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Abstract. A tree-based network N on X is called universal if every phylogenetic
tree on X is a base tree for N . Recently, binary universal tree-based networks have
attracted great attention in the literature and their existence has been analyzed in
various studies. In this note, we extend the analysis to non-binary networks and show
that there exist both a rooted and an unrooted non-binary universal tree-based network
with n leaves for all positive integers n.
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1 Introduction and preliminaries

Phylogenetic networks are a generalization of phylogenetic trees allowing for the representation of
reticulate evolutionary events such as hybridization and horizontal gene transfer. Even though the
existence of reticulate evolutionary events is widely accepted, it has been argued that evolution
is still fundamentally tree-like with some occasional events of e.g. horizontal gene transfer. This
has led to the introduction of so-called tree-based networks, i.e. networks that can be obtained
from a tree by adding additional edges [5]. In the following, we consider the existence of one
particular class of tree-based networks, namely universal tree-based networks. However, we start
by introducing some definitions and notations.

Let X = {1, . . . , n} be a non-empty finite set (e.g. of taxa or species).
An unrooted phylogenetic network N on X is a connected, simple graph G = (V,E) with

X ⊆ V and no degree-2 vertices, where the set of degree-1 vertices (referred to as the leaves of
the network) is bijectively labeled and thus identified with X. Such an unrooted network is called
binary if every non-leaf vertex has degree 3. We call an unrooted network non-binary if it is not
necessarily binary.
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A rooted phylogenetic network N on X is a rooted directed acyclic graph G = (V,E) with no
parallel edges satisfying the following properties:

(i) the root has indegree 0 and outdegree 2 or more;

(ii) all vertices with outdegree 0 have indegree 1, and the set of vertices with outdegree 0 is
identified with X (and the vertices in X are again called leaves);

(iii) all other vertices either have indegree 1 and outdegree 2 or more (in which case they are
called tree vertices) or indegree 2 or more and outdegree 1 (in which case they are called
reticulations or reticulation vertices).

If the root has outdegree 2, all reticulations have indegree 2 and all tree-vertices have outdegree 2,
the network is called binary. We call a rooted network non-binary if it is not necessarily binary.
For technical reasons, if |X| = 1, we allow an (un)rooted non-binary network to consist of a single
leaf (which in case of a rooted non-binary network is then at the same time considered to be the
root). Moreover, note than an (un)rooted non-binary phylogenetic tree on X is an (un)rooted non-
binary phylogenetic network whose underlying graph structure is a tree. Furthermore, we refer to
non-phylogenetic, i.e. non-leaf-labeled, trees as tree shapes.

A non-binary (un)rooted phylogenetic network N on X is called tree-based if there is a spanning
tree T = (V,E′) for N (with E′ ⊆ E) whose leaf set is equal to X. T is then called a support
tree (for N). Moreover, the tree T ′ that can be obtained from T by suppressing potential degree-2
vertices is called a base tree (for N). Note that the existence of a support tree T for N implies the
existence of a base tree T ′ for N . Moreover, note that from a graph-theoretical point of view, the
support tree T is a subdivision of the base tree T ′ (as T can be obtained from T ′ by subdividing
edges of T with degree-2 vertices). Following [10, p. 357], we will also sometimes say that the
support tree T provides an embedding of T ′ in N .

This view is also reflected by the following more constructive definition of tree-basedness by [8]
(rooted case) and [7] (unrooted case). First, a rooted non-binary phylogenetic network N on X is
tree-based with non-binary base tree T ′ if N can be obtained from T ′ via the following steps:

(i) Subdivide the edges of T ′ by attachment points of in- and outdegree 1.

(ii) Add edges, called linking edges, between pairs of attachment points or from tree vertices to
attachment points, so that N remains acylic and so that each attachment point has degree
at least 3, but indegree or outdegree 1.

(iii) Suppress every attachment point that is not incident to a linking edge.

