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Abstract 

 
This paper introduces a special graph family, together with an extensive 
characterization of some of its properties and two of its immediate applications.  The 
graph denoted by Ti,j, is a regular hexavalent toroidal graph.  The topological features 
of Ti,j include vertex symmetry, Hamiltonian decomposition, translation and rotation 
isomorphism. Topologically, the graph is a torus, while algebraically, it can also be 

expressed as a Cayley graph, defined on the cyclic group <1, k, k2, −1, −k, − k2>, 
where k can be determined from the (i,j) parameters defining graph Ti,j. As a direct 

consequence, the proposed graph, which has jijijjiiji ⋅−+=+⋅+= 222
, )(ρ vertices, 

is vertex-symmetric. For the special case when i − j is a multiple of 3, the graph has a 
unique 3-coloring. The diameter of the graph can also be expressed as a function of i 
and j: ( ) 3/2 jid += . As a result of its highly symmetric topology, the graph is 

employed in modeling and analysis of cellular and interconnection networks. A more 
appropriate way of modeling highly dense cellular networks is shown to be the model 
using the triangular lattice in which the nodes represent the transceivers of the 
network, rather than the traditional hexagonal lattice where coverage overlap regions 
cannot be explicitly represented. The toroidal embedding of the triangular lattice 
using the Ti,j, graph helps us model and simulate the functionality of a cellular 
network with strong overlap regions without inducing any artifacts due to boundary 
effects limitations, simultaneously preserving the regularity of the graph model. For 

the constructing parameters of Ti,j, such that j = i − 1, the graph is optimal with 
maximum connectivity and maximum number of vertices for a locally planar graph, 
given diameter d, which in this case will be equal to j. This feature makes the Ti,j 

graph desirable for interconnection networks topology, together with the graph 
vertices’ algorithmic labeling scheme, presented in this paper. 
 

Communicated by Balaji Raghavachari: submitted May 1999; 
revised May 2001 and August 2002. 
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1 Introduction and Summary 

Throughout its evolution, the theory of graphs had placed in the spotlight a 
relative large number of special graphs with distinctive features and 
properties, useful in particular application areas or just interesting from the 
point of view of the graph theoretician.  In this context, the main 
contribution of this paper is the introduction of a special graph, together 
with a characterization of some of its properties and two of its immediate 
applications.  The graph denoted by Ti,j is a regular triangulated toroidal 
graph and is characterized by remarkable properties such as Hamiltonian 
decomposition, translation and rotation isomorphism, and features two 
special cases with interesting coloring  and vertex set cardinality properties. 

The paper is organized around six sections. In the next section, we 
introduce homomorphic repeat patterns on the infinite triangular lattice and 
we describe the construction of the Ti,j graph. Its properties are given in 
Section 3. Section 4 briefly describes some coloring issues and the 
computation of the diameter of Ti,j. In Section 5, we give a succinct 
presentation of the two applications of the regular toroidal graph: cellular 
and interconnection networks modeling.  The proposed graph’s highly 
symmetric structure, high connectivity, and the interaction between the 
topological and combinatorial properties, confer upon Tij a rich set of 
properties, which makes it a desirable tool for modeling and simulating 
various network topologies. Due to its finiteness as well as its regularity-
preserving structure, the graph model can be employed in cellular network 
simulations without inducing any boundary artifacts, in order to model 
metropolitan area cellular networks with strong overlap coverage regions.  
We conclude the paper with a summary of results in Section 6. 

2 Homomorphisms of the Infinite Triangular 
Lattice and Graph Ti,j 

2.1 The Infinite Triangular Lattice and Rhombic 
Numbers 

There are three basic regular infinite lattices: the triangular (6-regular), the 
rectangular (4-regular), and the hexagonal (3-regular) lattice. A planar (2D) 
rectangular lattice, also referred to as the 2-lattice, [Hara72] is a graph whose 
points are ordered pairs of integers (i,j) where i = 0, 1, ...  and j = 0, 1, ... . 
Two of these points are adjacent whenever their distance in the Cartesian 
plane is 1. In a similar way, we can define the 2D triangular lattice.  Even if 

there are 3 distinct directions zyx ,,  in the triangular lattice, it is obvious 

that only two are independent, such that any point is uniquely identified by 
its (x,y) coordinates. Then, two points P1(x1,y1) and P2(x2,y2) are adjacent iff 
one of the following conditions hold: 

121and121(iii)

121and21(ii)

121and21(i)

=−=−

=−=

=−=

yyxx

xxyy

yyxx
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The infinite triangular lattice is an infinite regular graph of degree 6.  
Each vertex is adjacent to 6 other vertices and 6 edges, each edge is adjacent 
to 2 vertices, and each face, which is an equilateral triangle, is adjacent to 3 
vertices.  Moreover, the infinite triangular lattice is the dual graph of the 
infinite hexagonal lattice.  This is shown in Figure 1, and it represents an 
interesting observation for the application of this graph in the modeling of 
cellular networks. In both graph model cases the vertices of the triangular 
lattice represent centers of the broadcasting regions. However, only the 
triangular lattice can explicitly show transceiver coverage overlap regions, 
whereas the hexagonal lattice does not.  Moreover, the duality of the two 
lattices allowed us to build cellular network models of same capacity, in 
terms of number of channels available and same geographic coverage, 
however with different number of transceivers.  As shown in Figure 1, nodes 
in the dual graph generating the triangular faces, identify faces (hexagons) in 
the hexagonal lattice. 

As Arnaud had shown in [Arna80], the regular lattice represents a 
powerful tool to achieve an efficient use of the frequency spectrum when 
assigning channels to broadcasting stations.  Cellular networks consist of 
groups of cells serving as a region. Each cell is assigned a set of radio 
frequency channels and has to deal with calls that either originated within 
that cell or is a handoff call. A handoff call (also known as a handover call) 
occurs due to the mobility of the users as well as the load balancing 
implementations that transfer calls between cells.  The number of frequency 
channels constitutes a limited resource and, moreover, the assignment of 
channels to geographical cells and regions has to follow certain distance 

Figure 1  The infinite hexagonal lattice and its 
dual graph, the infinite triangular lattice 
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constraints due to possible interference.  Therefore it is necessary to reuse the 
allocated frequency channels within the network service area to support as 
many users as possible.   

In trying to find a simple algebraic algorithm for cellular layout in the 
case of hexagonal cellular network models, MacDonald introduced the idea of 
shifting parameters [MacD79]. A year later, Arnaud used the same concept 
and applied it for frequency planning in triangulated broadcasting network 
models.  He extended this idea and used the notion of rhombic numbers 
defined by the two shifting parameters [Arna80]. 

