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Abstract. The resolution of a drawing plays a crucial role when defining criteria
for its quality. In the past, grid resolution, edge-length resolution, angular resolution
and crossing resolution have been investigated. In this paper, we investigate the stub
resolution, a recently introduced criterion for nonplanar drawings. Intersection points
divide edges into parts, called stubs, which should not be too short for the sake of
readability. Thus, the stub resolution of a drawing is defined as the minimum ratio
between the length of a stub and the length of the entire edge, over all the edges of the
drawing. We consider 1-planar graphs and we explore scenarios in which near optimal
stub resolution, i.e., arbitrarily close to 1

2 , can be obtained in drawings with zero, one or
two bends per edge, as well as further resolution criteria, such as angular and crossing
resolution. In particular, our main contributions are as follows: (i) Every IC-planar
graph, i.e., every 1-planar graph with independent crossing edges, has a straight-line
drawing with near optimal stub resolution; (ii) Every 1-planar graph has a 1-bend
drawing with near optimal stub resolution.
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(a) (b)

Figure 1: Two RAC drawings of the same 1-planar graph. The drawing in (b) has better stub
resolution (equal to 1

2 ) than the one in (a).

1 Introduction

The question of drawing graphs with high resolution is one of the most prominent when it comes
to better understanding of a diagram. We quote from an early graph drawing tutorial by Cruz and
Tamassia (1994): “Display devices and the human eye have only finite resolution”. This viewpoint
inspired the convention to use an underlying integer grid for the drawings, which guarantees a
certain minimum distance between any two vertices, as well as criteria like the ratio between the
shortest and the longest edge (known as edge-length resolution) [37].

The angular resolution of a drawing is the minimum angle that occurs at a vertex (often called
vertex angle). This branch has been started by Formann et al. [27]. Important contributions on
planar graphs have been made by Malitz and Papakostas [38], and by Duncan and Kobourov [25].
An early work by Di Battista and Vismara [19] characterized the realizability of planar straight-
line drawings for a given set of vertex angles and lead the way for the minimization of the largest
vertex angle. Special graph classes, e.g., trees, allow more direct approaches to get a good angular
resolution, especially with respect to the used area (see, e.g., [24, 28]). From there, the research
line on the planar slope number developed, where only a fixed set of slopes can be used to draw
the edges of a graph. While this approach does not lead to good angular resolution for planar
straight-line drawings [35], Angelini et al. [3] showed how to compute planar drawings with one
bend per edge using a set of slopes that guarantees asymptotically optimal angular resolution.

Huang et al. [30] experimentally showed the detrimental effect on readability when crossing
angles are “sharp”. This, together with the seminal paper by Didimo et al. [21], started a line of
research on nonplanar graph drawings where sharp angles are forbidden, i.e., with good crossing
resolution. The ultimate goal are right-angle crossing (RAC) drawings, where crossing edge seg-
ments always form right angles. Angelini et al. [4] studied the effect of drawing planar graphs with
large or right crossing angles. Di Giacomo et al. [20] considered RAC drawings on 2 parallel lines.
Most notably on the RAC model are the results on maximum edge density when allowing zero,
one or two bends per edge [7, 21], as well as the NP-hardness result by Argyriou et al. [5].

Vertex and crossing resolutions have been considered together only for very restricted types of
graphs and drawings [6, 22], and more recently in terms of edge density and recognition [1].

In this paper we investigate a recent criterion for nonplanar drawings, called stub resolution [33].
Intersection points divide edges into parts, called stubs, which should not be too short to guarantee
adequate readability. Hence, the stub resolution of a drawing is defined as the minimum ratio
between the length of the shortest stub of an edge and the length of the entire edge. As we
indicate in Figure 1, not only is the crossing resolution helpful for the sake of readability, but good
stub resolution is essential as well. An earlier research direction in the same spirit is partial edge
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drawing (see, e.g., [9, 11, 12, 13, 14, 15, 16, 31]), which follows the idea that for the effective display
of a crossed edge, only long enough end segments are important, while the crossings might lead to
visual clutter and could be omitted. Similar optimization problems are also studied in [26].

Contribution and paper organization. After a formal introduction of the model and an
overview of our approach (Section 2), we consider 1-planar graphs as a meaningful graph class
where crossings are naturally involved. A graph is 1-planar if it can be drawn with at most one
crossing per edge (refer to [36] for a survey). This family of graphs is among the most investigated
ones in the rapidly growing literature about graph drawing beyond planarity [23]. A natural
question is whether 1-planar graphs admit 1-planar drawings with bounded stub resolution. As a
preliminary result, we proved in [33] that a class of maximal 1-planar graphs allows straight-line
1-planar drawings with stub resolution 1

5 .
Our contribution is as follows.

1. We first study 1-planar straight-line drawings (Section 3), and we show that stub resolution
equal to 1

2 (i.e., optimal) cannot be always achieved, while stub resolution arbitrarily close
to 1

2 is possible for IC-planar graphs, i.e., for 1-planar graphs with independent crossings.

