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Drawing Halin-graphs with small height
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Abstract. In this paper, we study how to draw Halin-graphs, i.e., planar graphs
that consist of a tree T and a cycle among the leaves of that tree. Based on tree-drawing
algorithms and the pathwidth pw(T ), a well-known graph parameter, we find poly-line
drawings of height at most 6pw(T ) + 3 ∈ O(log n). We also give an algorithm for
straight-line drawings, and achieve height at most 12pw(T ) − 1 for Halin-graphs, and
smaller if the Halin-graph is cubic. We show that the height achieved by our algorithms
is optimal in the worst case (i.e. for some Halin-graphs).

1 Introduction

It is well-known that every planar graph has a planar straight-line drawing in an O(n)×O(n)-grid
[10, 25] and that an Ω(n)×Ω(n)-grid is required for some planar graphs [9] (definitions will be given
in the following section). But for some subclasses of planar graphs, planar straight-line drawings of
smaller area can be found. In particular, for any tree one can easily create a straight-line drawing
of area O(n log n) [7]; the area can be improved to n2O(

√
log logn log log logn) [6] and O(n) if the

maximum degree is O(n1−ε) [20]. Outer-planar graphs can be drawn with area O(n1+ε) [19] and
with area O(n log n) if the maximum degree is constant [18] or a constant number of bends are
allowed in edges [2]. There are also some sub-quadratic area results for series-parallel graphs [2],
though they require bends in the edges.

These existing results suggest that bounding the so-called treewidth of a graph may be helpful
for obtaining better area bounds. In particular, trees have treewidth 1, and outer-planar and
series-parallel graphs have treewidth 2. However, one can observe that the lower-bound graph
from [9] can be modified to have treewidth 3, so we cannot hope to achieve sub-quadratic area for
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all planar graphs of constant treewidth. On the other hand, there are some subclasses of planar
graphs that have treewidth 3 and a special structure that may make them amenable to be drawn
with smaller area. This is the topic of the current paper.

Halin-graphs were originally introduced by Halin [22] during his study of graphs that are planar
and 3-connected and minimal with this property. He showed that any such graph consists of a tree
without vertices of degree 2 where a cycle has been added among the leaves of the tree. These
graphs have attracted further interest in the literature, see for example [13, 16, 17, 26, 28]. It is
folklore that they can be recognized in linear time since they are planar graphs and have treewidth
3, but a direct and simpler approach for this was given by Eppstein [13].

In this paper, we study how to create planar drawings with small area of a Halin-graph. To our
knowledge, no such algorithms have been given before, and the best previous result is to apply a
general-purpose planar graph drawing algorithm that achieves area O(n2). In contrast to this, we
exploit here that a Halin-graph consists of a tree T with a cycle C among its leaves, and give two
results. The first one states that, given a plane drawing Γ of T , we can obtain a planar drawing
ΓC of T ∪ C such that the height of ΓC is at most three times the height of Γ. However, ΓC has
bends. For our second result, we take inspiration from one particular tree-drawing algorithm by
Garg and Rusu [21] to create an algorithm that achieves straight-line drawings of area O(n log n).
In fact, the height of our drawings, which is O(log n) in the worst case, can be bounded more
tightly by O(pw(T )), where the pathwidth pw(T ) is a well-known graph parameter. It is known
that the pathwidth is a lower bound on the height of any planar graph drawing [15]. Therefore our
algorithm gives an O(1)-approximation algorithm on the height of plane drawings of Halin-graphs.
Similarly as was done for trees [27], and ordered trees [1], we can also argue that our bounds are
best-possible for some Halin-graphs.

Our paper is structured as follows. After reviewing the necessary background in Section 2, we
briefly argue in Section 3 how to use any tree-drawing algorithm to create (poly-line) drawings
of Halin-graphs. Section 4 gives the algorithm for straight-line drawings of small height, while
Section 5 defines a class of Halin-graphs that have small pathwidth, yet require a large height in
any (straight-line or poly-line) planar drawing. We conclude in Section 6.

2 Background and notations

We assume familiarity with graphs and basic graph-theoretic terms, see for example [11]. Through-
out this paper, we use n for the number of vertices in a given graph G = (V,E). A tree is a
connected graph without cycles. A ccw order at vertex v is a cyclic order of the incident edges
of v. (The name was chosen since in drawings the edges at v should appear in this order when
enumerated counter-clockwise around v.) Equivalently, the ccw order also describes a cyclic order
of the neighbours. We assume throughout that trees are ordered, i.e., come with a ccw order at
each vertex. A leaf of a tree is a vertex of degree 1. The cyclic order of the leaves is the order in
which leaves are visited during a traversal that follows edges at each vertex in ccw order.

A rooted tree is a tree together with one specified vertex (the root); this defines for any edge of
the tree a parent-child relationship with the parent being the endpoint that is closer to the root. A
rooted path is a rooted tree where every vertex has at most one child; a single vertex is considered
a rooted path. A binary tree is a rooted tree where every vertex has at most two children. For any
vertex v in a rooted tree T , we use Tv to denote the subtree of T rooted at v, i.e., vertex v and all
its descendants.

In a rooted tree, the term leaf is used only for those vertices that have no children, i.e., the root
is not considered a leaf unless the tree is a singleton vertex. If a vertex v is neither leaf nor root,
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then the first (or oldest) child of v is the child that comes after the parent in the ccw order at v.1

At the root, we assume that the first child is explicitly specified. For any vertex v, the age-order
of its children is the enumeration according to the ccw order at v starting with the first child and
ending with the last (or youngest) child. The age-order of the leaves is the order in which we visit
leaves during a traversal where children are visited in age-order; the first and last element of this
order are the first and last leaf of T .

Halin-graphs and skirted graphs: Let T be an (unrooted, ordered) tree without vertices of
degree 2. To avoid trivialities, we assume that T has at least three leaves. Let H be the graph
obtained by adding edges to create a cycle among the leaves of T in cyclic order; this is the Halin-
graph formed by T (and sometimes denoted H(T )). Tree T is called the skeleton of Halin-graph
H, and the edges of the cycle are called cycle-edges. See Figure 1.

Observe that any Halin-graph is planar, i.e., can be drawn without crossing in the plane. The
condition ‘no vertex has degree 2’ is not crucial for our drawing algorithm (though it was crucial
in the original study of Halin-graphs as minimal 3-connected planar graphs [22]). As in [16], we
use the term extended Halin-graph for a graph H(T ) obtained by taking an arbitrary tree T and
connecting its leaves in cyclic order, while a regular Halin-graph refers to a Halin-graph as above,
i.e., the skeleton has no vertices of degree 2.

r

`L

`R

(a) (b)

Figure 1: (a) A regular Halin-graph. Cycle-edges are thick blue dotted (or occasionally dashed)
throughout the paper. Nodes of skeleton T are black/gray, and the skirted graph H−(T ) would
omit the dashed cycle-edge if T were rooted at r. The inner skeleton uses squares, its leaf-reduction
is light gray. (b) A poly-line drawing obtained with the transformation in Section 3.

Our drawing algorithms will be based on rooted, rather than unrooted, trees, and therefore
exploit subgraphs of Halin-graphs formed by rooted trees. Let T be an (ordered) tree that has
been rooted at vertex r. Let H be the graph obtained by connecting the leaves of T in age-order in
a path; this is the skirted graph [26] formed by T (and sometimes denoted H−(T )). Graph H−(T )
is a subgraph of H(T ); it is missing either an edge (ℓF , ℓL) between the first and last leaf, or (if
the root r has degree 1) the path ⟨ℓF , r, ℓL⟩.