Let us consider the infinite triangular lattice and a coordinate system 
(x,y) with axes offset at 600, and with the x-axis along the horizontal 
direction. Also, let us define along each direction two parameters, i and j, 
called the shifting parameters. They represent graph distances along the x 

and y axes, accordingly.  With i,j given, such that 1 ≤ j < i and i,j relatively 

prime (i.e., GCD(i,j) = 1), we denote the rhombic number ji,ρ by the 

following formula: 

jijijjiiji ⋅−+=+⋅+= 222
, )(ρ                (1) 

Given these parameters, one can place origin repeat points on the infinite 
triangular lattice, as shown in Figure 2, for i = 3 and j = 1.  By connecting 
the repeat points as depicted in the figure, we obtain a rhombic tiling of the 
infinite triangular lattice.  Arnaud used the idea of rhombic tiling in his 
paper mentioned earlier, and it emerged as a solution to the problem of 
covering a given area in the plane with transmitters given a limited number 
of available channels and considering the distance constraint to avoid 
interference.  The two shifting parameters, i and j, have to be relatively 
prime because otherwise, the rhombus given by these parameters can be 
decomposed into non-trivial sub-rhombii.  This is desirable because we aim 
to identify a unique labeling algorithm for the vertices of a region consisting 
of distinct sets of frequency channels, where the labeling will then identify 
these sets.  Transceivers are situated at the vertices of the underlying 

Figure 2 The rhombic tiling of the 
triangular lattice for shifting parameters i=3 
and j=1. 
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triangular lattice but all the sets of distinct frequencies are within a 
delimiting rhombus. In Figure 2, the enlarged nodes of the rhombic lattice 
represent repeating (or identical) sets of voice channels, and the edge of such 
a rhombus denotes thus the minimal distance for which interference would be 
avoided. 

2.2 Tilings of the Infinite Triangular Lattice 

The rhombic tiling, given the shifting parameters i, j, is given in Figure 3.  
The following lemmas will help us identify the number of vertices, edges, and 
triangular faces covered by a region delimited through a given tiling, and 
show the equivalence of the presented tilings. 

Lemma 1. The side of the rhombus tile is equal to 
ji ,ρ , where (i, j) are 

the shifting parameters, and ji,ρ  is the rhombic number. 

Proof:  Given i and j, the minimum distance between any two repeat-origin 
points, denoted by D, is computed from the triangle outlined in Figure 3 by 
applying Pythagoras’ generalized theorem: 

 

jijijiD

jijijijiD

,
222

22222

2

1
2)120cos(2

ρ=⋅++=⇒







−⋅⋅⋅−+=⋅⋅⋅−+= o

   

Lemma 2. The number of vertices contained by the rhombus tile 
constructed on the infinite triangular lattice with shifting parameters (i,j), 

including the corner  (origin-repeat) vertex only once, is equal to ji,ρ . 

Proof: Let the triangular lattice be composed of equilateral triangles of side 

1, i.e., 1=d .  Also, let the side of the rhombus be D. The area of an 

i

j

D

120 0

Figure 3 Two repeat origin points at 
distance D, and shifting parameters (i,j) 
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elementary triangle in the lattice is 
4

3=triangleA  and the area of the 

rhombus is 2

2

3
DA =rhombus . 

Given the shifting parameters i, j, and applying Lemma 1 we have: 

jiDA ,
2

2

3

2

3 ρ==rhombus . 

Thus, the number of triangles inside the rhombus is equal to: 

ji

ji

t
triangleA

A
N ,

,
2

4

3

2

3

ρ
ρ

⋅=== rhombus . 

Since every triangle is adjacent to three vertices and each vertex is 

adjacent to six triangles, we can write tv NNV =⋅=⋅ 22 , where Nv and Nt 

represent the number of vertices and the number of triangular faces, 
respectively. 

Hence, the number of vertices inside the rhombic tile is: 

ji, 
2

ρ=== t
v

N
NV   

A special case of pseudo-rhombic tiling, or degenerate tiling, given the 

rhombic number ji ,ρ , is the stripe, where all the ji ,ρ  vertices are placed on 

a horizontal line.  The surface is delimited by a contiguous series of triangles 
situated above the points.  This is shown in Figure 4, for the case 7, =jiρ .  

0 01 2 3 4 5 6

Figure 4 A stripe tiling with 7 vertices and 
14 triangles
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The darkened points, labeled 0, denote repeating points.  The area of the 
stripe is the same as the area of a rhombus with the same number of vertices, 
i.e. with the same number of triangles. 

The last and most interesting type of tiling is the hexagonal tiling.  If we 
consider the infinite triangular lattice with the origin repeat points placed at 
positions given by the shifting parameters (i,j), one can identify a 
triangulated tiling derived from the rhombic tiling by drawing also the short 
diagonal of all rhombii.  If for each such triangle (half rhombus) we 
determine the center, we obtain a lattice of points.  This is known as the 
Voronoi diagrams technique [Fort92], and it identifies a cluster of vertices 
that are closer to a repeat origin point than to any other origin point.  The 
collection of these clusters forms a hexagonal tiling in the triangular lattice.  
Such a cluster is shown in Figure 5.  The hexagonal tile (cluster) represented 
here contains 19 vertices and the origin repeat points are i=3, j=2. Thus, the 
rhombic number for this case is 192,3 =ρ .  A generic triangle (half rhombus) 

and its center are represented in the left upper corner with a dotted line. 

Lemma 3. The hexagonal tile constructed with shifting parameters (i,j) 
contains ji,ρ  vertices. 

Proof: In the hexagon depicted in Figure 5, the distance from its center 
labeled 0 and any of its 6 corners (black dots) is equal to 2/3 of the median 

 

0 

0 

0 

0 

0 

-5 -4 -3 0 

0 6 7 8 9 

-9 -8 -7 -6 0 

-2 -1 0 1 2 

0 3 4 5 

0 

0 

0 

D

Figure 5 A hexagonal tile with 19 vertices constructed with the 
Voronoi diagram method.  The repeat origin points labeled 0 are 
at i=3, and j=2. 
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of the generic triangle depicted with a dotted line, since the hexagon corners 
represent centers of triangles. 

Let us denote this distance by R (R is the radius of the hexagon, i.e., the 
radius of the circumscribed circle).  Since each dotted triangle is equilateral 
(because the origin repeat points are equidistantly placed), the side of such a 
triangle is equal with the side of the rhombus for the same given deployment.   

Hence, we have  

3

3

2

3

3

2
DDR =










⋅= . 

From this, if we divide the hexagon in 6 equilateral identical triangles by 
drawing the 6 radii from the center to the 6 corners.  Now, we can compute 
the area of the hexagon as follows: 

 2

2

2

2

3

2

3

3

3

2

1
6

2

3

2

1
6 DDRAhexagon =














⋅










⋅⋅=










⋅⋅= . 

Thus, 
2

32DAAA hexagonstripe ===rhombus , and jiV ,ρ= .  