Note that in case of rooted binary tree-based networks, the base tree T ′ has to be binary and in Step
(ii) of the above construction, linking arcs can only be added between pairs of attachment points
such that N remains binary and acyclic. Similarly, an unrooted non-binary phylogenetic network
N on X is tree-based with non-binary base tree T ′ if N can be obtained from T ′ via subdividing
the edges of T ′ by attachment points of degree 2, adding linking edges between attachment points,
between an attachment point and an original vertex of the tree, or between two original vertices
of the tree, and finally suppressing every attachment point that is not incident to a linking edge.
Again, in case of unrooted binary tree-based networks, T ′ has to be an unrooted binary tree and
linking edges can only be inserted between pairs of attachment points in order to keep the network
binary.

Now, an (un)rooted non-binary tree-based network N on X is called universal if every non-
binary (un)rooted phylogenetic tree on X is a base tree for N .
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Universal tree-based networks have recently been analyzed in different studies. First, [5], who
introduced the class of tree-based networks, showed that there is a rooted binary universal tree-
based network on X for n = 3 and asked whether such a network exists in general. This was
answered affirmatively by [6] and, independently, by [11], who gave explicit constructions for such
networks for all positive integers n. While the construction in [6] contains Θ(n!) reticulations, the
construction in [11] contains Θ(n2) reticulations. More recently, [3] showed that a rooted binary
universal tree-based network with n leaves has Ω(n log(n)) reticulations and gave a construction
of a rooted binary universal tree-based network with O(n log(n)) reticulations. Moreover, [4]
have recently shown that the existence of a rooted binary universal tree-based network implies
the existence of an unrooted binary universal tree-based network. Note, however, that so far all
considerations of universal tree-based networks in the literature have been concerned with binary
networks. In this note, we extend some of these findings to non-binary networks and constructively
show that there exist both a rooted and an unrooted non-binary universal tree-based network with
n leaves for all positive integers n.

2 Results

2.1 Rooted universal tree-based networks

Theorem 1. For all positive integers n, there exists a rooted non-binary universal tree-based
network with n leaves.

In the proof of Theorem 1 we will present a construction of a rooted non-binary tree-based
network N on X for each n. Following the constructions in [3, 6, 11], this construction consists of
two parts: the upper part, which contains the root, is a non-binary network on n leaves that has
every rooted non-binary tree shape on n leaves as a base tree; the lower part, which contains the
leaves, reorders the leaves of these tree shapes, in order to enable any permutation of leaves and
thus, to enable every rooted non-binary phylogenetic tree on X to be a base tree for this network.
For the latter, one can for example use a so-called Beneš network (cf. [1, 2]) as in [3]. Alternatively,
one can simply use a complete bipartite graph Kn,n for this purpose (cf. Figure 1(a) and (b)).

Thus, in the following we will only show that the upper part of our construction has every
non-binary tree shape as a base tree. Analogously to [3] it then follows that the combination of
the upper part with a Beneš network or a complete bipartite graph yields a non-binary universal
tree-based network.

Proof (Theorem 1). For all positive integers n, we now give a construction of a rooted non-binary
phylogenetic network Un on n leaves that has every non-binary tree shape on n leaves as base
tree. We begin by describing the construction of Un. First of all, for n = 1, Un consists of a single
vertex. Now, let n ≥ 2. Then, in order to construct Un, we start with a rooted star tree T ∗ with
root ρ on n leaves where a rooted star tree is a rooted tree shape such that all leaves are adjacent
to the root and:

1. Add attachment points to the edges of T ∗ as follows:

– For leaf 1 and n, add n−2 attachment points on the edges (ρ, 1) and (ρ, n), respectively,
and label them t11, t

2
1, . . . , t

n−2
1 and t1n, t

2
n, . . . , t

n−2
n , respectively (starting the labeling at

the attachment point closest to the root; note that these vertices will be tree vertices in
the final network);
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– For each leaf l = 2, 3, . . . , n−2, add 2n−4 attachment points on the edge (ρ, l) and label
them r1l , t

1
l , r

2
l , t

2
l , . . . , r

n−2
l , tn−2

l (again, starting the labeling at the attachment point
closest to the root; note that all vertices labeled with “r” will be reticulation vertices
in the final network and all vertices labeled with “t” will be tree vertices);

– For leaf n − 1, add 2n − 5 attachment points on edge (ρ, n − 1) and label them
r1n−1, t

1
n−1, r

2
n−1, t

2
n−1, . . . , tn−3

n−1, r
n−2
n−1 (again, starting the labeling at the attachment

point closest to the root; note that there is no attachment point tn−2
n−1, however, all ver-

tices labeled with “r” will be reticulation vertices in the final network and all vertices
labeled with “t” will be tree vertices).