Pathwidth and rooted pathwidth: A path decomposition of a graph G is an ordered sequence
X1, . . . , Xξ of vertex-sets (bags) such that any vertex belongs to a non-empty subsequence of bags,

1The terms leftmost is more common than first/oldest for children and leaves, but in this paper we reserve “left”
for comparing x-coordinates in a drawing.
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and for any edge at least one bag contains both endpoints. The width of such a path decomposition
is maxi{|Xi| − 1}, and the pathwidth pw(G) is the minimum width over all path decompositions
of G. A graph consisting of a singleton vertex hence has pathwidth 0.

We will in this paper almost only be concerned with the pathwidth of trees where an equivalent
definition is known. For a path P in a tree T , let T (T, P ) denote the connected components of the
graph obtained by removing the vertices of P . Suderman [27] showed that for any tree T we have

pw(T ) :=

{
0 if T is a single vertex,

minP maxT ′∈T (T,P ){1 + pw(T ′)} otherwise,

where the minimum is taken over all paths P in T . A path P that can be used to obtain the
minimum for pw(T ) is called a main path; it is not unique.

Our constructions will use a rooted tree T , and therefore employ width-parameters for rooted
trees explored in [5] and illustrated in Figure 2. Define the rooted pathwidth rpw(T ) to be

rpw(T ) :=

{
1 if T is a rooted path,

minPr
maxT ′∈T (T,Pr){1 + rpw(T ′)} otherwise,

where the minimum is over all rooted paths Pr of T . (The recursive formula differs from the one
for pathwidth only in that the path must end at the root; hence the name.) A path Pr that can
be used to obtain the minimum for rpw(T ) is called a spine; it is not unique. Whenever a spine
has been fixed, and v is a node on the spine with a spine-child (i.e., a child on the spine), then the
remaining children of v are called non-spine children and sometimes distinguished as before-spine
and after-spine children according to age-order. One can show that for any non-spine child c the
subtree Tc rooted at c satisfies rpw(Tc) < rpw(T ) [5]. The same paper also shows that for any
tree T and any choice of root of T , we have pw(T ) ≤ rpw(T ) ≤ 2pw(T ) + 1.

r

Figure 2: Skeleton T of the Halin-graph of Figure 1 has rpw(T ) = 3 if rooted at r. Spine-edges
are purple (dash-dotted) and thick for a spine Pr of T ; thin purple edges are spines of the subtrees
that would result from removing Pr.

Graph drawing: A poly-line is a simple curve that is the union of finitely many line segments;
the transition between two such segments is called a bend. A planar poly-line drawing Γ of a graph
G consists of assigning a point to each vertex and a poly-line (between the endpoints) to each edge
such that all points and poly-lines are disjoint except at incidences of the corresponding graph
objects. The drawing is called straight-line if there are no bends.
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A flat visibility representation of G consists of assigning a horizontal segment s(v) to every
vertex and a horizontal or vertical segment to every edge such that the segment of edge (u, v) ends
at the segments of u and v, and segments are disjoint otherwise. In our figures, vertex-segments
are thickened into boxes for ease of reading, see e.g. Figure 3.

We assume throughout that identifying features (i.e., points, bends, endpoints of segments)
have integral y-coordinates. The layers of a drawing Γ are the horizontal lines with integral y-
coordinate that intersect Γ; we usually enumerate them from top to bottom as 1, 2, . . . , h. The
number h of layers is called the height of Γ. Minimizing the height of drawings is the main objective
in this paper. Sometimes we demand integral x-coordinates as well; we then use the term column
for a vertical line of integral x-coordinate that intersects the drawing and let the width be the
number of columns.

We usually identify the graph object (vertex, edge) with the geometric object (point, poly-line,
segment) that it corresponds to in the drawing. Any drawing Γ is required to be planar (i.e.,
without crossing edges) by definition. We often require Γ to be plane, i.e. the counter-clockwise
cyclic order in which edges are incident to a vertex v in Γ reflects the ccw order at v in the ordered
tree. For a Halin-graph, a plane drawing Γ must also reflect the outer-face, i.e., the infinite region
of R2 \ Γ is adjacent to the cycle-edges.

For any drawing where all segments are horizontal or vertical, we can insert a layer below layer
ℓ by moving all defining features in layer ℓ′ > ℓ to layer ℓ′ +1; this maintains a plane drawing and
increases the height by 1. Similarly we can insert a column.

3 Transforming tree drawings

In this section, we show that any algorithm that gives plane tree-drawings can be used to obtain
plane poly-line drawings of Halin-graphs. Our idea is to draw the skeleton-tree T and insert the
cycle-edges C. As it will turn out, it suffices to take a drawing of a suitably chosen subtree of T ,
which may make the height bound a bit smaller and (as we will see) gives a tight bound.

To explain which subtree of T we use, we need a few definitions illustrated in Figure 1. Let
the inner skeleton of a Halin-graph be the tree T ′ obtained by deleting all leaves of the skeleton.
Define the leaf-reduction T ′′ of T ′ as follows. Start with T ′. While there exists a leaf ℓ in the
current tree such that the unique neighbour p of ℓ has degree at most 2, delete ℓ and repeat in the
remaining tree. So the leaf-reduction of a path is a single vertex, and the leaf-reduction in general
replaces any path of degree-2 vertices that ends at a leaf by a single edge.

We now have the following result:

Theorem 1 Let H(T ) be an extended Halin-graph and let T ′′ be the leaf-reduction of the inner
skeleton T ′. If T ′′ has a plane poly-line drawing Γ′′ of height h, then H(T ) has a plane poly-line
drawing of height 3h.

Proof: We prove the theorem by giving an algorithm InsertCycleEdges that converts Γ′′ into
the desired plane poly-line drawing. Figure 3 illustrates the steps of InsertCycleEdges, with
the final result in Figure 1b.

1. As a first step, insert a dummy-vertex at every bend of Γ′′ to get a straight-line drawing Γ′′
d

of a tree T ′′
d that is tree T ′′ with some edges subdivided. Also subdivide the same edges in

trees T ′ and T to get trees T ′
d and Td.
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(a) (b) (c)

(d)

Figure 3: Transform (a) a poly-line drawing of T ′′ (with a white dummy-vertex inserted at a bend)
into (b) a flat visibility representation. (c) Undo the leaf-reduction and widen vertex-segments so
that they have no vertical segments at the ends (x-coordinates are not to scale). Then (d) triple
the grid and insert cycle C and the leaves to get a flat orthogonal drawing (drawn to scale).

2. Next, convert straight-line drawing Γ′′
d into a flat visibility representation Γ′′

vr while main-
taining the same height and the ccw orders [3]. This makes all edges horizontal or vertical;
we may therefore assume (after enumerating vertical segments left-to-right) that all segments
begin and end at integral x-coordinates.

3. Next, expand visibility representation Γ′′
vr of T ′′

d into a visibility representation Γ′
vr of T ′

d.
Recall that T ′

d can be obtained from T ′′
d by repeatedly adding a leaf ℓ incident to a vertex p

that has degree at most one in the current tree. So the segment s(p) of p has (in the current
visibility representation) at most one incident horizontal edge segment. If (say) the left side
of s(p) has no incident horizontal edge segment, then insert (if needed) a column left of s(p)
to make space, and then place a (zero-length) segment for ℓ here and connect it horizontally
to p. Repeating this as needed gives a visibility representation Γ′

vr of T
′
d. By inserting further

columns and extending segments as needed, we may assume that any vertex-segment in Γ′
vr

has no incident vertical edge-segment in its leftmost and rightmost column.

4. Next, triple the grid, i.e., insert a new grid-line before and after each existing one; call the
result Γ′

3. Now surround the entire drawing of T ′
d with a cycle C by tracing along all segments.

Formally, take all points that are within L∞-distance 1 of some segment of Γ′
3, and let C be

the boundary of this set. Since we tripled the grid, boundary C is a single closed poly-line.
Let Γ′

C be the drawing where we have added C.