2.3 Toroidal Embeddings. Homomorphism. 

The infinite triangular lattice has the important feature of being regular.  
This property makes it useful in applications such as interconnection and 
telecommunication networks.  But in both cases one cannot perform 
modeling and simulation techniques because the lattice model is not finite.  
To preserve the regularity and still obtain a finite regular graph of degree 6, 
we take a finite region from the infinite triangular lattice, in this case the 
hexagonal tile from Figure 5, and embed it on a toroidal surface. Thus, the 
resulting graph is a regular triangulated toroidal graph.  

The embedding of a hexagonal shape on a torus is shown in Figure 6, as 
it is not a trivial operation. (The left identified triangle of the hexagon will 
be cut and pasted as the triangle on the top-right of the hexagon, and the 
triangle bottom-right will be cut and pasted as the top-left triangle, hence 
forming a rhombus which then can be embedded on a torus as shown in the 
figure to the right.) One can see that it is not evident the fact that the graph 
is toroidal if looking at Figure 9, as compared to Figure 8, representing the 
same graph.  Moreover, the figure shows that the Ti,j graph is not simply a 
triangular mesh wrapped around a doughnut. 
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Suppose now, for example. that a generic node a from a given tile is 
adjacent to a set of nodes { }621 ,..,, aaaA = , some from the same tile as a 

and others from one or two adjacent tiles in the lattice.  Then, after 
embedding the tile on a torus, node a will be adjacent to the same set of 
vertices.  For example, in Figure 5, the node labeled -5 is adjacent to the 
nodes labeled -6, 2, and 3 in other tiles. In the finite toroidal graph, the node 
labeled -5 is adjacent to the nodes labeled -6, 2, and 3 in the same tile 

By embedding a finite repeat pattern (cluster) from the infinite triangular 
lattice on a torus, we defined in fact a mapping of all the clusters forming the 
lattice into a generic cluster. In other words, this represents a many-to-one 
mapping, in which all the nodes from the infinite triangular lattice map into 
the nodes of the toroidal graph.  This introduces the notion of direct 
homomorphism, which is different from the notion found in [Hara72]. 

Definition:  A (direct) homomorphism  of a given graph G onto G' is a 

many-to-one mapping, ϕ, such that if two vertices labeled u and v are 

adjacent in G, then ϕu and ϕv are adjacent in G'.  (Note that in G multiple 
distinct vertices may share the same label.) 

Both cases described in the previous section, the rhombus and the 
hexagon embedded on a torus, represent homomorphisms of the infinite 
triangular lattice.  Adjacency is preserved, and as a consequence, regularity is 
also preserved.  Hence, every vertex of the infinite triangular lattice maps 
onto the vertex set of the finite toroidal triangulated graph. 

2.4 The Generation of Ti,j 

The following algorithm describes the labeling of the vertices, as depicted 
previously in Figure 5.  The labeling scheme is a major contribution of this 
paper in the area of cellular networks and its practical importance will be 
discussed later. 

X

X

X

XY

Y

Y

Figure 6 The embedding of a hexagonal 
surface on a torus by cutting and pasting. 
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The Labeling Algorithm (Ti,j Generation) 

Step 1:  Place the origin repeat vertices, labeled with 0, at offsets of i steps 
on the horizontal x-axis and j steps on the 600 skew 
(counterclockwise) y-axis. 

Step 2:  Label the vertices on every x-axis between repeat points with values: 

0,1,2,...,
2

,
2

,...,2,1,0
,, −−







−







 jiji ρρ
. 

Step 3:  Using the Voronoi diagrams, identify the hexagonal tiling. 

Step 4:  Pick any tile and wrap it on a toroidal surface, preserving adjacency 
according to the direct homomorphism definition.  The regular 
toroidal graph obtained, given the two shifting parameters (i,j), is 
denoted by Ti,j. 

The labeling scheme uses a symmetric residue numbering [HaWr79].  In 
Figure 5, the hexagonal tile (obtained from Steps 1 and 2 in the algorithm 

above) contains 19 vertices, labeled −9, −8 … −1, 0, 1… 8, 9.  Notice that in 
this case, the shifting parameters were (3,2) yielding the rhombic number 19, 
equal to the number of vertices, as also shown in Lemma 3. 

It is important to note here that the above labeling scheme implies the 
actual drawing and geometrical identification of the hexagonal tile that 
defines the graph.  However, there exists a direct relationship between any 
two adjacent vertices, and this relationship defines, as we shall see later in 
Lemma 6, the Hamiltonian decomposition of the graph.  Two nodes i and j 
are adjacent in Ti,j  if one of the following holds: 

j = (i ± 1) modr ji ,ρ , 

j = (i ± k) modr ji ,ρ , 

j = (i ± k2) modr ji ,ρ , 

where modr refers to the residual modulo function (see the definition given 
with Lemma 6).  The constant denoted by k can be computed from the 
parameters of the graph, i and j, as shown below.  The value of k is actually 
the value of the label on the vertex that is adjacent to the origin-repeat point 
along the positive direction of the y-axis.   

 

The Computation of k, given i and j. 

If we start from a given origin point labeled 0 on the infinite lattice, one 
needs to go an integer number of steps of i and j until it reaches the next 
closest origin repeat point that is located on the horizontal line below the 
starting point.  This is shown in Figure 7.  This is so because we want to 
reach in straight line the first vertex labeled k, i.e., the vertex adjacent to the 
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origin in the positive direction of the y-axis.  This can be expressed as 
follows: 

1mod)( =⋅ jix  or 

1=⋅−⋅ jyix . (2) 

The two unknowns, x and y, in Equation (2) can be determined in a 
relatively small number of arithmetic operations, using the theory of 
continued fractions based on the Euclidean GCD algorithm [KoMa85], 
[MaKo80], [HaWr79]. 

Otherwise, this can be viewed as an integer programming problem, as 
formulated below, but which has no linear-time solution algorithm: 

Ζ∈
>

=⋅−⋅
+

x,y

x,y

1ixjys.t.

yxminimize

0
 

After determining x and y, the constant k can now be calculated using the 
formula given below: 

 ( ) jiryxixjk ,mod)( ρ+⋅+⋅=  (3) 

The following gives direct computation formulas for the constant k in 
some particular cases. 

Case 1: j=1.  In this case, it is obvious that going only i steps to the left 

on the x-axis, we reach the closest vertex labeled k. Hence, for Ti,1, ik −= . 

0 

 0 

0 - K 

0 

0 

0 0 

0 

0 
- 

0 

Figure 7 The graphic scheme for the computation of k 



Iridon and Matula, A Torus Graph Family.  JGAA 6(4) 373-404 (2002)   

 

 

 

 

 

 

384 

Case 2: j=2.  Since GCD(i,j)=1, one needs to go i div 2 steps down the y-
axis, after going once j=2 steps down the z-axis.  This means that 

ji
i

k +⋅



=
2

.  