2. Add the following edges between attachment points:

– (tki , r
k
i+1) for i = 2, . . . , n − 2 and k = 1, . . . , n − 2 (horizontal edges between tree and

reticulation vertices);

– (tki , r
k+1
j ) for i = 2, . . . , n− 2, j = i+ 1, . . . , n− 1 and k = 1, . . . , n− 3 (diagonal edges

between tree vertices and reticulation vertices from left to right);

– (tki , r
k+1
j ) for i = 3, . . . , n − 1, j = 2, . . . , i − 1 and k = 1, . . . , n − 3 (diagonal edges

between tree vertices and reticulation vertices from right to left);

– (tki , r
k
j ) for i ∈ {1, n}, j = 2, . . . , n−1 and k = 1, . . . , n−2 (diagonal edges between tree

vertices on the paths from ρ to leaves 1 and n, respectively, and reticulation vertices on
the paths from ρ to leaves 2, . . . , n− 1).

Figure 1(e) shows the resulting construction for n = 3 and Figure 1(i) shows the construction
for n = 5.

We now use induction on n to show that – ignoring the leaf labels – every non-binary tree shape
on n leaves is base tree of Un. Since there is exactly one such tree shape for n = 1 (consisting of a
single vertex) and n = 2, the base case holds for all n ≤ 2. Now, suppose that the claim holds for
up to n− 1 leaves and consider the network Un on n leaves (with n ≥ 3).

Note that as the basic structure of Un is a star tree on n leaves, the star tree on n trivially is
a base tree of Un. Therefore, we will now show that any other rooted non-binary tree shape on n
leaves is also a base tree of Un.

Thus, let Tn be an arbitrary rooted non-binary tree shape (that is not a star tree) with n leaves
and root ρ. We will now show that Tn is a base tree of Un by constructing an explicit embedding of
Tn into Un. i.e., we construct a subdivision of Tn covering all vertices of Un such that the leaf sets
of Tn and Un coincide. As n ≥ 3, we know that Tn contains at least one cherry [u, v], i.e. a pair of
leaves u and v who share a common parent (cf. [9, Proposition 1.2.5]), say w. As, by assumption,
Tn is not a star tree, we may assume that w ̸= ρ. Suppose that w has k ≥ 2, children in total
(including u and v). Moreover, without loss of generality we may assume that the children of w
are labeled 1, . . . , k when enumerating all leaves and are positioned at the outermost left of the
tree when drawing it in the plane. We now delete all children of w (which implies that w is now a
leaf) and retrieve a tree shape Tn−k+1 with n−k+1 leaves. As n−k+1 < n, by induction Tn−k+1

is a base tree of Un−k+1. Let V (Tn−k+1) and E(Tn−k+1) denote the vertex set, respectively edge
set, of the underlying embedding of Tn−k+1 into Un−k+1. In the following, we will first show that
Tn−k+1 can also be embedded in Un; we will then re-introduce the deleted children of w and show
that this yields a base tree of Un.

Note that by construction Tn−k+1 contains leaves labeled with w, k + 1, k + 2, . . . , n. Before
we embed Tn−k+1 into Un, we relabel some vertices of Un−k+1. To be precise, we rename vertices
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(if they exist) as follows (as an example see Figure 1(e)):

w ↪→ 1;

tln−k+1 ↪→ tln for l = 1, . . . , n− k − 1;

rlj ↪→ rlj+k−1 and tlj ↪→ tlj+k−1for j = 2, . . . , n− k and l = 1, . . . , n− k − 1.