5. Now we insert the leaves of Td. Consider one such leaf ℓ and let v be its neighbour in the
inner skeleton T ′

d. Let e, e′ be the incident edges in T ′
d that are incident to v and nearest

to (v, ℓ) in the ccw order at v in Td. Put differently, edges e, e′ are consecutive at v in T ′
d

and edge (v, ℓ) falls between e and e′ in the order at v in Td. We say that ℓ belongs to angle
⟨e, v, e′⟩. Note that e = e′ is possible if v is a leaf.
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Since s(v) has no incident vertical edge in its first and last column in Γ′
vr (hence in the

first three and last three columns in Γ′
3), cycle C traces parallel to s(e), then is within unit

distance of s(v) during a poly-line that include at least one horizontal segment (call it sℓ),
and then traces parallel to s(e′). We place ℓ (and also all other leaves that belong to angle
⟨e, v, e′⟩) as points on sℓ and connect then vertically to s(v). (If needed, we can widen sℓ by
inserting further columns.)

6. This gives a flat orthogonal drawing Γod of Td: every vertex is represented by a horizontal
segment, and every edge is a poly-line with only horizontal or vertical segments. Furthermore,
the height is 3h and the drawing represents H(Td) since we took care to re-insert the leaves
exactly according to the planar embedding. Drawing Γod can be converted to a poly-line
drawing Γd of H(Td) of the same height [3].

7. Finally by reverting dummy-vertices of Td back to bends, we obtain the desired poly-line
drawing of H(T ).

□

Corollary 2 Any n-vertex extended Halin-graph H(T ) has a plane poly-line drawing of height
6pw(T ′′) + 3 ∈ O(log n) and width O(n), where T ′′ is the leaf-reduction of the inner skeleton.

Proof: It is known that T ′′ has a plane straight-line drawing Γ′′ of height 2pw(T ′′) + 1 [1]. The
height of Γ′′ is O(log n) since every tree has pathwidth at most log3(2n+ 1) [24].

Now apply algorithm InsertCycleEdges from Theorem 1 (we re-use the notations defined
there). There are no dummy-vertices, so T ′′

d = T ′′. Visibility representation Γ′
vr has width O(n)

after deleting redundant columns [3]. Creating Γod triples the height (so it is at most 6pw(T ′′)+3 ∈
O(log n)) and adds at most one column per leaf (keeping the width at O(n)). Finally converting a
planar flat orthogonal drawing into a planar poly-line drawing increases neither height nor width
[3], and so the result follows. □

Our construction may seem very wasteful (the cycle-edges have many bends that could be
removed with suitable post-processing stages), but as we shall see in Theorem 9, the height-bound
is tight, even for some regular Halin-graphs. We conjecture that the asymptotic bound on the area
cannot be improved, but no lower bound (other than the trivial Ω(n)) is known for the area of
drawings of Halin-graphs.

Corollary 2 can be seen as an approximation-algorithm for the height.

Corollary 3 There exists a linear-time 6-approximation algorithm for the height of a plane poly-
line drawing of a Halin-graph.

Proof: Consider a Halin-graph H and let T ′′ be the leaf-reduction of its inner skeleton. Any plane
drawing Γ of H induces a plane drawing Γ′′ of T ′′, and Γ′′ must have height at least pw(T ′′) [15].
Furthermore, the cycle-edges of H surround drawing Γ′′ since Γ is plane; this requires at least two
more units of height [9]. So any plane poly-line drawing of H has height at least pw(T ′′) + 2, and
Corollary 2 achieves at most 6 times this bound. One can easily find the drawing in linear time
following the steps of the proof. □

Using the same transformation-techniques, we can also get linear-area drawings of Halin-graphs
for which the skeleton is balanced in some sense. Define a complete binary tree to be a tree where
(when rooted suitable) every non-leaf vertex has exactly two children, and all children have the
same distance to the root.
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Observation 4 The Halin-graph for which the skeleton is a complete binary tree has a plane
poly-line drawing in O(n) area.

Proof: The complete binary tree has a so-called h-v-drawing of linear area, and specifically, width
and height O(

√
n) [7]. In this drawing, all vertices are points and edges are drawn horizontally or

vertically, so the drawing can be viewed as a flat visibility representation with width and height
O(

√
n). See Figure 4.

Now consider H(T ), where T is the complete binary tree, and so is the inner skeleton T ′. Use
the h-v-drawing of T ′ with width and height O(

√
n) as a flat visibility representation Γ′

vr, and
transform it into a poly-line drawings with steps 3-7 of algorithm InsertCycleEdges. Observe
that these steps at most triple the width and height since every leaf of T ′ has two attached leaves
of T . Hence the poly-line drawing has width and height O(

√
n) as desired. □

Figure 4: Drawing a complete binary tree in linear area (based on [7]), and drawing H(T ) in linear
area if T is a complete binary tree.

Likewise, the existence of linear-area h-v-drawings of Fibonacci-trees [7] or more generally AVL-
trees [8] means that Halin-graphs for which the skeleton is such a tree have linear-area drawings.

4 Straight-line drawings

The transformation of Section 3 creates poly-line drawings, and it is not at all clear whether one
could convert them into straight-line drawings without changing the height. We hence give a
second, completely different algorithm that creates a straight-line plane drawing of a Halin-graph,
at the cost of doubling the height. We show the following result:

Theorem 5 Every regular Halin-graph H(T ) has a straight-line drawing of height at most 12pw(T )−
3, and every extended Halin-graph H(T ) has a straight-line drawing of height at most 12pw(T )−1.

The proof of Theorem 5 will be done via Lemma 1 below. To state this lemma succinctly, we
introduce some notation. The characteristic function χ(·) evaluates to 1 if the expression inside
the parentheses is true, and to 0 otherwise. For a tree T , we use χext(T ) as a convenient shortcut
for

χ
(
H(T ) is an extended Halin-graph and not a regular Halin-graph

)
,

i.e., χext(T ) is 1 if some vertex of T has degree 2 and χext(T ) = 0 otherwise. Note that if T is
rooted and T ′ is a rooted subtree of T , then χext(T

′) ≤ χext(T ). We will show the following in
Section 4.1:
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Lemma 1 For any Halin-graph H(T ) where T has been rooted arbitrarily, there exists a plane flat
visibility representation with height at most 6rpw(T )− 9 + 2χext(T ).

We now argue that this lemma implies Theorem 5.

Proof: (of Theorem 5) Root T arbitrarily and use Lemma 1 to obtain a plane flat visibility
representation Γvr of H(T ) with height 6rpw(T ) − 9 + 2χext(T ). Transform Γvr into a plane
straight-line drawing Γ of the same height ([3], based on [12, 23]). Since rpw(T ) ≤ 2pw(T )+ 1 [5],
drawing Γ has height at most 12pw(T ) + 6− 9 + 2χext(T ), which implies the result. □

Similarly as in Corollary 3, one argues that this theorem gives a 12-approximation algorithm
on the height of a plane straight-line drawing of a Halin-graph.

4.1 Proof of Lemma 1

We first outline the idea for the proof of Lemma 1. We give a recursive algorithm that draws the
skirted graph H−(T ) by combining drawings of skirted graphs of rooted subtrees T ′ of T . We
draw tree T left-to-right, i.e., with parents to the left of their children. To be able to draw edges
of T , we impose that the root of each subtree T ′ occupies a point on the left side of the minimum
axis-aligned bounding box of the drawing of T ′.

To choose where to merge subtrees at children of the root, we use essentially the idea of Garg and
Rusu [21], except rotated by 90◦ and using a spine-child in place of the child with the largest subtree.
Thus, place the spine-child rightmost. All other subtrees are merged somewhere between the root
and the spine-child; specifically the left-to-right order contains first the before-spine children, then
the after-spine children, and then the spine-child. In particular, the left-to-right order of subtrees
does not reflect the age-order of the children.