Case 3: j=3.  Following the same reasoning, and splitting into two sub-

cases for 13 1 +⋅= mi , and 23 1 +⋅= mi , for some integer m1, the 

constant k is:  

1,13,31
3

0,13,3
3

11

11

>−=∀







+⋅







 +



−=

>+=∀+⋅



=

mmii
i

k

mmii
i

k
 

The above two formulas can be merged into one, such that 









+⋅







 −+



⋅= ji

jii
j(ik r

r
2

)modsign(1

3
)modsign ,  (4) 

where sign(x) is the sign function. 

Formula (4) holds also for the case j=2 if the first term in the parenthesis 

is replaced by 








j

i .  However, a more general formula, covering all cases of j, 

could not be identified. 

Case 4: j=i−1.  This is a special case that will be presented in more detail 

in the next chapter.  Here, the constant k is simply (3i−1)modr ji,ρ .  (The 

residual modulo is needed only for the minimal case of T2,1, which is an 
isolated case with k < 0.  Moreover, T2,1=K7.) 

 

3 Properties of the Ti,j Graph Family 

Lemma 4. Graph jiT ,  has ji,ρ vertices, ji,2ρ  triangular faces, and ji,3ρ  

edges. 

Proof:  The first statement regarding the number of vertices in jiT , has been 

proven in Lemma 3.  Since each vertex in the graph is adjacent to 6 triangles 
and each triangle is adjacent to 3 vertices, the number of triangular faces is 

6/3=2 times the number of vertices: jiVF ,22 ρ⋅== . Moreover, since 

each vertex in the graph is adjacent to 6 edges and each edge is adjacent to 2 
vertices, the number of edges in the graph is 6/2=3 times the number of 
vertices:  jiVE ,3||3|| ρ⋅== .  
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Lemma 5. Graph jiT ,  is vertex transitive, where the automorphism 

αV:V( jiT , )→V( jiT , ) , mapping vertex p into vertex q, for 









≤<≤








−

22

,, jiji
qp

ρρ
, adds jirpq ,mod)( ρ−  to each vertex 

label. 

Proof: According to the definition, a graph G is vertex transitive if for every 
pair )(, GVqp ∈  there is an automorphism that maps p into q.  Such a 

mapping is given above and we only need to show that the graph before the 
mapping is isomorphic to the one obtained after the mapping. 

For this reason, it is sufficient to prove that, since p will map into q, the 
adjacent vertices to p before the mapping will become, after the translation, 

the adjacent vertices to q as of before the mapping.  Applying the αV 
transformation to the 6 neighbors of p, we obtain: 

1)()1()1(

1)()1()1(

1)()1()1(

)()()(

1)()1()1(

)()()(

−=−+−=−
+=−++=+

+−=−++−=+−
−=−+−=−

−+=−+−+=−+
+=−++=+

qpqpp

qpqpp

kqpqkpkp

kqpqkpkp

kqpqkpkp

kqpqkpkp

α
α

α
α

α
α

 

The above is valid for any vertex p in the graph.  Hence, jiT ,  is vertex-

transitive, with the automorphism mapping specified as above.  

Observation: Since the graph is also a Cayley graph, it is inherently vertex-
transitive or vertex-symmetric [Aker89].  In certain applications, such as 
interconnection networks, the vertex-symmetry is an important property 
because it implies that every node (processor) in the network can be mapped 
into any other node.  In other words, the network/graph looks the same from 
each node/vertex. 

Lemma 6. Graph jiT ,  factors into three Hamiltonian cycles, given by: 

)(mod)1(,...,2,,0

)(mod)1(,...,3,2,,0

0,1,2,...,
2

,
2

,...,2,1,0

,,
22

,,

,,

jirji

jirji

jiji

kkk

kkkk

ρρ

ρρ

ρρ

−

−

−−







−









 

where k is the label value adjacent to the origin in the y-direction.  The 
function modr refers to the residual modulo function, defined as follows: 
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Proof: The Hamiltonian cycle along the y-axis can be identified in Figure 8. 
The complete Hamiltonian decomposition is shown in Figure 9, for the same 
graph T3,1 but drawn in a different fashion, to help visualizing the 3 edge-
disjoint cycles.  It is obvious that along the x-direction (in Figure 8), the 
labels in the sequence of vertices along the Hamiltonian cycle are 
incremented by 1, because of the construction of jiT ,  itself.   

 0 

6 

1 

5 

4 

2 

3 

-6 

-1 

-5 

-4 
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-3 

 

Figure 9  The T3,1 graph with its Hamiltonian decomposition 
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Figure 8 The Hamiltonian cycle along 
the y-axis, for T3,1 with 13 vertices. 
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Along the y-axis, suppose that we look at the first two vertices from the 
origin repeat point along the positive direction of the y-axis.  The vertex 
adjacent to the origin is labeled k.  According to the vertex-transitivity 

lemma, if we map vertex 0 into k, then k will map into (k+(k−0))modr ji,ρ , 

which is equal to (2k)modr ji,ρ .  This implies that moving along the positive 

direction of the y-axis in increments of one, we add k to the labels of the 
vertices.  Likewise, moving along the negative direction of y, we subtract k, 
but always applying the residual modulo function to the resulting label.   

Following the same reasoning as when determining the constant k, we 
now try to determine the constant k', which corresponds to the adjacent 
vertex to the origin along the positive direction of the z-axis.  This is in 

actuality the vertex k-1, but now we try to prove that k−1=k2.  Thus, staring 

from the origin and going up the y-axis, one has to jump 1)( ++⋅+⋅ jiyjx  

steps to reach the first label k'.  But each jump represents an addition by k 

to the vertex label.  Now, since 1+⋅=⋅ yjxi , from (2), the number of 

steps in the formula above is equal to k.  Hence, the vertex k' has a label 

value of 2)1)(( kkjiyjx =⋅++⋅+⋅ .  This implies that going along the 

positive direction of the z-axis, one can either add the value (k−1) to the 
vertex labels, or add k2.  This explains the quantity added to the labels of the 
vertices in the third Hamiltonian cycle.  Note that all three Hamiltonian 
cycles are edge disjoint since each follows a different direction.  Moreover, 

since each cycle has a length of ji,ρ , equal to the number of edges/vertices 

in the cycle, and since all three cycles are edge disjoint, they form a 2-

factorization of jiT ,  [Hara72].  

Observation:  Hamiltonian decomposition implies maximum connectivity 
and maximum fault tolerance — properties of central importance in 
interconnection networks.  The Ti,j, graph is 6-regular and due to the 
Hamiltonian decomposition, it is characterized by 6 edge-disjoint paths 
between any two nodes in the graph.  Hamiltonian decomposition has been a 
central area of research not only in graph theory and algebraic topology, but 
also in communication algorithms for interconnections networks, and even 
physics. An abundance of papers can be found, as early as the forties, and 
substantially increasing during the late 80s and mid 90s. To mention just a 
few names: V. Chvatal [Chva85], P. Erdos [ChEr72], B. Bollobas [BoEr76, 
Boll79], T.W. Tillson [Till80], C. Thomassen [Thom80], J. Sibeyn [SiKa94], 
and many others.  