We now sequentially extend the network Un−k+1 to Un by introducing additional vertices and
edges.

First of all, we add attachment points on existing edges (cf. Figure 1(f)), where for technical
reasons t01 = t0n = ρ.

– edge (tn−k−1
1 , 1): k − 1 attachment points tn−k

1 , tn−k+1
1 , . . . , tn−2

1 ;

– edge (tn−k−1
n , n): k − 1 attachment points tn−k

n , tn−k+1
n , . . . , tn−2

n ;

– edge (rn−k−1
n−1 , n− 1) (if it exists): 2(k − 1) = 2k − 2 attachment points

tn−k−1
n−1 , rn−k

n−1 , t
n−k
n−1 , . . . , r

n−2
n−1;

– edge (tn−k−1
j+k−1 , j + k − 1) for j = 2, . . . , n− k − 1 (if it exists): 2(k − 1) = 2k − 2 attachment

points rn−k
j+k−1, t

n−k
j+k−1, r

n−k+1
j+k−1 , t

n−k+1
j+k−1 , . . . r

n−2
j+k−1, t

n−2
j+k−1.

We add all newly introduced edges to E(Tn−k+1), i.e. we extend the embedding of Tn−k+1 to
cover all newly introduced attachment points (as an example see Figure 1(f)).

We then add k − 1 edges connecting the root to leaves 2, . . . , k and on each of these edges add
2n − 4 attachment points called r1i , t

1
i , . . . , r

n−2
i , tn−2

i for i = 2, . . . , k (as an example see Figure
1(g)). If k = n− 1, we only add 2n− 5 attachment points on edge (ρ, n− 1). In particular, we do
not add the attachment point tn−2

n−k.
In order to complete the construction of Un, we add all required edges between newly introduced

vertices, i.e. we complete the construction of Un according to the construction principle presented
at the beginning of the proof (see page 84; as an example see Figure 1(h)).

We now re-introduce the children of w to the embedding of Tn−k+1 in order to obtain an
embedding of Tn, i.e. we re-introduce the leaves 2, . . . , k (note that we do not re-introduce leaf
1, as this was already re-introduced in a previous step). We do this in the following way (cf.
Algorithm 1):

First, any existing edge between a tree vertex ti1 and a reticulation vertex rik+1 for i < n − k
in the embedding of Tn−k+1 is replaced by a path between these two vertices, respectively, in
order to cover the newly introduced vertices in Un (Lines 3–6 in Algorithm 1). As an example,
the edge (t11, r

1
4) in the embedding of T3 into U5 depicted in Figure 1(h) is replaced by the path(

(t11, r
1
2), (r

1
2, t

1
2), (t

1
2, r

1
3), (r

1
3, t

1
3), (t

1
3, r

1
4)
)
(see Figure 1(i)). Once all such existing edges have been

replaced by paths, the children of w are added to the embedding of Tn−k+1 to obtain an embedding
of Tn (Lines 7–9 in Algorithm 1). Essentially, for each such child of w, say l, an edge between the
tree vertex ti1 closest to the root and currently having out-degree 1 (where i is formally determined
by Algorithm 1) and the reticulation vertex ril is introduced (first bullet point in Line 8 of Algorithm
1). Then, ril is connected to leaf l via a “straight path” from ril to l, i.e., via a sequence of edges
indexed by l (second bullet point in Line 8 of Algorithm 1). Here, for the last edge added, i.e.
for the edge incident to leaf l, a case distinction, merely an artifact of the construction of Un, is
necessary, as the parent of leaf l can either be a reticulation vertex (if l = n− 1) or a tree vertex
(in all other cases). In summary, these operations transform the embedding of Tn−k+1 into an



Algorithm 1:

1 i = 1;
2 while i < n− k do
3 if edge (ti1, r

i
k+1) is in E(Tn−k+1) then

4 remove edge (ti1, r
i
k+1) from E(Tn−k+1);