With the drawing of each subtree T ′, we must also consider where to place the connector-edges
of T ′, i.e., the edges of H−(T ) that have exactly one endpoint in T ′ and the other endpoint in
T \ T ′. These are the edges from the root of T ′ to its parent, as well as the cycle-edges of H−(T )
(if any) that are incident to the first and last leaf of T ′. Because the left-to-right order of subtrees
does not necessarily reflect the age-order of children, we have to permit multiple ways of restricting
the location of the first/last leaf of T ′ so that we can insert these connector-edges without bends.

Drawing types: We construct six different types of drawings for a subtree T ′, denoted LLR-
drawing, RLL-drawing, RLR-drawing, LTL-drawing, LLL-drawing and LBL-drawing. The three
letters αβγ of this drawing-type specify restrictions on the position of the first leaf, the root, and
the last leaf of T ′, respectively. To explain these restrictions, we need two notations. We say that
(in a flat visibility representation) a vertex v occupies point p if segment s(v) includes point p.
Also, we use □(Γ) to denote the minimum enclosing axis-aligned box of Γ.

Definition 6 Let T be a rooted tree. Let Γ be a plane flat visibility representation of H−(T ) in
layers 1, . . . , h (enumerated top to bottom), for some h ≥ 2. We call Γ an αβγ-drawing (where
αβγ is any of the combinations LLR, RLL, RLR, LTL, LLL, LBL) if it satisfies the following (see
also Figure 5):

� If α = L, then the first leaf occupies the bottom left corner of □(Γ). Otherwise (α = R) it
occupies some point on the right side of □(Γ).

� Root r occupies some point on the left side of □(Γ). If β = T, then the root r is in layer 2.
If β = B, then r is in layer h− 1. Otherwise (β = L) r can be in any layer.
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� If γ = L, then the last leaf occupies the top left corner of □(Γ). Otherwise (γ = R) it occupies
some point on the right side of □(Γ).

LTL

1

2

h

r

`F

`L
1

h

r

`F

`L

LLR

1

h

r

`F

`L

RLR

Figure 5: Drawing types restrict the location of the first leaf ℓF , the root r and the last leaf ℓL.

Modifying drawings: To reduce the number of cases, we use a known method to modify a flat
visibility representation (see e.g. [2]). We revisit its details here because we must study how the
modification affects the drawing type.

Claim 7 Assume that H−(T ) has an LβL-drawing Γ of height h ≥ 2 for some β ∈ {T,B,L}. Then
for any α, γ ∈ {L,R} it also has an αLγ-drawing Γ′ of height h+χ(α=R)+χ(γ=R). Furthermore,
the first and last leaf are in the bottom and top layer of □(Γ′), respectively.

Proof: Figure 6a illustrates the transformation. The last leaf ℓL is in the topmost layer of □(Γ)
since it is in L-position and hence occupies the top-left corner. To achieve γ = R, add a new layer
above □(Γ), move ℓL into it, and expand it rightwards over the entire width of □(Γ). Its incident
vertical edges can simply be extended, while its incident horizontal edge (if any) can be re-routed
vertically. This leaves the bottom layer unchanged, so the first leaf ℓF retains its L-position. The
root r loses the T-position (if it was in it), but this is not a problem since we only promised an
L-position for the root in Γ′. Similarly one achieves α = R by adding a layer below □(Γ) and
moving ℓF into it. □
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Figure 6: (a) Achieving γ = R. (b) Drawings of height 2 if rpw(T ) = 1. (c) The case rpw(T ) = 2.
Path P ′ is purple (dash-dotted, with upward striped vertex-boxes), degree-2 vertices are light gray,
cycle-edges are blue (thick dotted). Bounding boxes of subtree-drawings are lightly shaded.

So if we have a method to create an LTL-drawing, then by using the claim we can convert it
into drawings of type RLL, LLR or RLR by adding one or two layers. The method can also be
used for creating LBL-drawings via the reversal trick: Consider the tree T rev where all orders of
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all children have been reversed. Create an LTL-drawing of H−(T rev), and flip it upside-down to
obtain an LBL-drawing of H−(T ). Hence, due to Claim 7, we will mostly only study how to create
LTL-drawings.

The special cases rpw(T) ≤ 2: If the rooted pathwidth of T is small, then we only construct
drawings for a subset of the six types defined earlier. For rpw(T ) = 1 this is a necessity, since not
all drawing types can exist when the first and last leaf are identical. For rpw(T ) = 2 this improves
the height-bound slightly.

Lemma 2 Let T be a rooted ordered tree with rpw(T ) = 1 and let αβγ be either LLR or RLL.
Then H−(T ) has a plane αβγ-drawing of height exactly 2. Furthermore, the unique leaf occupies
an entire layer of the drawing.

Proof: We only explain how to create the LLR-drawing; the other case is symmetric. The tree is
a rooted path ending at the unique leaf ℓF = ℓL. Place the leaf on layer 2 and the path to the leaf
(if any) on layer 1, in order and with the root leftmost. See Figure 6b. Note that if T is a single
vertex, then we intentionally include an empty layer in the drawing to achieve height exactly 2.
One verifies all restrictions on the drawing-type; here it is crucial that the R-position permits any
point on the right side for ℓL. □

Lemma 3 Let T be a rooted ordered tree with rpw(T ) = 2, and let αβγ be any of the combinations
LLR, RLL, RLR, and LLL. Then H−(T ) has a plane αβγ-drawing of height at most 6rpw(T )−
9 + χ(α=R) + χ(γ=R) + 2χext(T ).

Proof: We only explain how to construct an LLL-drawing, the other drawing-types are achieved
using Claim 7. Consider Figure 6c. Fix 5 layers and a spine P = ⟨s1, . . . , sS⟩ that goes from root
to a leaf. Let j be maximal such that sj has at least two children; by rpw(T ) > 1 such an index
exists. Place P ′ := ⟨s1, . . . , sj⟩ on layer 3, with the root s1 leftmost.

Any subtree T ′ ∈ T (T, P ′) has rooted pathwidth 1 since P is a spine and j was chosen maximal.
The root r′ of T ′ is a child of some spine-vertex; if it is an after-spine child or the last child of
sj , then use Lemma 2 to obtain an RLL-drawing of T ′, else obtain an LLR-drawing of T ′. Place
this drawing in the two layers above respectively below P ′, respecting the order of children. The
cycle-edges can now be drawn horizontally along layers 1 and 5, with the exception of the cycle-
edge that connects two leaves that are descendants of the next-to-last child and last child of sj ,
respectively. Since those leaves occupy the entire layer in their respective drawings, they can be
expanded rightward and the cycle-edge can then be drawn with a vertical segment on the right.
The first and last leaf of T are leftmost in the bottom and top layer, so after expanding them
leftward, if needed, they occupy the leftmost corners of the bounding box.

This gives an LLL-drawing of height 5. If χext(T ) = 0 then any subtree T ′ ∈ T (T, P ′) consists
of a single vertex. Therefore layers 2 and 4 contain no horizontal segment and can be deleted to
obtain height 3. So we get an LLL-drawing of height 3 + 2χext(T ) = 6rpw(T )− 9 + 2χext(T ). □

The induction hypothesis: We create drawings for larger rooted pathwidth using induction;
the following states the induction hypothesis. (It differs from Lemma 3 only in that LTL-drawings
and LBL-drawings are also permitted.)

Lemma 4 Let T be a rooted ordered tree with rpw(T ) ≥ 3, and let αβγ be any of the combinations
LLR, RLL, RLR, LLL, LTL and LBL. Then H−(T ) has a plane αβγ-drawing of height at most
6rpw(T )− 9 + χ(α=R) + χ(γ=R) + 2χext(T ).
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Before proving this lemma, we observe that it implies Lemma 1. Namely, take an LLL-drawing
Γ of H−(T ) obtained by Lemma 3 or 4. (We know rpw(T ) ≥ 2 since T was assumed to have at
least three leaves when unrooted.) Drawing Γ has height at most 6rpw(T ) + 9 + 2χext(T ). To
complete this into a drawing of H(T ), we must either add edges (r, ℓF ) and (r, ℓL) (if the root is
a leaf) or add edge (ℓF , ℓL). But in an LLL-drawing vertices ℓF , r, ℓL all occupy points on the left
side; by extending their segments leftward we can add the missing edges vertically and obtain the
desired visibility representation for Lemma 1.