Lemma 7. Graph jiT , has an isomorphism corresponding to a 600 

counterclockwise (geometric) rotation obtained by multiplying each label by 

the constant k, reduced modulo ji,ρ .  It follows that jirk ,
6 mod1 ρ≡ . 

Proof: As shown in Lemma 6,  going in the positive direction of the y-axis, 
one has to add the value k to the labels, and going in the positive direction of 
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the z-axis, the value to be added is k2.  This proves that the vertex labeled k 
will map into k2 after a 600 rotation counterclockwise.  That is, the rotation 
mapping is to multiply the vertex label by k.  Applying a series of such 

rotations, vertex k2 will map into vertex k3=−1, k3 maps into k4=−k, k 4 maps 

into k5=− (k−1), and finally, k6 maps back into the vertex labeled 1.  To 
show that the rotated graph is isomorphic to the initial graph, a similar 
reasoning, based on the computation of the adjacent vertices, as presented in 
Lemma 4, can be used.  

Observation: The above rotation mapping is actually a cyclic 
automorphism of the group Tij defining the (Cayley) graph. Given the 
generators of the group S = <1, k, k2> and their inverses (as defined by the 

group operation): <−1, −k, k2>, then the rotation automorphism, ω,  will map 

ω(si) = si+1. Since graph Ti,j is a Cayley graph, and given it has a cyclic 
automorphism, we have that Ti,j is rotational [Heyd97a].  Moreover, Ti,j 
admits a complete rotation.  This property could be very useful to derive 
optimal algorithms for interconnection networks, such as broadcasting and 
gossip algorithms [Heyd97b].  However, not all Cayley graphs are rotational, 
such as the cube-connected cycles, which are non-rotational Cayley graphs. 

Lemma 8. Graph jiT , is edge-transitive, with the automorphism αE:  

E(Ti , j)→E(Ti , j),  mapping edge p1q1 into edge p2q2  determined by 
additions and multiplications on all labels. 

Proof:  The automorphism mapping one edge into any other edge is 
described by the following steps: 

Step 1: First, since the graph is vertex-transitive, the vertex p1 will be 

translated in the origin according to the mapping αV, by subtracting from 

every vertex label the value p1 reduced modulo ji,ρ . Now p2 becomes 

jirppp ,122 mod)(’ ρ−= .  Similarly, we obtain ’,’ 12 qq  and, of course, 

0’1 =p . 

Step 2: Next, we perform a finite number of rotations, since the graph has 

a rotation isomorphism of 600.  To determine the number n∈{0,..,5} of 
counterclockwise rotations needed, one has to solve the following equation: 

jirjir
n qpqk ,2,21 mod’)mod)’’(( ρρ =+⋅ .  It is as if we intend to map 

first the vertex p1’ into p2’ and then see how many rotations are needed to 
map the new q1’ (=q1’+p2’ ) into q2’.  Having determined n, one can now 

perform n rotations according to αE by multiplying each vertex label by kn 

reduced modulo ji,ρ .  The new labels are: 

jir
n

jir
n

jir
n

kqqkpp

kqqp

,22,22

,111

mod’”,mod’”

,mod’”,0”

ρρ

ρ

⋅=⋅=

⋅==
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Step 3: Last, we perform the final translation of p2 steps, by adding this 
value to all vertices.  The resulting labels are: 

jir
n

jir
n

jir
n

pkpqpqq

ppkppp

pkpqpqq

pp

,212222

,12222

,211211

21

mod))((”’”

mod))1((”’”

mod))((”’”

’”

ρ

ρ

ρ

+⋅−=+=

−⋅+=+=

+⋅−=+=

=

 

The steps described above represent the edge automorphism mapping.  
To prove that the graphs, before and after the rotation, are isomorphic, one 
can follow a similar reasoning as in the case of the vertex-transitivity lemma 
and compute the new labels of the adjacent vertices of the two edges. This 

concludes the proof that the graph jiT ,  is edge-transitive.  

Just as in the case of the rotational isomorphism, not all Cayley graphs 
are characterized by edge-transitivity, with the same counterexample of the 
cube-connected cycle networks.  

4 Coloring Issues and the Diameter of Ti,j 

4.1 Discussion on the Coloring of Ti,j 

The vertices of graph jiT ,  cannot be colored with less than 3 colors, since it 

has a complete sub-graph that is a cycle of length 3, i.e. the triangle.  With 

each vertex having degree 6, the maximum number of colors needed for jiT ,  

is 7 (see Proposition derived from Greedy Coloring Algorithm in [West96]).  
Except for T2,1 which is a clique (K7), according to [Broo41], the chromatic 

number χ of a connected graph G of maximum degree ∆(G), which is not a 

clique or an odd cycle, satisfies the following: χ(G) ≤ ∆(G). In our case, we 

have χ(Ti,j) ≤ 6. 

We will show that for some cases there exists a 3-coloring, whereas for 
other cases, there exists a 5-coloring. 

Case 1: i−j = 3m1, for m1>0 

In this case, the number of vertices in the graph is equal to: 

2
2
11

2
11

2 3)3(3)3()3( mmmmimii =+=+−⋅+ , for some positive m2.  In the case 

of the regular triangulated graph, this is a necessary condition for it to have 
a 3-coloring, because all elementary cycles are of length three (triangles) and 
no larger.   
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This particular type of graph has all corner vertices of its hexagonal tile 
representation (see the tilings of the triangular lattice) corresponding to 

vertices in the infinite triangular lattice.  All other jiT , graphs, as the one 

shown in Figure 5, have the hexagonal corner vertices falling in centers of 
triangles in the infinite lattice. The two vertices mentioned above are 
repeating in an interleaved fashion, such that each appears three times at the 
corners of the hexagonal tile.   

An example of this particular case, when (i-j) mod 3 = 0, together with 
its unique 3-coloring is given in Figure 10.  The graph displayed is T4,1 with 
21 vertices.  Notice that the graph has a multiple-of-three number of vertices.  

Also, the vertices 7 and –7 (i.e., ji,ρ /3 and − ji,ρ /3) are the vertices 

repeating on the corners of the hexagonal tile.  The validity of the coloring 
can be checked by looking at the colors of the vertices with the same label, 
inside and outside the central hexagonal tile. 

Case 2: i = 2 ,  j = 1  

This case is an exceptional one for graph T2,1 and it is the only case when 7 
colors are needed. Graph T2,1 is the clique on 7 vertices, K7, and thus has a 
chromatic number equal to the number of vertices: 

71122 22
1,2 =+⋅+=ρ . 

Case 3: i > j > 0 ,  for all i,j with GCD(i,j)=1 not included in Case 1 and 
Case 2.  