5 add edges (ti1, r
i
2), (r

i
2, t

i
2), (t

i
2, r

i
3), (r

i
3, t

i
3), . . . , (r

i
k, t

i
k), (t

i
k, r

i
k+1);

6 i = i+ 1;

7 else
8 add the following edges to E(Tn−k+1):

� (ti1, r
i
2), (t

i
1, r

i
3), . . . , (t

i
1, r

i
k);

� (rij , t
i
j), (t

i
j , r

i+1
j ), (ri+1

j , ti+1
j ), . . . , (rn−2

j , tn−2
j ), (tn−2

j , j) for j = 2, . . . , k − 1;

if k = n− 1 then
add the following edges to E(Tn−k+1):

� (rik, t
i
k), (t

i
k, r

i+1
k ), (ri+1

k , ti+1
k ), . . . , (tn−3

k , rn−2
k ), (rn−2

k , k);

else
add the following edges to E(Tn−k+1):

� (rik, t
i
k), (t

i
k, r

i+1
k ), (ri+1

k , ti+1
k ), . . . , (rn−2

k , tn−2
k ), (tn−2

k , k);

end

9 end

10 end

embedding of Tn in such a way that all vertices of Un are also vertices of the embedding of Tn and
the leaf sets of Un and Tn coincide. Thus, Tn is a base tree of Un (as an example see Figure 1(i)).
As Tn was an arbitrary rooted non-binary tree shape (that is not the star tree) on n leaves and as
the star tree is trivially a base tree for Un this completes the proof.
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Figure 1: Illustration of the construction and concepts used in the proof of Theorem 1. (a) and (b)
show the lower part in the construction of a rooted non-binary universal tree-based network on 4 leaves
in form of the Beneš network of size four (Figure taken from [3]) (a) or the complete bipartite graph
K4,4 (b) (all edges are directed down the page). Moreover, T5 is a non-binary tree shape on 5 leaves
(c). We consider vertex w and delete its children, which yields tree shape T3 on 3 leaves (d). By the
inductive hypothesis T3 is a base tree of U3; an embedding is depicted in bold (e). After relabeling
vertices, which is depicted by hooked arrows in (e), 2 attachment points are added on the edges (t11, 1)
and (t15, 5), respectively, and 4 attachment points are added on the edge (r14, 4) (f). All new edges created
in this step, e.g. (t11, t

2
1), are added to the embedding of T3. Then, 2 edges connecting the root to leaves

2 and 3 are added. These edges are subdivided by introducing 6 attachment points on each edge (g).
Then, the construction of U5 is completed by introducing all missing edges between tree vertices and
reticulation vertices and between pairs of reticulation vertices (h). In the last step, the embedding of
T3 is transformed back to an embedding of T5 (i): Firstly, the edge (t11, r

1
4) (depicted in bold in (h)) is

replaced by the edges (t11, r
1
2), (r

1
2, t

1
2), (t

1
2, r

1
3), (r

1
3, t

1
3) and (t13, r

1
4) (depicted in bold in (i)). In the last step

the edges (t21, r
2
2), (t

2
1, r

2
3), (r

2
2, t

2
2), (t

2
2, r

3
2), (r

3
2, t

3
2), (t

3
2, 2), (r

2
3, t

2
3), (t

2
3, r

3
3), (r

3
3, t

3
3) and (t33, 3) are added to the

embedding of T5 into U5. Note that in U5 all horizontal edges, i.e. edges of type (tki , r
k
i+1) for i = 2, 3 and

k = 1, 2, 3, are directed left to right; all other edges are directed away from the root. Similarly, all edges
in T3, T5 and U3 are directed away from the root.
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2.2 Unrooted universal tree-based networks

Even though Theorem 1 states the existence of a rooted non-binary universal tree-based network
on n leaves for all positive integers n, we can use the same construction to show the following
statement for unrooted networks.

Corollary 1. For all positive integers n, there exists an unrooted non-binary universal tree-based
network on n leaves.