To prove Lemma 4, it suffices to show how to construct an LTL-drawing as discussed above.
We use the following notations throughout. Let r be the root of T , let d be its degree, and let
c1, . . . , cd be the children of the root, in age-order. Let ℓiF and ℓiL (for i = 1, . . . , d) be the first and
last leaf of the rooted subtree Tci . Let cs be a child of r that maximizes rpw(Tcs); this belongs to
a spine [5], and therefore

rpw(Tci) < rpw(T ) for all i ̸= s. (1)

If rpw(Tcs) < rpw(T ) then (to avoid some cases) we re-assign s := d; note that this does not affect
the validity of (1).

We prove Lemma 4 by induction on rpw(T ). We know that rpw(T ) ≥ 3, so the base case
is rpw(T ) = 3. We do an inner induction on the size of the tree, and use as base case for the
inner induction that rpw(Tcs) < 3. Much of the construction will be the same for base case and
induction step, and we therefore prove them together.

Drawing subtrees up to the spine-child: We build the drawing left-to-right, beginning with
the root and then adding the subtrees at the children. See also Figure 7.
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Figure 7: The constructions if the spine-child is the last child. We also illustrate some subtrees
that have rooted pathwidth 1 (Tc2 in both figures, and Tcs on the right).

1. Define h := 6rpw(T )−9+2χext(T ) ≥ 9 and create h layers, enumerated from top to bottom.
If we can argue that our constructed drawing Γ fits within these layers, then the height-bound
for Lemma 4 holds.

2. [Handle the root]

Place the segment s(r) for root r in layer 2, with its left endpoint fixed (this will be the left
side of the bounding box of our drawing), while its right endpoint remains unfixed for now.
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Put differently, we think of s(r) as expanding rightward with each of the following steps. We
will stop expanding s(r) when adding the last child cd, which happens either in Step 4 or in
Step 8.

3. [Handle the before-spine children]

For i = 1, . . . , s− 1, let Γi be an LLR-drawing of H−(Tci). This can be obtained recursively
if rpw(Tci) ≥ 3 and via Lemma 2 or 3 otherwise. We claim that Γi has height at most h− 5.
This is obvious if rpw(Tci) = 1 since then Γi has height 2 ≤ h − 5 by h ≥ 9. Otherwise Γi

has height at most 6rpw(Tci)− 9 + 1 + 2χext(Tci). Since rpw(Tci) ≤ rpw(T )− 1 by (1) and
χext(Tci) ≤ χext(T ), this is at most 6rpw(T )−6−9+1+2χext(T ) = h−5. Place Γi in layers
6, . . . , h, to the right of everything drawn thus far and aligned to the bottom if its height is
less than h− 5.

Recall that we must draw the connector-edges of Tci , i.e., the edge (r, ci) as well as the cycle-
edges (if any) connecting ℓiF and ℓiL to the leaves at the older/younger sibling. We draw
these as follows:

� Vertex ci occupies a point on the left side of □(Γi). Since the segment of r extends
rightward as needed, we can hence add a vertical segment for (ci, r) after expanding (if
needed) the segment of ci slightly leftward beyond □(Γi).

� Leaf ℓiF occupies the bottom-left corner of □(Γi) and is hence placed in layer h of Γ.
For i = 1, leaf ℓiF is the first leaf of T ; expand its segment leftward within layer h until
it occupies the bottom-left corner of □(Γ). For i > 1, we need to create a segment for
connector-edge (ℓi−1

L , ℓiF ). Observe that ℓi−1
L is on the right side of □(Γi−1) while ℓiF is

on the left side of □(Γi), and these two bounding boxes are next to each other. If ℓi−1
L

and ℓiF are in the same layer, then we can connect them horizontally. Otherwise, expand
ℓi−1
L rightward and ℓiF leftward until they can be connected with a vertical segment.

� Connector-edge (ℓiL, ℓ
i+1
F ) will be drawn when handling ci+1.

4. [Handle the spine-child if s = d]

We have three cases for the spine-child cs. Assume first that s = d and rpw(Tcs) ≥ 2 and
consider Figure 7a. Recursively (or via Lemma 3) obtain an LLL-drawing Γs of H−(Tcs).
This has height at most h by rpw(Tcs) ≤ rpw(T ). Place Γs in layers 1, . . . , h, top-aligned
and to the right of everything drawn thus far (thus also ending the segment of r). Connector-
edges (cs, r) and (ℓs−1

L , ℓsF ) can be completed as in Step 3. Leaf ℓsL is the last leaf of T and in
layer 1; we can expand its segment leftward in layer 1 to occupy the top left corner of □(Γ).

Assume next that s = d and rpw(Tcs) = 1. (This can happen even though rpw(T ) ≥ 3 if we
re-assigned s.) See also Figure 7b. In this case there is no LLL-drawing of Tcs , but we use
instead the RLL-drawing Γs of Tcs from Lemma 2. Place it in layers 1 and 2 (thus also ending
the segment of r). Edge (r, cs) can be drawn (normally horizontally, but vertically if Tcs has
only one vertex). To route connector-edge (ℓs−1

L , ℓsF ), extend both ℓsF and ℓs−1
L rightward

beyond □(Γs) and add a vertical segment; this is feasible since ℓs−1
L is in R-position and not

in layer 1 or 2, while ℓsF occupies all of layer 1 in Γs. Leaf ℓ
s
L can again be expanded leftward

to occupy the top left corner.

Assume finally that s < d, i.e., the spine-child is not the last child of the root. The drawing
here is more complicated; the algorithm continues with Step 5 below.
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Our construction is done if s = d, so assume otherwise. This implies that rpw(Tcs) = rpw(T ),
for otherwise we would have re-assigned s to be d. So rpw(Tcs) ≥ 3, which means that we are
not in the base case of the inner induction. (Put differently, in the base case Step 4 finishes the
construction.) Crucially, by rpw(Tcs) ≥ 3 we can apply induction, rather than Lemma 2 or 3,
and use an LBL-drawing for the spine-child. This in turn permits us to route (r, cs) while leaving
sufficiently much space for the after-spine children. We first explain this in the case s ≤ d− 2; the
case s = d− 1 needs a minor variation that will be given later.
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Figure 8: (Top) The rest of the construction if s ≤ d− 2. (Bottom) The construction again, with
other subtrees that have rooted pathwidth 1.

The case s ≤ d− 2: If s ≤ d − 2, then continue building the drawing as follows (see also
Figure 8):

5. [Draw some connector-edges for the spine-child]

Place segments in layers h − 1 and h for cs and ℓsF , respectively; they begin to the right of
everything drawn thus far and will continue to expand rightward until Step 9. Draw (r, cs)
vertically. Draw connector-edge (ℓs−1

L , ℓsF ) similarly as in Step 3: horizontally if ℓs−1
L is in

layer h and vertically (after expanding the segments slightly) otherwise.

6. [Handle the first after-spine child]
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Let Γs+1 be an RLR-drawing of H−(Tcs+1
). If rpw(Tcs+1

) ≥ 2, then this can be obtained
recursively or via Lemma 3. If rpw(Tcs+1

) = 1, then use as Γs+1 the LLR-drawing of
Lemma 2; this is also an RLR-drawing since the unique leaf of Tcs+1

occupies all of layer
2 in Γs+1. Similarly as in Step 3 one argues that drawing Γs+1 has height at most h − 4.
Place Γs+1 in layers 3, . . . , h − 2, bottom-aligned and to the right of everything drawn thus
far. Connector-edge (r, cs+1) can be drawn vertically, the other two connector-edges will be
drawn when handling cs+2 and cs, respectively.