2. We then study 1-planar drawings with at most one bend per edge (Section 4), and we show
that stub resolution arbitrarily close to 1

2 , or angular resolution that is lower bounded by a
function of the maximum vertex degree of the graph (similar as the one in [38]) is always
possible. Note that the study of 1-bend drawings is also motivated by the fact that there exist
1-planar graphs that do not admit a 1-planar straight-line drawing [29, 40], while 1-planar
1-bend RAC drawings exist for all 1-planar graphs [8, 17].

3. Finally, we study 1-planar drawings with at most two bends per edge (Section 4), and we
show that stub resolution arbitrarily close to 1

2 and right-angle crossings can be achieved
simultaneously.

2 Preliminaries and Proof Strategy

Drawings and embeddings. We consider simple undirected graphs. A drawing Γ of a graph G
maps the vertices of G to distinct points in the plane and the edges of G to simple Jordan arcs
connecting their endpoints. Γ is planar if no edges cross, and 1-planar if each edge is crossed at
most once. Γ is IC-planar if it is 1-planar and there are no two crossed edges that share a vertex
(i.e., the set of crossing edges is a matching in G). A graph G is planar (1-planar, IC-planar)
if it admits a planar (respectively, 1-planar, IC-planar) drawing. In the following, we shall not
distinguish between a vertex (an edge) of G and its corresponding point (arc) in Γ.

A planar drawing Γ of a graph G induces an embedding, which is the class of topologically
equivalent drawings. In particular, an embedding specifies the regions of the plane, called faces,
whose boundary consists of a cyclic sequence of edges. The unbounded face is called the outer
face. For a 1-planar drawing, we can still derive an embedding by allowing the boundary of a face
to consist also of edge segments from a vertex to a crossing point. A graph with a given planar
(1-planar, IC-planar) embedding is called a plane (1-plane, IC-plane) graph. A kite K = {a, b, c, d}
is a graph isomorphic to K4 with an embedding such that there is a crossing-free 4-cycle ⟨a, b, c, d⟩,
and the two edges (a, c) and (b, d) cross inside this cycle; see Figure 2(a). Let G be a 1-plane graph,
and let K = {a, b, c, d} be a kite such that K ⊆ G. K is an empty kite, if there is no vertex of G
inside the 4-cycle ⟨a, b, c, d⟩. An outer kite K = {a, b, c, d} is a graph isomorphic to K4 with an
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Figure 2: (a)-(b) Crossing configurations. (c) Unique 1-planar embedding of K5.

embedding such that there is a crossing-free 4-cycle ⟨a, b, c, d⟩, and the two edges (a, c) and (b, d)
cross outside this cycle; see Figure 2(b).

Drawing resolutions. A drawing Γ of a graph G is straight-line if all edges are segments, while
it is b-bend (b > 0) if each edge is a polyline with at most b + 1 line segments. Drawing Γ
is right-angle crossing (RAC) if the angles at any crossing point are right angles. The angular
resolution of Γ is the minimum angle that any two incident edges form at a vertex. Note that for
a graph with maximum vertex degree ∆, the angular resolution cannot be greater than 2π

∆ . We
recall the following result concerning the angular resolution of planar drawings. A planar graph is
triangulated if it is maximal, i.e., it has 3n− 6 edges over n vertices.

Lemma 1 (Theorem 2.2 in [38]) Every triangulated planar graph with maximum vertex degree
∆ admits a planar straight-line drawing with angular resolution Ω(0.15∆).

We shall assume (and ensure) that no more than two edges cross at any point of a drawing Γ.
An edge e of Γ that is crossed k times is divided into k + 1 parts called stubs. Let le and se be
the length of e and of its shortest stub, respectively. The stub resolution of e is sre =

se
le
. The stub

resolution of Γ is the minimum stub resolution over all edges of Γ, i.e., srΓ = mine∈Γ sre. The next
observation follows immediately.

Observation 1 A drawing in which the maximum number of crossings per edge is k ≥ 0 has stub
resolution at most 1

k+1 .

3 Straight-line Drawings

We first show that K5 has no 1-planar straight-line drawing with optimal stub resolution, and so
this is the case for any 1-planar graph having K5 as a subgraph.

Observation 2 Let Γ be a 1-planar straight-line drawing of a graph G with srΓ = 1
2 , and let (a, c)

and (b, d) be a pair of edges crossing in Γ. Then vertices a, b, c, d form a parallelogram in Γ.

Lemma 2 Let Γ be a straight-line drawing of K5. Then srΓ < 1
2 .