In this case, no 3 or 4 coloring has been found.  A reason why there is no 3-
coloring is because the graph is 6-regular, the length of the smallest cycle is 
3, and the number of vertices is not a multiple of 3.  Moreover, since the 

0 1 2-1-2

-5 -4 -3-6-7

-7

76543

7

-8-9-10

8 9 10

7

-7

8 9

32

65

109

10

-6

-2

3

8

-9-10

-6-8-9-10

6

2

-3

-8

Color 1

Color 2

Color 3

Figure 10 The coloring of jiT ,  when i− j=3m   for T4,1 
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triangular lattice is uniquely 3-colorable, the triangulated torus in this case 
cannot have a 3-coloring.  A scheme that depicts the compulsion to use 5 
colors is shown in Figure 11.  Here the first step involves the coloring of the 
vertices around the 6 corners of the hexagonal tile.  There are several 
possible combinations but no matter what combination we pick, when 
coloring the rest of the graph as shown in the second step, a fourth, and then 
a fifth color is necessary.  The dotted labels mean that there is a choice to 
interchange the labels, but the cases are symmetric.  The labels A, B, and C 
suggest the order of picking the colors, and in parentheses are the colors 
picked for this particular case.  All cases are just permutations of the one 
displayed and one will obtain the same coloring result, i.e. that 5 colors are 
needed and sufficient for the coloring of the Ti,j, for i and j not included in 
the previous two cases. 

The coloring of the Ti,j graph is employed in the resource allocation 
problem for interconnection networks, where a limited number of resources 
need to be uniformly dispersed throughout the network [BaeB97]. 

4.2 The Computation of the Diameter of Ti,j 

The diameter of a graph is the length of any longest shortest path 
between any two vertices in the graph. Let us consider the repeat origin 
points highlighted on the triangular lattice in Figure 12. The diameter of the 
Tij graph can then be easily computed as the shortest graph distance from 
the origin labeled as A to the point P, which actually represents the physical 
corner of the hexagon in the hexagonal tiling using the Voronoi diagram, as 
shown in Figure 5. Note that P could coincide or not with a lattice point, in 
which case we will take the integral part of the AP distance. Hence, 

 AFAP
3

1=  

The graph distance, denoted by d(), between the points A and F can be 
computed using the construction depicted in Figure 12, as follows:  

3

21

1

2

1

2

2

3

3 2

1

3

1

2

3

3

1

21

1

2

1

2

2

3

3 2

1

3

1

2

3

3

1

3

4 2

T3,1

4 3

A(1) B(4)C(5)

Figure 11 Two steps in the coloring procedure of the general case of Ti,j 
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Hence, the diameter of the graph can be expressed, simply, as: 





 +⋅=

3

2 ji
d  (5) 

Note: One can obtain the same result by using Euclidean geometry [IrTh99]. 
However, the proof would be rather lengthy. 

4.3 Local Planarity 

The Ti,j graph is locally planar in the context that given the number of 

vertices ρi,j  of the graph, then the formula 

1
2

1
32

3 ,,
0 −












=−












⋅= jijid

ρρ
 

defines the diameter of the largest induced subgraph of Ti,j which is planar 
[IrTh99].  This subgraph defines a planar hexagonal tile inscribed in the 
bigger hexagonal (toroidal) tile representing the Ti,j graph.   
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Figure 12 The computation of the diameter 
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The local planarity property allows us to represent the graph as a 
hexagon on the infinite triangular lattice, and showing the toroidal 
embedding along the pasting edges as duplicate nodes around the tile, just as 
we show the traditional rectangular torus as a rectangular tile embedded in 
the plane.  As we shall see in the following section, the Ti,j graph has the 
maximum number of vertices for a 6-regular graph. This is valid for any 6-
regular graph that is embeddable on a surface of genus 1, i.e. the surface of a 
torus.  This fact proved to be helpful in modeling and simulating cellular 
networks, since we could keep the model finite while preserving its regularity 
and avoiding undesired and artificial boundary effects.  Being able to 
represent the graph in the plane in this fashion, helped us identify its 
topological properties, the most important being the fact that Ti,j is toroidal. 

5 Applications 

5.1 The Optimal Ti,j 

If j = i - 1 , according to (5) the diameter of the jiT , graph becomes 

1−= id .  The number of vertices is equal to: 

 1331)1(3)1(3 22
, +⋅+⋅=+−+−= ddiijiρ . 

We can show by induction that this value represents the maximum 
number of nodes situated at distance d on the infinite triangular lattice, from 
any given point, as follows: 

Assume the starting point 0. We expand from 0 by determining the 
number of nodes at distance 1, 2, … from it. Let’s denote by N(d) the total 
number of nodes situated at distance less than or equal to d.  Hence:  

133
2

)1(
6161

6...1261)(

...

191261)2(

761)1(

1)0(

2

1

++=++=+=

++++=

=++=
=+=

=

∑
=

dd
dd

i

ddN

N

N

N

d

i

 

Assuming N(d), we need to prove that 

 1)1(3)1(3)1( 2 ++++=+ dddN . 

At distance d we are adding 6(d+1) vertices. Then, 
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1)1(3)1(3

133363

66133

)1(6)()1(

2

2

2

++++=
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++++=

++=+

dd

ddd

ddd

ddNdN

. 

This number is maximal because at any step at distance d while 
expanding from the origin point we cannot add more than 6d nodes, since the 
number of all vertices situated at distance exactly d from the point 0 is equal 
to 6d.  In the context of the maximum number of nodes, given a diameter d, 
the graph Ti,i-1 is considered to be optimal. This property is very important 
especially in the design of interconnection networks where it is desirable to 
reduce the topological communication latency.  Due to the relatively high 
degree of the graph and its Hamiltonian decomposition mentioned earlier, the 
Ti,j topology offers maximum connectivity and maximum fault tolerance, 
achieving 6 edge-disjoint paths between any two nodes/processors in the 
network.  Figure 13 shows the smallest optimal Ti,j, the graph T2,1 which has 
7 nodes and which, since it is regular of degree 6, it is the clique on 7 
vertices, K7.  

5.2 Applications to Interconnection Networks 

There is no exact way to compare different topologies of interconnection 
networks [Sieg96], [Bhuy97], [Mold93].  Still, there are some metrics for 
interconnection networks and these are useful to take into account when 
designing new topologies.  These features are described below. 

Network connect iv ity : Network connectivity measures the resiliency 
of a network and is the ability to continue operation despite disabled 
components. In other words, the connectivity represents the minimum 

-3 -2

1

32

-1

2 3

-1

2

-3

-1

0

Figure 13 Graph K7 as the toroidal 
T2,1. The duplicate nodes are
represented with light color
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number of nodes or links that must fail in order to partition the network into 
two or more disjoint networks (that is, to disconnect the network graph). 

Network Diameter : Similar to the diameter definition of a graph, here 
the network diameter represents the minimum inter-node distance.  It can be 
interpreted as the maximum number of links that must be traversed when 
sending a message to any node along the shortest path. 