We crucially need that ℓs+1
F occupies the entire bottom layer of □(Γs+1). This is not guar-

anteed by its R-position alone, but holds if rpw(Tcs+1
) ≥ 2, because then Γs+1 was obtained

via Claim 7. It also holds if rpw(Tcs+1) = 1 since then ℓs+1
F occupies the entire bottom layer

of □(ΓS). Thus ℓ
s+1
F (which is placed in layer h− 2) can in future steps expand its segment

rightward as needed (it will be completed in Step 9).

7. [Handle more after-spine children]

For i = s+2, s+3, . . . , d−1, we process H−(Tci) and its connector-edges as we did in Step 3,
only we put the drawing three levels higher to reside in layers 3, . . . , h− 3.

One special situation occurs for i = s+2 if Tcs+1 was a rooted path. In this case, ℓs+1
L equals

ℓs+1
F and was placed in layer h − 2 and extended rightward, hence is below □(Γs+2) rather
than to its left. But we can then draw connector-edge (ℓs+1

L , ℓs+2
F ) by going downward from

ℓs+2
F .

8. [Handle the last child]

We process Tcd very similarly to Step 4, by using an LLL-drawing (if rpw(Tcd) ≥ 2) and an
LLR-drawing otherwise. This drawing Γd has height at most h − 6 by rpw(Tcd) < rpw(T )
and h ≥ 9. Place Γd in layers 1, . . . , h − 6, top-aligned; this ends the segment of r. Vertex
ℓdL is the rightmost leaf of T ; expand its segment leftward in layer 1 to occupy the top left
corner. Connector-edges (r, cd) and (ℓd−1

L , ℓdF ) are routed as in Step 4.

9. [Handle the spine-child if s < d]

Finally, recursively obtain an LBL-drawing Γs of H−(Tcs). This has height at most h by
rpw(Tcs) ≤ rpw(T ). Place Γs to the right of everything drawn thus far, bottom-aligned; this
ends the segment of ℓs+1

F (in layer h− 2) and completes the segments of cs and ℓsF (in layers
h−1 and h, respectively). Connector-edge (ℓs+1

F , ℓsL) can be drawn vertically after expanding
ℓsL leftward slightly beyond □(Γs); the other two connector-edges have already been drawn
in Step 5.

This ends the construction in the case s ≤ d− 2.

The case s = d− 1: In Steps 6 and 8 we used an RLR-drawing Γs+1 for cs+1 and an LLL-
drawing Γd for cd. If s = d − 1, then one drawing must take on both of these roles. To achieve
this, replace Steps 6-8 by the following:

6’. [Handle the unique after-spine child if s = d−1]

Let Γd be an RLL-drawing for H−(Tcd); this can be obtained recursively or via Lemma 2
or 3. Similarly as in Step 3 one argues that Γd has height at most h − 5. Place Γd in
layers 1, . . . , h − 5, top-aligned. Vertex ℓdL is expanded leftward and edge (r, cd) is routed
as in Step 8. Connector-edge (ℓs−1

F , ℓsL) will be drawn in Step 9, though it is now drawn
horizontally if Tcd is a rooted path. See Figure 9.
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Figure 9: The constructions if s = d− 1, for rpw(Tcd) ≥ 2 and rpw(Tcd) = 1.

In all cases we have constructed an LTL-drawing. We used h = 6rpw(T ) − 9 + 2χext(T ) ≥ 9
layers and argued that all drawings of subgraphs fit within this space. Hence Lemma 4 holds. As
discussed earlier this implies Lemma 1 and Theorem 5.

It is worth mentioning that this visibility representation can easily be found in linear time, as
long as coordinates of vertices are expressed initially via offsets to their parents, and evaluated to
their final value only after finishing the construction of the entire drawing.

4.2 Halin-graphs with maximum degree 3

Observe that in Figures 7 and 9 (where s ∈ {d−1, d}) there are three layers that have no horizontal
segments in them and so would not have been needed. This leads to the following.

Lemma 5 Let T be a rooted binary tree with rpw(T ) ≥ 2. Then H−(T ) has a plane LLL-drawing
of height 3rpw(T ) − 3 + χext(T ). If rpw(T ) ≥ 3, then it has a plane LTL-drawing of the same
height.

Proof: We only sketch the necessary changes to the previous proof here; the reader should be able
to fill in the details using Figure 10.

`F

`L

sj+1

sj

(a)

c1

`1F

LLR

`1L

`sF

`sL

LLL

cs

r

(b)

`sF

`sL

LBL

cs

r

`dF

RLL

`dL

cd

(c)

Figure 10: The constructions if the maximum degree is 3.

Consider first the case rpw(T ) = 2. If χext(T ) = 0, then Lemma 3 gives 3 = 3rpw(T ) −
3 + χext(T ) layers as desired. If χext(T ) = 1, then we want a drawing on four layers. Consider
Figure 10a. Let P ′ = ⟨s1, . . . , sj⟩ be as in the proof of Lemma 3. Draw P ′ from left to right,
with si (for 1 ≤ i ≤ j) on layer 2 if it has a before-spine child, and on layer 3 otherwise, and
connect edges of P ′ horizontally or vertically. Since T is binary, each non-spine child is the unique
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non-spine child of its parent, and this placement leaves two layers above or below its parent free
for placing the drawing of the subtree. For the spine-child sj+1, we re-use the layer of sj and place
the drawing of Tsj+1

to the right of sj . Cycle-edges can be connected as in Lemma 3.
For rpw(T ) ≥ 3, we create the drawing recursively as before. The key difference is that we

have d ≤ 2 children and hence one of s = d or s = d − 1 always applies. So construct a drawing
of H−(T ) as in Figure 7 or Figure 9, except use h = 3rpw(T ) − 3 + χext(T ) and in Step 3 place
drawing Γi for i < s in layers 3, . . . , h. See Figure 10b and 10c. □

If a Halin-graph has maximum degree 3, then its skeleton T is binary when rooting it at a leaf.
Taking the LLL-drawing of H−(T ) from Lemma 5 and expanding it to a drawing of H(T ) as in
the proof of Theorem 5 gives:

Theorem 8 Every Halin-graph H(T ) with maximum degree 3 has a straight-line drawing of height
at most 6pw(T ) + χext(T ).

5 Lower bounds on the height

Both papers that gave approximation algorithms for the height on tree drawings [1, 27] also con-
structed trees where this bound is tight. In particular, Batzill and the first author showed that
there exists an ordered tree that requires height 2pw(T ) + 1 in any plane drawing [1]. In the same
spirit, we now construct Halin-graphs that need as much height as we achieve with our algorithms
and show:

Theorem 9 There exists a regular Halin-graph H(T ) such that any planar poly-line drawing of
H(T ) requires at least 6pw(T ′′) + 3 layers, where T ′′ is the reduced tree of the inner skeleton of
H(T ).

Theorem 9 shows that the height-bound in Theorem 1 is tight. We can also show that Lemma 1
is tight; recall that this lemma gave constructions where the height depends on the rooted path-
width of the skeleton. Given an unrooted tree T , define rpwmin(T ) to be the minimum rooted
pathwidth over all choices of the root of T .

Theorem 10 There exists a regular Halin-graph H(T ) such that any planar poly-line drawing of
H(T ) requires at least 6rpwmin(T )− 9 layers.

Theorem 11 There exists an extended Halin-graph H(T ) such that any planar poly-line drawing
of H(T ) requires at least 6rpwmin(T )− 7 layers.

All three lower bounds hold even for drawings that do not necessarily respect the planar em-
bedding. The Halin-graphs for all three results are derived from the following trees:

Definition 12 For w ≥ 1, define rooted trees Cw and Fw together with their spines as follows:

� C1 consists of an edge (r, c), where r is the root and path ⟨r, c⟩ is the spine. Add a before-spine
and an after-spine child at r, and add two children at c. See Figure 11a.