Proof: As K5 is not planar, Γ contains at least one crossing. Let k > 0 be the maximum number
of crossings per edge in Γ. If k ≥ 2, the statement follows by Observation 1. Suppose that
k = 1, and assume for a contradiction that srΓ = 1

2 . As shown by Suzuki[39], there is a unique
1-planar embedding of K5 (up to the choice of the outer face), which is depicted in Figure 2(c).
Note that vertex e is drawn outside the quadrilateral Q representing the 4-cycle ⟨a, b, c, d⟩ in Γ.
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Also, to realize the edges incident to e as straight-line segments, the quadrilateral Q cannot be a
parallelogram, which contradicts Observation 2. □

The next theorem proves that IC-planar graphs can be realized with 1-planar straight-line
drawings with worst-case optimal stub resolution. We remark that IC-planar graphs also admit
straight-line RAC drawings [10].

Theorem 1 Every IC-planar graph G has a 1-planar straight-line drawing Γ with stub resolution
srΓ = 1

2 − ε, for any fixed ε > 0.

Proof: If G is a subgraph of K5, the statement immediately follows as we can use the embedding
of Figure 2(c) and draw ⟨a, b, c, d⟩ almost as a square (placing vertex e sufficiently far). Hence, we
assume that G has at least six vertices. Start from an IC-planar embedding of G = (V,E) and use
the transformation by Brandenburg et al. [10, Lemma 1] to obtain a 3-connected planar-maximal
IC-plane graph G′ = (V,E′) with E ⊆ E′ such that each pair of crossing edges induces an empty
kite (hence there is no outer kite) and all faces are triangles. (Such transformation is based on the
rerouting of edges that form so-called B-configurations in the embedding, and on the triangulation
of large faces.)

We prove that G′ admits a 1-planar straight-line drawing Γ′ with stub resolution 1
2 − ε, with

the additional property that the outer face of Γ′ is a prescribed triangle T . Removing the edges in
E′ \E from Γ′ cannot decrease the stub resolution of the drawing, and hence the drawing obtained
by removing these edges is the desired representation of G.

The proof is by induction on the number of empty kites (recall that each kite of G′ is empty
due to the applied transformation). In the base case G′ has no empty kites, thus G′ contains no
crossings, i.e., it is a plane graph. Then we can apply the algorithm by Chiba et al. [18] to compute
a planar straight-line drawing Γ′ of G′ such that the outer face of G′ corresponds to the prescribed
triangle T . By induction, if G′ has k ≥ 0 empty kites, then our claim holds. We shall prove that
the claim still holds in the case where G′ has k + 1 empty kites. We first distinguish two cases,
based on whether G′ contains a separating triangle or not.

CASE A: G′ contains a separating triangle C = {a, b, c}. We claim that the three edges of
C are all crossing-free or they can be redrawn (interpreting an embedding as a drawing) to be
crossing-free. Suppose for a contradiction that one edge of C, say (b, c), is crossed and it cannot
be redrawn without crossings. Observe that in this case no other edge of C is crossed, as otherwise
G′ would not be IC-plane. Let c1 and c2 be two components of G′ \ C such that c1 contains the
edge that crosses (b, c). Since the other two edges of C are not crossed, c2 lies completely inside or
outside the closed curve defined by C. Consider the face of c2 ∪C that contains (b, c) and an edge
of c2. Since we cannot reroute edge (b, c) inside this face without creating new crossings, it means
that an edge of c2 is crossed by an edge of another component. Hence there exists a kite merging
the two components; contradicting the fact that the two components are distinct. Denote by Cin

(Cout) the subgraph of G′ that lies in the interior (exterior) of C. Note that C is the outer face (an
empty face) of Cin (Cout). If Cout has no empty kites, then we draw it with the algorithm of Chiba
et al. [18] inside the prescribed triangle T . Note that Cin contains k + 1 empty kites, and it must
be drawn inside the triangle defined by C, that is, we can assume that G′ corresponds to Cin, and
that the prescribed triangle T is C. Similarly, if Cin has no empty kites, then we assume that G′

corresponds to Cout and that it must be drawn inside the prescribed triangle T . Once we obtain
a drawing of Cout, we can again use the algorithm of Chiba et al. [18] for Cin with the drawing of
C as prescribed outer face. By the above discussion, we can assume that both Cin and Cout have
at least one empty kite. Then by the induction hypothesis Cout and Cin can be drawn with stub
resolution 1

2 − ε, as desired.
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CASE B: G′ has no separating triangles. We distinguish two further cases depending on
whether there exists an empty kite K such that none of its edges is part of the outer face of G′ or
not. Note that if an edge of K belongs to the outer face of G′, then this edge is not crossed.

CASE B.1: Suppose first that G′ contains an empty kite K = {a, b, c, d} such that none of its
crossing-free edges belongs to the outer face of G′. Let f1, f2, f3, and f4 denote the faces incident
to the crossing-free edges of K (refer to Figure 3(a)). Recall that these faces are triangles, and
denote as vi the vertex of fi that does not belong to K, for i = 1, 2, 3, 4. Some of these vertices can
coincide, but no three of them can be the same vertex, otherwise K would be a K5 in G′ and there
would be a separating triangle in G′ (recall that no edge of K belongs to the outer face of G′).
For the same reason, and because G′ is IC-plane, any crossing-free edge of K belongs to at most
one triangle of G′, and this triangle is a face of G′ distinct from the outer face. The general idea
is that we collapse K into a single vertex r. The derived graph G′′ has fewer empty kites than G′

and therefore we can obtain a drawing Γ′′ of G′′ with stub resolution 1
2 − ε and straight-line edges,

inside the prescribed triangle T . Then, we can reinsert the kite as a parallelogram and connect its
vertices to their neighbours with crossing-free straight-line segments; to this aim, we distinguish
three main cases, based on whether some of v1, . . . , v4 coincide. Note that, in order to reinsert kite
K as a parallelogram, it may need to be scaled down to an appropriate size.

