a graph with 205 vertices and 10455 edges
which is already a 2-club cluster graph. It takes about 50 seconds to create the ILP model, and
when exported to a file it takes up to 1.6GB (uncompressed) and includes 5.8 million constraints,
whereas the original graph only takes up 72kB stored in an edge list format.

Summarizing, our solver outperforms a standard ILP-formulation solved with CPLEX. To this
end, good data reduction rules are crucial to the practical performance of our solver. Testing
whether the performance of the ILP can be improved by the use of data reduction and row gener-
ation approaches remains a task for future work.

2-Club Cluster Vertex Deletion Solutions. In Fig. 11 (top row) we compare the sizes of a
minimum cluster vertex deletion set (CVD) and a minimum 2-club vertex deletion set (2CVD) on
our datasets. For Bio33 there is a much stronger correlation between these two values than for
Bio50. For Bio33 the CVD solution size is around 2–4 times larger than the 2CVD solution size,
but on many Bio50 instances the CVD solution size can be very large while the 2CVD solution
size is below five.

We next compare the number of clusters created by both problems, as shown in the bottom row
of Fig. 11. As expected, the 2CVD solution creates for most instances much less clusters (while
deleting fewer vertices). Note that all solvers we employ compute minimum-size solutions where
the number of clusters is not optimized. Thus, if there are multiple optimal solutions that create a
different number of clusters, then we have no control which optimal solution is picked. We believe
that this issue causes two instances (one Bio33 and one Bio50 instance) having a smaller number
of clusters when using the CVD solution (see the two points above the solid line in Fig. 11).
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Figure 11: Comparison of the solution size (top row) and cluster size for Cluster Vertex
Deletion (=̂1-Club Cluster Vertex Deletion) and 2-Club Cluster Vertex Deletion
for two datasets (left: Bio33, right: Bio55). The solid line is y = x, and the dashed ones are y = 0.5x
and y = 0.25x

6 Conclusion

We investigated the NP-hard task of modifying graphs into 2-club cluster graphs. While we proved
W[2]-hardness for 2-Club Cluster Editing parameterized by the solution size, for 2-Club
Cluster Vertex Deletion we faced a somewhat more positive complexity behavior, includ-
ing both fixed-parameter tractability and a no-polynomial-size problem kernel result. Indeed, the
results for 2-Club Cluster Vertex Deletion were promising enough to further study the po-
tential of algorithms to be used in applications. Indeed, we developed and engineered a competitive
branch&bound algorithm algorithm for the fixed-parameter tractable 2-Club Cluster Vertex
Deletion problem.

On the theoretical side, we left open whether our “no-poly-kernel” result for 2-Club Cluster
Vertex Deletion parameterized by solution size transfers to the closely related 2-Club Clus-



544 Figiel et al. On 2-Clubs in Graph-Based Data Clustering

ter Edge Deletion problem, a further open problem from the literature [9, 30]. Moreover, it
would be interesting to see whether our results also generalize to using s-clubs with s ≥ 3. As to
other 2-club-related graph modification problems deserving to be studied, one could consider over-
lapping clusters [16] or use stricter 2-club models such as well-connected 2-clubs [28, 39]. Limiting
the number of local manipulations [29] is another restriction worthwhile investigations. On the
empirical and algorithm engineering side, note that while our solver showed strong performance
when working with biological data, preliminary experiments showed that this is less so when at-
tacking social network data: Our solver successfully dealt with only five of the 58 test instances
taken from the 10th DIMACS challenge [10] whereas the ILP solved 10 of these instances. In each
of the five instances the practically measured search tree size of our solver was lower than 2k (as
in the biological data set). While these bounds are better than the best known theoretical bounds
for 2-Club Cluster Vertex Deletion from Liu et al. [30], these instances are considerably
larger than the biological data and thus the polynomial overhead is too large (see also Fig. 9). A
further extended algorithm engineering effort with a focus on large sparse graphs seems necessary
to tackle these instances.

Acknowledgment. We thank the anonymous reviewers for their valuable feedback.
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