Proof. First, for n = 1 and n = 2, an unrooted non-binary universal tree-based network trivially
exists: For n = 1, the only unrooted non-binary tree shape is a single vertex, which at the same
time is the only unrooted non-binary tree-based network; for n = 2, the only unrooted non-binary
tree shape is an edge between the two leaves. Thus, any unrooted non-binary tree-based network
on 2 leaves can be considered an unrooted non-binary universal tree-based network for n = 2. Now,
for n ≥ 3, consider the construction of the rooted non-binary universal tree-based network in the
proof of Theorem 1. By ignoring the designation of the vertex ρ as root of the network and the
orientation of edges, this construction yields an unrooted non-binary universal tree-based network
with n leaves, which completes the proof.

3 Discussion

In this note, we have constructively shown that there exist both a rooted and an unrooted non-
binary universal tree-based network with n leaves for all positive integers n. Like the rooted binary
universal tree-based networks in [3, 6, 11] the rooted non-binary universal tree-based network
constructed in this paper is stack-free (i.e. it has no two reticulations one of which is a parent of
the other), but unlike the constructions in [3, 6, 11] it is not temporal (time-consistent) (where a
rooted non-binary network Nr is called temporal if there is a mapping t : V (Nr) → N such that
if (u, v) is a tree edge, then t(u) < t(v), while if (u, v) is a reticulation edge, then t(u) = t(v)). To
see this, consider vertices ρ, t11 and r12 in U3 (Figure 1(e)) or U5 (Figure 1(i)). As (ρ, t11) is a tree
edge, in a temporal rooted non-binary network we would have t(ρ) < t(t11). However, as (t11, r

1
2) is

a reticulation edge, we would also have t(t11) = t(r12) and similarly, as (ρ, r12) is also a reticulation
edge, we would have t(ρ) = t(r12). In particular by the previous case, t(ρ) = t(r12) = t(t11), which
contradicts the fact that t(ρ) < t(t11). It would thus be of interest for future research to investigate
whether there also exists a rooted non-binary universal tree-based network on n leaves that is
temporal for all positive integers n.
Moreover, it might be of interest to infer a theoretical lower bound for the number of reticulations
needed for a rooted non-binary tree-based network to be universal (as done in [3] for the rooted
binary case) and to investigate if there exists a rooted non-binary universal tree-based network
that achieves this minimum. Note that the construction given in this manuscript requires (n− 2)2

reticulations in the upper part Un and n reticulations in the lower part (if the complete bipartite
graph Kn,n is used). Thus, the construction given here has O(n2) reticulations. However, our
construction is possibly more complex than necessary. For example, for n = 4, it is possible
to construct another rooted non-binary tree-based network U ′

4 that has every non-binary rooted
tree shape with four leaves as a base tree and only uses two reticulations (whereas U4 uses four
reticulations). The network U ′

4, which could replace U4 in our construction, is shown in Figure 2.
It would thus be of interest to study whether this construction can be generalized to n > 4 and
analyze if it is minimal in the number of reticulations.
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We remark that in the case of rooted binary universal tree-based networks on n leaves, [3] ob-
tained the theoretical lower bound of Ω(n log(n)) reticulations required by equating 1√

2

(
2
e

)n
nn−1

(an asymptotic approximation to the number (2n− 3)!! of rooted binary phylogenetic trees with n
leaves (see, e.g., [10, p. 16])) with 2r and solving for r, where r denotes the number of reticulations
(since if N is a rooted binary phylogenetic network with n leaves and r reticulations it embeds at
most 2r distinct rooted binary phylogenetic trees, as each embedding of such a tree is obtained
by choosing exactly one of the two reticulation edges directed into each reticulation vertex). Now,
in the non-binary case, this approach will result in the trivial bound of one reticulation required
unless further restrictions are imposed on the indegrees of reticulation vertices. To see this, first
denote by nbr(n) the number of rooted non-binary phylogenetic trees with n leaves (note that no
closed formula for nbr(n) is known but exponential generating functions have been established (see,
e.g., [10, p. 17]). Next, consider a phylogenetic network N with one reticulation vertex of indegree
nbr(n). Then N could in theory embed up to nbr(n) distinct rooted non-binary phylogenetic trees,
each one corresponding to a different choice of one of the nbr(n) reticulation edges present in N .
However, if for instance the maximum indegree of any reticulation vertex is fixed to some integer
d < nbr(n), non-trivial bounds may be obtainable.