Bisect ion Width: Sometimes it is useful to measure the congestion of a 
network, that is the traffic along the links of the network). It is most useful 
when designing load-balancing algorithms.  The bisection width, or 
narrowness, of a network can be calculated by partitioning the network into 

two sub-networks S1 and S2, each with N1 and N2 processors (with N1≤N2), 
and determining the ratio between N1 and the number of links between S2 
and S1. In fact, this is a min.-cut max.-flow type of problem found in network 
flow theory [FoFu62]. 

Network Expansion Increments : Another goal that is very 
important when designing an interconnection network is scalability. It should 
be possible and easy to scale the network at any time at a user-required size 
(flexibly), i.e., to add new processors and new links with minimum effort and 
cost.  Also, for cost reasons, it is desirable that the increments are small.  
This implies the possibility of upgrading the network to the desired size with 
a given budget. 

However, these are only a few characteristics to look at and they are 
mostly static features of a network but with direct implications in the 
dynamic behavior of the network. 

The wraparound (4-regular) mesh is the most common topologies used in 
this field, probably because the human mind finds it easy to imagine 
topologies in a Cartesian coordinate system. Although is expands to higher 
dimensions, complicating the visualization of the network, the hypercube is 
another common and well-known topology.  Our extensive research in this 
area showed that only one research group at the University of Michigan, Ann 
Arbor, designed and implemented a 6-regular interconnection topology 
[Chen90].  However, the underlying graph (which is the same as the optimal 

Ti,j, that is j=i−1) has been employed on a rather empirical basis, without 
and theoretical justification. Moreover, it has not been shown nor mentioned 
that the topology is actually a torus, or that a more generalized topology 
exists, featuring the same properties derived from its symmetric structure. 

The optimal Ti,j is useful in the area of interconnection networks not only 
for its maximum connectivity and maximum fault tolerance, but also for the 
natural way of labeling the processors (vertices), scheme presented 
previously. As a direct result, this topology allows a constant time addressing 
(routing) scheme and a linear time algorithm, in terms of the diameter, for 
one-to-many broadcasting [Chen90]. 

This section intends to point out that a generalized topology is also 
possible, a topology which may be useful especially when expanding the 
network to larger diameters.  The optimal case allows only increments of 6d 
when updating from diameter d-1 to d, whereas the generalized Ti,j allows 
variable increments, as shown in Table 1. However, the presented topology 
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has a smaller network expansion increment than many of the well-known 
topologies. 

According to the values of the diameter for various i and j, as shown in 
Table 1., in order to expand the topology of the network to a different 
diameter, one could both add or remove nodes in the network. 

For example, the network model T7,4 has 93 vertices and a diameter of 5.  
If we reconfigure the topology to T9,1, we obtain a network with a higher 
diameter, 6, but less nodes, 91.  Notice also that for the same number of 
vertices, one could build two different topologies with different diameters, as 
shown in the above table for T6,5 and T9,1.  In any case, we generate a very 
rich family of graphs on distinct number of vertices, all with remarkable 
properties, both topologically and algebraically. 

A related issue here is the average distance, which for the maximal case, 

Ti,i-1 is equal to (2i−1)/3.  Moreover, since the graph Ti,j is 6-connected, the 
topology possesses a high degree of fault tolerance in terms of connectivity.  
This implies that the triangulated toroidal network model, as opposed to 
most of the other existing topologies, can tolerate up to five node and link 
failures at a time. 

Table 2 shows the results for a comparative study among different 
interconnection topologies, including the regular triangulated toroidal graph 
(RTT).  The optimal mesh refers to a 4-regular triangulated toroidal graph 
with a maximal number of nodes for a given diameter and which has been 
introduced in [IrTh99]. As it can be inferred from Table 2, the RTT is more 
scalable than the hypercube and, moreover, for a network embedded on a 
surface of genus 1 (torus), the RTT (i.e., Ti,i-1) has the maximum number of 
nodes possible for a given diameter and constant node degree 6. There exist 

Table 1 Some values of ji ,ρ (diameter) for Ti,j for various i and j. 

     i 

j 
2 3 4 5 6 7 8 9 10 

1 7(1) 13(2) 21(3) 31(3) 43(4) 57(5) 73(5) 91(6) 111(7) 

2  19(2) - 39(3) - 67(5) - 103(6) - 

3   37(3) 49(4) - 79(5) 97(6) - 139(7) 

4    61(4) - 93(5) - 133(7) - 

5     91(5) 109(6) 129(6) 151(7) - 

6      127(6) - -  

7       169(7) 193(8) 219(8) 

8        217(8) - 

9         271(9) 
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degree 6 network topologies with the same diameter and more nodes but 
which are not embeddable on a torus surface. 

Table 2 Comparison among various multiprocessor architectures. 

The topology of the generalized jiT ,  graph becomes very complex for 

analysis purposes, when i and j are arbitrary numbers with GCD(i,j)=1.  
This constituted and impediment in finding an efficient routing algorithm for 
this case. However, based on the translation isomorphism property and the 
symmetry along the x, y, and z axes, the following formula holds for any 
given node address (label) a.  

)1(1 −⋅+⋅+⋅= kzkyxa  (6) 

where x, y and z are the number of hops from the origin to the node labeled a 
along the three directions.  Formula (6) actually determines the minimum 
number of routing hops between any two nodes (without enumerating the 
nodes in the route), based on the assumption of vertex-transitivity.  That is, 
given two nodes s and d, the minimum number of hops between the two 
nodes (the shortest path) can be determined by solving the following integer 
problem: 

minimize     | x | + | y | + | z |  

such that   x+ y k+ z ( k − 1 )=d − s  

 − d 0  ≤  x , y , z  ≤  d 0  

where d0 is the diameter of the maximal Ti’,i’-1 inscribed in Ti,j  and k is the 
parameter k computed earlier. 

Parameter 

Topology 
|V| (nodes) |E| 

(links) 
Diameter Degree Connectivity 

Clique Kn p p(p-1)/2 1 p-1 p 

Hypercube Qn p=2n n2n-1 n n n 

Cycle Cn p p [p/2] 2 2 

Chordal Ring p 3p/2 O(p1/2) 3 3 

N1xN2 Mesh p=N1xN2 2p O(p1/2) 4 4 

Optimal Mesh p=2n2+2n 2p n = 
O((p/2)1/2) 

4 5 

RTT. Ti,i-1 
p=3n2+3n

+1 
3p n = 

O((p/3)1/2) 
6 6 
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Given the properties shown earlier in this paper, the graph topology 
described here is also a Cayley graph based on the cyclic group 

>−−−< 22 ,,1,,,1 kkkk , with k being the same parameter as above. Cayley 

graphs are frequently used in modeling and analysis of interconnection 
networks, due to certain symmetries that the Cayley graph representation 
manages to emphasize [DiMo96, GrMa64]. 