Case 1: None of v1, . . . , v4 coincide; refer to Figure 3. We distinguish two subcases depending
on the largest angle between any two edges at r. Without loss of generality, the largest angle is
between rv1 and rv2.

v1

v2

v3

v4

a

b c

d
f1

f2

f3

f4

(a) Configuration for case 1.

v1

v2
v3

v4

r

v1

v2
v3

v4
a

b

c

d

(b) Case 1a: the largest angle is at most π.

v1

v2

v4

v3
r

v1

v2

v4

v3
c

b
a

d

(c) Case 1b: the largest angle is
greater than π.

Figure 3: Case 1: None of the vertices coincide.

a) The largest angle at vertex r is at most π. Vertex c is placed at the position of r. The edge
(c, d) of the parallelogram is placed on the line rv1, the edge (c, b) on rv2. The length of (c, d)
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and (c, b) can be the same and sufficiently small so that the reinserted parallelogram does not
cross any other edge.

b) The largest angle is greater than π. Vertex a is placed at the position of r. Vertex c is placed on
the bisector of ∠v3rv4. We create a parallelogram so that its edges are parallel to the bisector
of ∠v1rv4, and the bisector of ∠v2rv3 (in particular vertex d is along the bisector of ∠v1rv4,
while vertex b is along the bisector of ∠v2rv3); see Figure 3(c).

In both subcases, we scale the parallelogram, so that it is empty, and so that faces f1, f2, f3
and f4 are also empty.

Case 2: Two of v1, . . . , v4 coincide, say v1 and v4; refer to Figure 4. We distinguish three subcases
depending on the largest angle between any two edges at r.

v1

v2

v3

a

b c

d

(a) Configuration for Case 2.

v1

v2 v3

r

v1

v2 v3

a

b
c

d

(b) Case 2a: the largest angle is at
most π.

v1

v2

v3 r

v1

v2

v3

a

b c

d

(c) Case 2b: the largest angle is
greater than π and v1 is adjacent
to this large angle.

v3

v1

v2 r

v3

v1

v2
a

b

cd

(d) Case 2c: the largest angle is
greater than π and v1 is not adja-
cent to this large angle.

Figure 4: Case 2: Two of the vertices coincide.

a) The largest angle is at most π; refer to Figure 4(b). Vertex b is placed at the position of r
and the diagonal bd of the parallelogram is placed on the line rv1. We place vertex a along the
bisector of ∠v1rv2, and vertex c along the bisector of ∠v1rv3.

b) The largest angle is greater than π and v1 is adjacent to this large angle. Then we assume that
the largest angle is between rv1 and rv3 (the case where the largest angle is between rv1 and
rv2 is symmetric); refer to Figure 4(c). Then vertex c is placed at the position of r. The edge
(b, c) of the parallelogram is placed on the line rv2 and vertex d along the bisector of ∠v1rv2.

c) The largest angle is greater than π and v1 is not adjacent to this large angle; refer to Figure 4(d).
Vertex b is placed at the position of r. The diagonal bd of the parallelogram is placed on the
line rv1. We place vertex a along the bisector of ∠v1rv2, and vertex c along the bisector of
∠v1rv3.
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Similarly as in the first case, in all subcases we may need to sufficiently scale the parallelogram.

v1

v2

a

b
c

d v1

v2

r

v1

v2

a

b
c

d

Figure 5: Case 3: Two pairs of vertices coincide.

Case 3: Two pairs of vertices coincide; refer to Figure 5. Vertex c is placed at the position of r.
The diagonal ac of the parallelogram is placed on the bisector of ∠v1rv2 (inside the angle that is
less than π). We place vertex d along the bisector of ∠v1ra, and vertex b along the bisector of
∠v2ra. Again we may need to sufficiently scale the parallelogram.

CASE B.2: Suppose now that every empty kite of G′ has a non-crossing edge on the outer
face of G′. Since every face of G′ is a triangle and G′ is IC-planar, it follows that in this case G′

has only one empty kite K = {a, b, c, d} so that an edge of K, say (c, d) belongs to the outer face of
G′; see Figure 6(a). Let e be the third vertex of the outer face of G′. Also, let u1 be the common
neighbor of vertices a and d, and u2 be the common neighbor of vertices b and c. Note that u1 and
u2 are distinct as otherwise there would be a separating triangle. Then, we contract edge (a, d) to
a single vertex w1 and edge (b, c) to vertex w2. After removing parallel edges, the derived graph
G′′ has no kites and remains fully triangulated. Hence, by the base case of our induction, we can
compute a planar drawing Γ′′ of G′′ with vertices w1, w2 and e on its outer face.