Figure 2: Rooted non-binary tree-based network U ′
4 that has every rooted non-binary tree shape with

4 leaves as a base tree (an embedding is highlighted in bold, respectively). U ′
4 could thus replace U4

as described in the proof of Theorem 1 in our construction of a rooted non-binary universal tree-based
network on 4 leaves.
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tion. In addition, we thank two anonymous referees for valuable suggestions to improve the quality
of this manuscript in its present form. Moreover, we thank Lina Herbst for helpful discussions on
the general topic and for comments on an earlier version of this manuscript. Last but not least,



90 M. Fischer, M. Galla, and K. Wicke Non-binary universal tree-based networks

Mareike Fischer thanks the joint research project DIG-IT! supported by the European Social
Fund (ESF), reference: ESF/14-BM-A55-0017/19, and the Ministry of Education, Science and
Culture of Mecklenburg-Vorpommern, Germany.

References
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[2] V. E. Beneš. Permutation groups, complexes, and rearrangeable connecting networks. Bell
System Technical Journal, 43(4):1619–1640, Jul 1964. doi:10.1002/j.1538-7305.1964.

tb04102.x.

[3] M. Bordewich and C. Semple. A universal tree-based network with the minimum number of
reticulations. Discrete Applied Mathematics, 250:357–362, Dec. 2018. doi:10.1016/j.dam.

2018.05.010.

[4] A. Francis, K. T. Huber, and V. Moulton. Tree-based unrooted phylogenetic networks. Bulletin
of Mathematical Biology, 80(2):404–416, Feb 2018. doi:10.1007/s11538-017-0381-3.

[5] A. Francis and M. Steel. Which phylogenetic networks are merely trees with additional arcs?
Systematic Biology, 64(5):768–777, 2015. doi:10.1093/sysbio/syv037.

[6] M. Hayamizu. On the existence of infinitely many universal tree-based networks. Journal of
Theoretical Biology, 396:204–206, May 2016. doi:10.1016/j.jtbi.2016.02.023.

[7] M. Hendriksen. Tree-based unrooted nonbinary phylogenetic networks. Mathematical Bio-
sciences, 302:131–138, Aug 2018. doi:10.1016/j.mbs.2018.06.005.

[8] L. Jetten and L. van Iersel. Nonbinary tree-based phylogenetic networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 15(1):205–217, Jan 2018. doi:

10.1109/tcbb.2016.2615918.

[9] C. Semple and M. Steel. Phylogenetics (Oxford Lecture Series in Mathematics and Its Appli-
cations). Oxford University Press, 2003.

[10] M. Steel. Phylogeny: Discrete and random processes in evolution. Society for Industrial and
Applied Mathematics, Philadelphia PA, 2016.

[11] L. Zhang. On tree-based phylogenetic networks. Journal of Computational Biology, 23(7):553–
565, Jul 2016. doi:10.1089/cmb.2015.0228.

https://doi.org/10.1002/j.1538-7305.1964.tb04103.x
https://doi.org/10.1002/j.1538-7305.1964.tb04102.x
https://doi.org/10.1002/j.1538-7305.1964.tb04102.x
https://doi.org/10.1016/j.dam.2018.05.010
https://doi.org/10.1016/j.dam.2018.05.010
https://doi.org/10.1007/s11538-017-0381-3
https://doi.org/10.1093/sysbio/syv037
https://doi.org/10.1016/j.jtbi.2016.02.023
https://doi.org/10.1016/j.mbs.2018.06.005
https://doi.org/10.1109/tcbb.2016.2615918
https://doi.org/10.1109/tcbb.2016.2615918
https://doi.org/10.1089/cmb.2015.0228

	Introduction and preliminaries
	Results
	Rooted universal tree-based networks
	Unrooted universal tree-based networks

	Discussion