� Fw is obtained from Cw as follows. Let r be the root of Cw. Add a parent p and a grand-
parent g to r, make g the root, and let the spine of Fw be the spine of Cw plus path ⟨r, c, g⟩.
At each of g, p, add a before-spine and an after-spine child. See Figure 11b.
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� Cw+1 is obtained as follows. Start with the spine, which is a path ⟨s1, . . . , sS⟩ for some
sufficiently large constant S that we will specify later, and make s1 the root. At each si for
i ̸= S, add D before-spine children and D after-spine children, for some sufficiently large
constant D that we will specify later. Then make each of these children the root of a copy of
Fw. See Figure 11c.
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Figure 11: (a) C1 and its skirted graph. (b) Obtaining Fw from Cw. Dashed edges only exist to
make the Halin-graph regular. (c) Obtaining Cw+1 from many copies of Fw. As always, cycle-edges
are blue (thick dotted) and spine-edges are purple (dash-dotted).

With the above trees we have defined a spine; as we will see in Observation 23 these are indeed
spines for purposes of the rooted pathwidth. Define h(w) := 6w − 3. We will show the following
(and argue in Section 5.5 that it implies the theorems):

Lemma 6 For w ≥ 1, any plane poly-line drawing of H−(Cw) uses at least h(w) layers.

5.1 Base case and outline

We will prove Lemma 6 by induction on w. In the base case (w = 1) vertex c in C1 is surrounded
by a 5-cycle C in H−(C1), consisting of the cycle-edges and the edges from root to the first and
last leaf. See Figure 11a. Since we need one layer for c, and two more layers to surround it, any
plane drawing of H−(C1) requires three layers, which proes the result by h(1) = 3.

The induction step will be proved over the next three subsections, but we sketch here the main
idea. Fix an arbitrary plane poly-line drawing Γ of H−(Cw+1) for some w ≥ 1. Tree Cw+1 contains
lots of copies of Fw. Therefore, Γ contains lots of copies of H−(Fw); each of them contains a copy
of H−(Cw) and therefore uses at least h(w) layers by induction.2

We want to show that Γ uses at least h(w+1) = h(w)+6 layers, and to do so, use two major
insights. First, while every copy of H−(Fw) uses at least h(w) layers, we can argue that there
must exist one copy of H−(Fw) that actually uses at least h(w) + 1 layers for its drawing. Since
H−(Fw) is a connected graph, therefore within its drawing there exists a poly-line π̂ that spans
h(w)+1 layers.

2To keep wordings simpler we often write “H−(Cw)” rather than “a drawing of H−(Cw)”.
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The second major insight is that we can find five interior-disjoint poly-lines inside Γ that
are disjoint from π̂ and that “bypass” it in some sense (see Figure 12 and Definition 14). It is
known that five bypassing poly-lines need five additional layers. Therefore the height is at least
h(w) + 1 + 5 = h(w+1).

Both the existence of π̂ and the existence of the five bypassing poly-lines are non-trivial. We
therefore structure our proof as follows. We first explain some conventions and how to preprocess
the drawing (Section 5.2). We then initially simply assume the existence of π̂, and also make some
assumptions on the layout of some subtrees; this makes finding the five bypassing paths very easy
(Section 5.3). Two of the assumptions are easily shown to hold by symmetry if D and S are big
enough (Section 5.4.1 and 5.4.2), but for the other two we need a complicated argument and in
particular the distinction between Cw and Fw (Section 5.4.3 and 5.4.4; the main argument is in
Claim 21).

5.2 Preliminaries and preprocessing

So assume that w ≥ 1 is fixed and let Γ be an arbitrary plane poly-line drawing of H−(Cw+1).
Enumerate the layers of Γ, from top to bottom, as 1, 2, . . . , h; we want to show that h ≥ h(w+1) =
h(w)+6. Assume for contradiction that h < h(w)+6. We may then assume that h = h(w)+5 by
integrality and because we can add empty layers to Γ. For two points p, q, we write p ≺ q (or “p
is left of q”) if p and q are on the same layer and p has smaller x-coordinate. Point p is between q1
and q2 is q1 ≺ p ≺ q2 or q2 ≺ p ≺ q1. We also need the notation of a polyline π within drawing Γ;
this is a poly-line that is a subset of the poly-lines used for edges in Γ. In particular, if we fix any
two points p, q of Γ, then there exists a poly-line within Γ that connects p and q, since Γ depicts a
connected graph. A layer of Γ is identified by its number ℓ, but slightly abusing notation we also
use ℓ for the set of points that belong to the layer so that we can write π ∩ ℓ for the set of points
that belong to both ℓ and a poly-line π.

A few minor modifications to drawing Γ will make later arguments easier and do not affect
the height. First, insert a bend into any edge-segment that crosses a layer without having a bend
there. Second, do the following for any spine-vertex si (with i < S) of Cw+1, and any non-spine
child g of si. Recall that g is the root of a copy of Fw and has three children; the first and last
child are leaves. Delete the two edges to these leaves; their sole purpose was to ensure that the
Halin-graph H(Cw+1) is regular and they will not be used in the proof below. With this, g now
has degree 2. For the third modification, if (si, g) is not drawn straight-line, then move g to the
bend on (si, g) nearest to si. This makes (si, g) a straight-line segment that (by the first step)
crosses no layer. So we may assume the following:

Observation 13 Let si (for some i < S) be a spine-vertex on layer ℓ (for some 1 ≤ ℓ ≤ h), and
let g be a non-spine child of si. Then g is in one of the layers ℓ−1, ℓ or ℓ+1, and (si, g) is drawn
as a straight-line segment.

Recall that any non-spine child g of a spine-vertex si is the root of a copy of Fw; we use F (g) to
denote this copy and Γ(g) for the drawing of H−(F (g)) induced by Γ (after pre-processing). Since
Γ(g) contains a drawing of H−(Cw) within, it must use at least h(w) layers by induction. We call
g a good child of si if Γ(g) does not intersect the layer containing si; otherwise we call g bad.

Finally we briefly review the concept of bypassing introduced in [4] (see also Figure 12). We
use here a version that is 90◦ rotated from the one in [4]. Recall that bends of a poly-line in Γ
(like all bends and vertices of Γ) are required to have integral y-coordinates.
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π̂

`

π1

πk

Figure 12: Poly-line π1, . . . , πk bypass poly-line π̂.

Definition 14 Let π1, . . . , πk be a set of poly-lines that are interior disjoint. Let π̂ be a poly-line
that is disjoint from π1, . . . , πk. We say that π1, . . . , πk bypass π̂ if there exists a layer ℓ such that

� layer ℓ intersects π̂,

� for i = 1, . . . , k, the endpoints ai, bi of poly-line πi are both in layer ℓ, and

� for i = 1, . . . , k, any point in π̂ ∩ ℓ is between ai and bi.

Lemma 7 [4] If a planar poly-line drawing Γ contains k poly-lines that bypass a poly-line π̂, and
if π̂ intersects h layers, then Γ uses at least h+ k layers.

5.3 The ideal case

We first argue that h = h(w) + 5 is impossible under some assumptions, and then show that this
ideal case must occur somewhere in Γ (up to symmetry) if S and D are big enough. Formally, the
ideal case occurs if the following conditions (C1-C4) hold (see also Figure 13):

`
sj1 sj2 sj3

`+ 1 g(2)

`+h(w)

b

to sj1

`+h(w)+1

g′j1 gj1 g′j3 gj3

π̂

g(1) g(3)

Γ(g(1)) Γ(g(3))

Γ(g(2))

`
sj1 sj2 sj3

`+ 1 g(2)

`+h(w)

b

to sj3

`+h(w)+1

g′j1 gj1 g′j3 gj3

π̂

g(1) g(3)

Γ(g(1)) Γ(g(3))

Γ(g(2))

Figure 13: Illustration of the ideal case, both for g(3) ≺ b and b ≺ g(1).