Suppose that edge (w1, w2) is drawn as a horizontal segment (up to a rotation of the drawing);
refer to Figure 6(b). We want to draw kite K = {a, b, c, d} as an isosceles trapezoid P with
|ab| < |cd| as its two parallel bases and so that a and b are drawn at the points of vertices w1 and
w2 in Γ′′. Consider vertex w1. In a clockwise traversal of the edges incident at w1 and starting
from edge (w1, e), first we encounter the neighbors of d in the same order as they appear in G′, and
once we encounter u1 the neighbors of a follow in the same order as they appear in G′. We need
to ensure that we can redraw the edges of d as straight-line segments and without introducing any
crossing in the drawing. Let C1(w1, r1) be a circle with center w1 and radius r1, for a value of r1
that is sufficiently small as explained below; refer to Figure 6(c). Consider the sector of C1 that
is bounded above by the line through w1 and w2 and the line through w1 and u1 (gray shaded
in Figure 6(c)). We choose r1 to be sufficiently small such that by drawing vertex d onto (the
middle of) the arc of this sector, we have that d can be connected to all its neighbors in G′ with
straight-line segments without introducing any new crossings (blue thick edges in Figure 6(c)).
Observe that such a choice is always feasible because as r1 decreases, the difference between the
slopes of the edges incident to d, and the slopes of the edges incident to w1 also decreases. A
similar argument holds for vertex w2. We draw a circle C2(w2, r2), where r2 is again sufficiently
small such that there exists an arc of C2 where we can draw vertex c and connect c to its neighbors
in G′ without introducing any crossings. Let r < min{r1, r2} and let ϕ be the smaller angle of the
two arcs (on C1 and C2). We draw an isosceles trapezoid P so that |ab| < |cd| are its two parallel
bases, and its base angles are equal to ϕ

2 ; refer to Figure 6(d). We draw edges (a, c) and (b, d) as
straight-line segments and let m be their crossing point. Since P is isosceles, we have that
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e

a b

u2u1

(a)

w1 w2

e

u2u1

(b)

w1 w2d

e

u2u1

(c)

d c
φ
2

φ
2m

e

u2u1

a b

(d)

Figure 6: Illustration for CASE B.2.

|am|
|mc|

=
|bm|
|md|

=
|ab|
|cd|

.

We want to prove that by appropriately choosing the radius r, the stub-resolution of edges
(a, c) and (b, d) is at least 1

2 − ε. Note that |ab| is fixed, while |cd| depends on the choice of r,

namely |cd| = |ab|+2r cos ϕ
2 . By setting r = 2ε′|ab|

(1−2ε′) cos ϕ
2

for some ε′ ≤ ε, with some manipulations

we obtain |ab| = |cd| 1−2ε′

1+2ε′ , and hence the stub-resolution is equal to 1
2 − ε′ ≥ 1

2 − ε, as desired. On
the other hand, by choosing ε′ small enough we can ensure that r < min{r1, r2} (observe that r
decreases as ε′ decreases). This concludes the proof of Theorem 1. □

4 Polyline Drawings

While there exist 1-planar graphs that do not admit a 1-planar straight-line drawing [29, 40],
every 1-planar graph has a 1-planar 1-bend RAC drawing [8, 17]. This section shows that for
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Figure 7: (a)–(e) Configurations of Lemma 3. (f) Configuration of Lemma 4.

1-planar 1-bend drawings, it is possible to optimize also the stub-resolution (Theorem 2), and the
angular resolution (Theorem 3). In particular, the main contribution of this section is the following
theorem.

Theorem 2 Every 1-planar graph has a 1-planar 1-bend drawing Γ with stub resolution srΓ ≥ 1
2−ε,

for any fixed 0 < ε < 1
2 . Furthermore all crossing-free edges are drawn straight-line.

The proof is based on a constructive argument that uses the next two technical lemmas as
building blocks.

Lemma 3 Let K = {a, b, c, d} be an empty kite and let P be a convex polygon with four corners.
There exists an embedding-preserving drawing Γ of K such that: i) srΓ = 1

2 ; ii) Vertices {a, b, c, d}
are placed at the corners of P; iii) The two crossing edges (a, c) and (b, d) are drawn with at most
one bend each, while the crossing-free edges are straight-line; iv) The bend point of one of the two
crossing edges is at the crossing point.

Proof: Let {A,B,C,D} be the corners of P. We start by placing vertices a, b, c, d at corners
A,B,C,D respectively, and draw the crossing-free edges of K on the boundary of P as straight-
line segments. Let BAC and BBD be the perpendicular bisectors of the diagonals AC and BD,
respectively. We consider two cases depending on whether BAC and BBD cross in the interior of
P or not.