5.3 Applications to Cellular Networks 

Channel assignment for wireless mobile units is classically modeled by 
assuming the coverage regions of transceivers (T) partition the plane into 
disjoint hexagons [Hale80], [Katz96], [MacD79], [Poll96].  The overlap 
regions, as shown in Figure 14, incidental to the coverage regions being more 
like circles than hexagons are excluded from the fundamental hexagonal 
lattice.  Overlap regions are separately identified with reference to methods 
of hand-off, but the size and variation in overlap regions is not easily 
investigated in this traditional model [Poll96].  Our research included the 
extensive modeling of various forms of overlap segments and their regularities 
in a cellular arrangement. A new approach to the channel assignment 
problem in the presence of extensive overlap between coverage regions was 
obtained by graph theoretic modeling of the cellular assignment [YaMa97], 
[Yang91], [MaIr98], [MaIr99] [Irid98]. 

The strong overlap arrangement of Figure 15b, as opposed to the weak 
overlap in Figure 15a, suggests a good approximation is simply to have the 
full triangles of the planar dual triangular lattice serve as the overlap 3-
segments, with no other cell segments admitted. The dual triangular lattice, 
whose vertices are now the transceivers, is shown in Figure 14. 

A cluster of k contiguous cells of the hexagonal lattice, where each cell has 
a distinct one of the k fixed subsets of the available frequency channels, is 

Ti4
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Ti2

Ti3

Ti5

Ti6

Ti7
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termed a frequency repeat t i le .  A covering of the plane by this 
frequency repeat tile is termed a frequency repeat t i l ing of the p lane . 

Frequency repeat patterns typically involve a relatively small number of 
cells, with k=7 often employed for examples in the literature.  We shall in 
general be interested in m-cel l  repeat sample regions for larger values of m 
that may or may not be related to multiples of the frequency repeat. 

Here we focus on the m-cel l sample region repeats that can be identified 
with simple polygonal shapes such as a rectangle, rhombus, or hexagon.  The 
7-cell repeat can be associated with a hexagon providing one important 
example, but many larger repeats will also be of interest. 

For m-cell repeats associated with a rectangle, rhombus, or a hexagon, as 
shown in Section 2, it follows that the infinite triangular lattice can be 
homomorphically mapped onto an m-vertex toroidal graph, such that the 
vertex, edge and face associations with hexagonal cells and overlap regions 
are preserved.  When m is an appropriate multiple of k, the frequency 
channel set associations are also preserved. For homomorphisms 
corresponding to k-cell frequency repeats, the relatively small toroidal graph 
provides a sufficient model for investigating and displaying properties of the 
frequency channel distribution. 

The larger (m-vertex) toroidal graphs, derived from a sample region 
repeat, provide reasonable sized underlying structures for probabilistic mobile 
unit channel assignment studies.  Theoretically and/or by simulation, 
channel assignment strategies, blocked regions, call cutoffs, and other 
probabilistic occurrences at load levels near full capacity, can be realistically 
studied in the m-vertex toroidal graph model without anomalies due to 
boundary effects.  Loading patterns over multiple cell regions will be quite 
realistic for estimation of the infinite lattice cellular network, provided the 
multiple cell regions constitute planar subgraphs of the toroidal graph. 
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To simulate this cellular system without boundary effects, we take the 
repeat tile and embed it on a torus [CaIr99].  The toroidal model is a natural 
and pertinent way of simulating and analyzing the behavior of the infinite 
cellular network using a finite model.  If the repeat tile is a hexagon, 
constructed as described previously, the toroidal model obtained is the Ti,j 
graph. The Voronoi diagrams technique identifies a cluster of vertices that 
are closer to a repeat origin point than to any other origin point. 

The hexagonal repeat pattern can be easily employed in a multitier 
system where we can identify two repeat levels: 

1. a frequency repeat, relatively small (the micro-cel l); 

2. a toroidal repeat (the macro-cel l).  

Different rhombic numbers, as shown in Figure 16, characterize the 
micro-cell and the macro-cell.  The toroidal embedding of the macro-cell will 
take care of the undesired boundary effect.  The shifting parameters for the 
macro-cell, as shown in Figure 16, are (7,7) and for the micro-cell, they are 
(2,1).  We can also identify the shifting parameters (4,1) for the macro-cell in 

terms of micro-cell units. It can be easily verified that 42+4⋅1+12 = 21, which 
is the total number of micro-cells contained in the macro-cell. The total 
number of transceivers covered by the macro-cell is equal to: 21x7=72 + 

7⋅7+72= 147. 

Observation: Any region of triangles, inside a macro-cell, of radius smaller 
than the macro-cell radius is planar.  This follows from the sizes of the 
diameters of the two types of cells. 

Figure 16 A toroidal embedding hexagonal repeat macro-
cell (T7,7), containing 21 micro-cells of 7-frequency 
hexagonal repeats (T2,1) 
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Hence, we can locally study a region within the macro-cell that is 
reasonably unrelated to the toroidal embedding.  Moreover, we can take any 
contiguous region with the above-specified radius constraint from the toroidal 
macro-cell, without worrying about being too close to the “boundary” and 
thus introducing unrealistic behavior.  

All the contained micro-cells are similar and their behavior will not be 
influenced by their position within the macro-cell. 

6 Conclusions 

In this paper we introduced a 6-regular toroidal graph, constructed from a 
hexagonal tiling of the infinite triangular lattice. The graph, denoted by Ti,j, 

where i, and j are the shifting parameters of the rhombic number ρi,j, 
represents a homomorphism of the triangular lattice and has a very 
symmetric structure. Some of its properties, such as vertex- and edge-
transitivity, rotation homomorphism, Hamiltonian cycle decomposition, and 
coloring, have been presented and discussed.  When the shifting parameter j 
is equal to i-1, the graph is optimal, in the sense that it features the largest 
packing of vertices for a 6-regular graph, embeddable on a surface of genus 1 
(locally planar), for a given diameter. The computation of the diameter of 
the graph involves computational geometry tools and is also presented in this 
paper. 

Due to its highly symmetric topology, the Ti,j graph family, and especially 
the optimal case, Ti,i-1, has a series of applications in modeling and analysis of 
networks. In this paper we presented two of its applications, more specific, in 
interconnection and cellular networks. In interconnection networks, where 
one of the demands is to design topologies that feature high connectivity and 
fault tolerance, the optimal Ti,i-1 represents a very attractive topology, which 
is also characterized by a constant time routing scheme, due to the natural 
labeling scheme presented here.  

In cellular networks, the graph is used to model and simulate without 
boundary artifacts, cellular assignment in systems with extensive overlap of 
transceiver coverage regions. The Ti,j graph is employed in the modeling of 
micro- and macro-cell systems and it offers a systematic labeling scheme 
useful for frequency planning. 
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