If BAC and BBD cross in the interior of P at point O (refer to Figure 7(a)), we draw edge (a, c)
and edge (b, d) with a bend at point O. Since O ∈ BAC and O ∈ BBD, we have that |AO| = |OC|
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and |BO| = |OD|. Hence (a, c) and (b, d) cross at O with stub resolution equal to 1
2 . Furthermore,

the bend of both crossing edges is at their crossing point as claimed.
Suppose now that BAC and BBD cross in the exterior of P (note that they cannot be parallel

because P is convex); refer to Figure 7(c). In the following we prove that we can draw edges (a, c)
and (b, d) with one bend each so that: (i) the bend point, say O, of one of the two edges, say (a, c),
is along its bisector BAC , and (ii) edge (b, d) crosses (a, c) at O with stub resolution 1

2 . For the
sake of contradiction, suppose that this is not true. W.l.o.g. we can assume that bisector BAC

separates vertices A and D from vertex C (note that we do not make any assumption about the
relative position of vertex B and bisector BAC). We claim that we can also assume that BBD

separates B and C from D as in Figure 7(c). Suppose momentarily that this is not true, i.e., BBD

separates B from D and C; see Fig 7(b). This case is symmetric to the previous one, if we rename
points {A,B,C,D} as {B,C,D,A}.

Hence we have the configuration of Figure 7(c). This implies that for any point X of BAC in
the interior of P, bisector BBD separates X and B from D and |XB| < |XD| holds. Similarly, for
any point X ′ of BBD in the interior of P it is |X ′A| < |X ′C|. Furthermore, BAC and BBD both
cross the boundary edge CD of P.

Consider first the edge (a, c). Let O be the crossing point of BAC with CD and M its crossing
point with AC. For any point O′ ∈ MO we draw edge (b, d) as follows: we start from point D
with a straight line through point O′ until we cross diagonal AC, we add a bend point, say P ,
on AC and continue with a straight line up to B (see the thick green edge in Figure 7(c)). If
|DO′| < |O′P | + |PB|, we have that the midpoint of edge (b, d) is not on DO′. As we move the
bend point of (b, d) from P towards O′, the midpoint of (b, d) also changes, and when the bend
point coincides with O′ the midpoint of (b, d) is on DO′ (since |DO′| > |O′B|). Hence, one can
find a bend-point on O′P , so that the midpoint of (b, d) is O′ and the lemma holds.

Hence, we can assume that |DO′| > |O′P | + |PB| for any point O′ ∈ MO. For O′ = O the
bend point P coincides with C and we have |DO| > |OC| + |CB|. We draw the parallel of BAC

through point A that crosses the line defined by points C and D at point Q; refer to Figure 7(d).
We claim that point Q is between points C and D. Since triangle {A,C,Q} is similar to triangle

{M,C,O}, we have |QC|
|OC| = |AC|

|MC| = 2. This implies that |QO| = |OC|, and from the previous

inequality |DO| > |QO|, i.e., Q is between points C and D as claimed. In particular we have
that |DO| > |QO| + |CB| ⇒ |DQ| > |CB|. We also draw the perpendicular line of CD through
point A crossing CD at point Q′. From the orthogonal triangles {A,C,Q′} and {A,C,Q} we
have |CQ′| < |AC| and |AC| < |CQ|. Hence |CQ′| < |CQ| ⇒ |DQ′| > |DQ|. Considering the
orthogonal triangle {A,D,Q′} it is |AD| > |DQ′|. Combining the above:

|AD| > |DQ′| > |DQ| > |CB| ⇒ |AD| > |CB|. (1)

Arguing similarly for edge (b, d), we can either conclude that the lemma holds or that |CB| > |AD|
as shown in Figure 7(e), contradicting Equation 1. □

Lemma 4 Let K = {a, b, c, d} be an outer kite, let T = {A,B,C} be an isosceles triangle, and
let 0 < ε < 1

2 . There exists an embedding-preserving drawing Γ of K such that: i) srΓ = 1
2 − ε;

ii) Vertices {a, b, c, d} are placed at the corners of a trapezoid P such that its larger base coincides
with AB, and its smaller base is inside T ; iii) The two crossing edges (a, c) and (b, d) are drawn
with at most one bend each, while the crossing-free edges are straight-line.

Proof: Suppose that T is drawn so that its base AB is horizontal, and let ϕ be the value of its base
angles. We draw an isosceles trapezoid P = {A,B,D,E} so that DE < AB are its two parallel
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bases, and ∠B,A,D = ∠A,B,E = ϕ
2 ; refer to Figure 7(f). Vertices a, b, c, d of K are placed on

the corners A,B,E,D of P respectively, so that uncrossed edges of K are drawn on the boundary
of P as straight-line segments. In order to draw edge (a, c) we start from point E parallel to BC
until we cross AC at point A′, we bend at A′ and follow A′A up to point A. Edge (b, d) is drawn
symmetrically, and let F be the crossing point of (a, c) and (b, d). Since triangle T ′ = {D,E, F} is
similar to triangle T , the stub resolution of (a, c) and (b, d) is the same. Now edge (a, c) has two
stubs: the first one consists of segments AA′ and A′F , and the second one only of segment FE,
where |AA′| + |A′F | > |FE|. We want to prove that by appropriately choosing the height h of
trapezoid P, the stub-resolution of (a, c) is equal to 1

2 − ε. Since |A′F | = |A′C| the stub-resolution
equals |FE|

|FE|+|AC| . As cosϕ = |DE|
2|FE| =

|AB|
2|AC| we have

|AC|
|FE| =

|AB|
|DE| . Then the stub-resolution equals

|FE|
|FE|+|AC| =

1

1+
|AC|
|FE|

= 1

1+
|AB|
|DE|

= |DE|
|DE|+|AB| . For h = 2ε|AB|

1+2ε tan ϕ
2 , we have that |DE| = |AB| 1−2ε

1+2ε ,

and stub-resolution is equal to 1
2 − ε, therefore completing the proof. □

We first describe how to construct drawings for 3-connected 1-planar graphs, and then extend
our technique to all 1-planar graphs. We assume an embedding is given in input, although our
technique may need to change it.

Lemma 5 Every 3-connected 1-plane graph G has a 1-planar 1-bend drawing Γ with srΓ = 1
2 ,

except for at most one pair of crossing edges whose stub resolution is 1
2 −ε, for any fixed 0 < ε < 1

2 .
All crossing-free edges are drawn straight-line.

Proof: After possibly augmenting G with crossing-free edges and changing its embedding, we may
assume that all pairs of crossing edges of G induce an empty kite, except for at most one pair of
crossing edges that are part of the outer face and form an outer kite [2].

Let G′ be the plane graph obtained from G by removing all pairs of crossing edges. We say
that a quadrangular face f = {u,w, v, z} of G′ is marked, if (u, v) and (w, z) are two crossing edges
of G. We first compute a straight-line drawing Γ′ of G′ by using the algorithm of Chiba et al. [18].
The algorithm in [18] has two main properties. First, it produces a drawing in which all faces are
convex. Second, it allows to specify any convex polygon P to represent the outer face of the input
graph. We now describe how to specify the outer polygon. If the outer face of G′ is not marked,
then we can use any convex polygon. Else, the outer face of G′ is the 4-cycle of an outer kite K of
G. In this case we let T be any isosceles triangle, and we apply Lemma 4 to obtain a drawing of
K. This drawing fixes a trapezoid P for the four vertices of K, which we use as input polygon. It
remains to show how to reinsert all edges in G \G′ that belong to a marked inner face. For each
such face f = {u,w, v, z} of Γ′, we reinsert the pair of crossing edges (u, v) and (w, z) by applying
Lemma 3, where the convex polygon is the drawing of f in Γ′. This concludes the proof. □

Proof for Theorem 2: Bekos et al. [8] proved that a 1-plane graph G can be augmented by
adding both vertices and edges, such that the resulting multigraph G∗ has the following properties:
(i) It is 1-plane; (ii) All faces have length three (and hence all pairs of crossing edges induce an
empty kite); (iii) Possible parallel edges are crossing-free and pairwise non-homotopic; (iv) If there
is a set of k > 0 parallel edges between two vertices u and v, then {u, v} is a separation pair for
G∗ (and also for G). See Figure 8(a) for an example.

By the above definition, every maximal induced subgraph S of G∗ that does not contain parallel
edges (except possibly in its outer face) is a 3-connected 1-plane graph. Note that this graph either
corresponds to G∗, or it is enclosed between a pair of parallel edges e1 and e2 with end-vertices
u and v, such that {u, v} is a separation pair for G∗. Removing S from G∗, except for u and v,
and replacing e1 and e2 with a single edge, results in a new 1-plane multigraph with fewer parallel
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Figure 8: Illustration for Theorem 2.

edges. By iteratively applying this procedure, we obtain a hierarchical decomposition of the graph
in 3-connected components, as proved in [8]. See Figure 8(b) for an example.

We adopt a similar approach as in [8]. Following a top-down traversal, for each 3-connected
component S of G∗, we apply a modified version of the algorithm used to prove Lemma 5. In
particular, we still use the algorithm by Chiba et al. [18] to draw the graph SP obtained from S
by removing all pairs of crossing edges. Also, we use Lemma 3 to reinsert those pairs of crossing
edges that belong to marked inner faces. However, we use a different strategy to specify the outer
polygon of S. In particular, we choose this polygon such that we can merge the drawing Γ of S
with the drawing Γ′ of its parent component S′. Components attached to distinct pairs of vertices
of S′ can be merged independently. Let S1, . . . , Sk be a set of k ≥ 1 components attached to a
same pair of vertices, denoted by u and v, of S′. Let T1 be an isosceles triangle having the drawing
of (u, v) in Γ′ as base and whose height is such that we could replace (u, v) in Γ′ with T1 without
introducing crossings; see, e.g., Figure 8(c). If the outer face of S1 does not contain a crossing, then
we use T1 as outer polygon to draw S1. Else, we apply Lemma 4 with T1 as prescribed triangle
(with A = u and B = v), to draw the outer kite of S1, and we use the polygon defined by this
drawing as outer polygon to draw S1. In this way we can merge the drawing Γ1 of S1 with Γ′.
In the resulting drawing, consider the (interior) triangular face having on its boundary (u, v) and
either a crossing or a vertex of S1. This face defines a triangle T ′

2. Let T2 be an isosceles triangle
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Figure 9: Illustration for the proof of Theorem 4
.

having the drawing of (u, v) as base and whose height is smaller than the height of T ′
2; see, e.g.,

Figure 8(d). Again, if the outer face of S2 does not contain a crossing, then we use T2 as outer
polygon to draw S2. Else, we apply Lemma 4 with T2 as prescribed triangle (again with A = u
and B = v) to draw the outer kite of S2, and we use the polygon defined by this drawing as outer
polygon to draw S2. We repeat this procedure for all Si, i = 3, . . . , k. □

The next theorem states that angular resolution bounded from below by a function of the
maximum vertex degree of the graph and independent of its size can be obtained.

Theorem 3 Every 1-plane graph G with maximum degree ∆ has a 1-planar 1-bend drawing with
angular resolution Ω(0.156∆). Also, all crossing-free edges are drawn straight-line.

Proof: Let Gp be the plane graph obtained from G by replacing each crossing with a dummy ver-
tex. Let G∗

p be the triangulated plane graph obtained from Gp by applying the edge-augmentation
procedure by Kant and Bodlaender[32], which produces a graph with maximum degree ∆∗ ≤
⌈3/2∆⌉+ 11 < 6∆ (for ∆ ≥ 3). We compute a planar straight-line drawing Γ∗ of G∗

p by applying
Lemma 1. We finally remove from Γ∗ all the edges in G∗

p \Gp, and we replace the dummy vertices

of Gp with bend points. This results in a drawing of G with angular resolution Ω(0.156∆), in
which all crossing-free edges are drawn straight-line. Also, note that the 1-planar embedding of G
is preserved by this drawing. □

We conclude by showing that if two bends per edge are allowed, right-angle crossings and stub
resolution close to 1

2 can be simultaneously achieved. This last result holds for 3-connected 1-
plane graphs only and extending it to all 1-plane graphs remains an interesting open problem. In
particular, we could not follow a similar approach as done for Theorem 2 because it is not clear
how to merge different components attached at the same separation pair.

Theorem 4 Every 3-connected 1-plane graph G has a 1-planar 2-bend RAC drawing Γ with srΓ =
1
2 , except for at most one pair of edges whose stub resolution is 1

2 − ε, for any fixed 0 < ε < 1
2 . All

crossing-free edges are straight-line.

Proof: Construct a 1-planar 1-bend drawing Γ′ of G by using Lemma 5. Recall that all pairs
of crossing edges form an empty kite except at most one that forms an outer kite. To draw the
pairs of crossing edges forming an empty kite we used Lemma 3, and hence at least one edge
for each pair has a bend at the corresponding crossing point. We replace this bend point with
two bends sufficiently close and at opposite sides of the crossing point such that the two edges
cross perpendicularly; see also Figure 9. Note that if both edges bend at the crossing point a
slight perturbation is needed to achieve a right-angle crossing. This perturbation however can be
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sufficiently small to guarantee stub resolution 1
2 − ε. To draw the possible pair of crossing edges

that form an outer kite, we used Lemma 4 with any isosceles triangle T . In this case we choose
T such that its base angles are π

4 . With this choice the technique of Lemma 4 draws one of the
two crossing segments with slope +1, while the other with slope −1, and thus the two edges cross
perpendicularly. This yields to the desired drawing. □

5 Conclusions and Open Problems

We investigated the stub resolution as an aesthetic for nonplanar drawings. We developed drawing
techniques for 1-planar graphs with optimal or near-optimal stub resolution that achieve interesting
trade-offs between the number of bends per edge and restrictions on the set of 1-planar graphs, as
well as angular resolution and crossing resolution.

Interesting open problems arise from our research, among them:

� Is there a constant δ > 2 such that every straight-line drawable 1-planar graph has a 1-planar
straight-line drawing with stub resolution at least 1

δ ?

� Does every 1-planar graph with maximum vertex degree ∆ admit a 1-planar 1-bend drawing
with Ω( 1

∆ ) angular resolution?

� Can we generalize our results to k-planar graphs? In this direction, we have preliminary
results showing that 2-planar drawings with bounded stub resolution are possible for optimal
2-planar graphs (i.e., for 2-planar graphs that achieve the maximum density of 5n− 10 edges
over n vertices) if we allow a constant number of bends for the crossing edges.

� Finally, it would be interesting to study stub resolution in combination with other aesthetics,
such as compact area or few slopes for the edge segments.
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