(C1) There are three spine-vertices sj1 , sj2 , sj3 that are all located in one layer ℓ with ℓ ≤ min{5, h/2}.
Furthermore, 1≤j1<j2<j3<S and sj1 ≺ sj2 ≺ sj3 .



JGAA, 26(4) 473–502 (2022) 493

(C2) For k = 1, 2, 3, vertex sjk has at least five good after-spine children that are on layer ℓ+ 1.

Vertex sjk also has at least one before-spine child on layer ℓ+ 1.

(C3) Among the five good after-spine children of sj2 from (C2), there are three children g(1), g(2), g(3)

with g(1) ≺ g(2) ≺ g(3) and age-order g(1), g(2), g(3).

Furthermore, one of the spine-edges incident to sj2 has a bend or endpoint b on layer ℓ+ 1.
If b is on edge (sj2 , sj2−1) then g(3) ≺ b, otherwise b ≺ g(1).

(C4) There exists a path π̂ within Γ(g(2)) that intersects layer ℓ+1 and spans at least h(w) + 1
layers. All points in π̂ ∩ (ℓ+1) are between g(1) and g(3).

Assume for the rest of this subsection that (C1-C4) holds. For k = 1, 3, fix one before-spine
child g′jk and one after-spine child gjk of sik on layer ℓ+1; these exist by (C2). Now we define
five interior-disjoint paths in H−(Cw+1) and the corresponding poly-lines π1, . . . , π5 within Γ as
follows (see also Figure 14):

sj1

sj2

sj3

F (1) F (3)

b

g(1) g(2)

π1

π2

π4

π3

π5

gj1g′j1

gj3g′j3

g(3)

F (2)

π̂

Figure 14: Five bypassing paths in H−(Cw+1).

� π1: Follow the path that begins at g′j1 , continues within F (g′j1) to some leaf, and goes from
there along cycle-edges to some leaf of F (g′j3). From there it goes upwards in the tree to g′j3 .
This poly-line uses only F (g′j1) and F (g′j3) and cycle-edges between them.

� π2: Follow the path that begins at gj3 , continues within F (gj3) to some leaf, and goes from
there along cycle-edges to some leaf of F (g(1)). From there it goes upwards in the tree to
g(1). This poly-line uses only F (gj3) and F (g(1)) and cycle-edges between them.

� π3: Follow the path ⟨g(1), sj2 , g(3)⟩, which uses only edges incident to sj2 .

� π4: This poly-line is built symmetrically to π2: begin at gj1 , go to a leaf of F (gj1), from
there along cycle-edges to a leaf of F (g(3)), and from there to g(3). This poly-line uses only
F (gj1) and F (g(3)) and cycle-edges between them.
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� π5: By (C3) some point b of a spine-edge incident to sj2 lies on layer ℓ + 1. Poly-line π5

begins at b, and goes along spine-edges, away from sj2 , until it reaches either sj1 or sj3 . From
there it goes to the after-spine child on layer ℓ+1, i.e., either gj1 or gj3 . Except for this last
edge, poly-line π5 uses only spine-edges.

Claim 15 Poly-lines π1, . . . , π5 bypass π̂.

Proof: Directly from the edges that they use, one observes that the five poly-lines π1, . . . , π5 are
disjoint from π̂, and from each other except that they may have endpoints in common. (Here is it
crucial that g(1) is older than g(3) so that the used cycle-edges are disjoint.) Assume that b belongs
to (sj2 , sj2−1) (hence by (C3) we have g(3) ≺ b), the other case is symmetric. Then all five poly-
lines have one endpoint in {gj1 , g′j1 , g

(1)} and the other endpoint in {g(3), b, gj3 , g′j3}. Observe that

gj1 is necessarily left of g(1), otherwise the straight-line segments (sj1 , gj1) and (sj2 , g
(1)) would

intersect. Likewise g′j1 ≺ g(1) and g(3) ≺ gj3 , g
′
j3
. So all five poly-lines connect a point on layer

ℓ + 1 that is at or to the left of g(1) with a point on layer ℓ + 1 that is at or to the right of g(3).
Since π̂ uses only points on ℓ+ 1 that are between g(1) and g(3) by (C4), the claim holds. □

Since π̂ spans h(w) + 1 layers, therefore drawing Γ of H−(Cw+1) has at least (h(w) + 1) + 5
layers, contradicting h = h(w) + 5 as desired.

5.4 Existence of the ideal case

We now show that for S ≥ 42 and D ≥ 81, conditions (C1-C4) hold. We note that these constants
were chosen generously to keep the proof simpler; we can show (with lengthier arguments that we
omit here) that S ≥ 33 and D ≥ 21 is sufficient, and likely even smaller constants would work.

5.4.1 Condition (C1)

Before arguing that (C1) holds, we first need various results about non-spine children of one fixed
spine-vertex si with i < S.

Observation 16 For any non-spine child g of si, Γ(g) intersects all layers in {6, . . . , h(w)}.

Proof: There are h = h(w) + 5 layers in total, and by induction Γ(g) intersects at least h(w)
layers. Since F (g) is connected, therefore Γ(g) can avoid only the top five and the bottom five
layers. □

Claim 17 At most 72 non-spine children of si are bad.

Proof: We say that a non-spine child g has type (t, b) if the topmost and bottommost layer used
by Γ(g) are t and b. By Observation 16 we have 1 ≤ t ≤ 6 and h(w) ≤ b ≤ h(w) + 5, so there are
at most 36 types. Assume for contradiction that there are 73 = 2 · 36 + 1 bad non-spine children
of si, hence three of them (say g1, g2, g3) have the same type (t, b).

Consider Figure 15. For k = 1, 2, 3, let Bk be a poly-line within Γ(gk) that begins in layer t and
ends in layer b. Let Qk be a poly-line that starts at si (which is within layers {t, . . . , b} since gk
is bad), goes along the edge (si, gk) (by Observation 13 this is a straight-line segment, hence also
within {t, . . . , b}) and continues within Γ(gk) until it reaches Bk. Note that B1 ∪Q1 and B2 ∪Q2

and B3 ∪Q3 are disjoint except at si, and reside entirely within layers {t, . . . , b}.
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Exactly as in the proof of Lemma 5 in [1], one argues that this is impossible. Consider the
drawing induced by

⋃
k(Bk ∪Qk). Add a vertex v′ in layer t− 1 and connect it to the top ends of

B1, B2, B3 (they are in layer t). Likewise add a vertex v′′ in layer b+1 and connect it to the bottom
ends of B1, B2, B3 (they are in layer b). This gives a planar drawing of K3,3, with {si, v′, v′′} as
one side and the points Bk ∩Qk for k = 1, 2, 3 as the other side. Contradiction. □

si

v′

v′′

B1

B2

B3Q1

Q2

Q3

t

b

Figure 15: Three bad non-spine children of type (t, b) imply a planar drawing of K3,3. (Picture
based on [1]).

Corollary 18 The layer of si is in {1, . . . , 5} ∪ {h(w)+1, . . . , h(w)+5}.

Proof: If si were in any layer in {6, . . . , h(w)}, then by Observation 16 all 2D > 72 non-spine
children of si would be bad, a contradiction to Claim 17. □

Now we explain how to satisfy (C1). By S ≥ 42 we have 41 = 4 · 10 + 1 spine-vertices si for
which i < S. Each of them is on one of 10 possible layers by Corollary 18. By the pigeon-hole
principle, therefore at least five of these spine-vertices are on one layer ℓ. After a possible vertical
flip3 of Γ, we may assume ℓ ≤ h/2. If w = 1 then h = h(w) + 5 = 8, so ℓ ≤ 4. If w > 1, then
h(w) > 3 and therefore ℓ ≤ h/2 = 1

2 (h(w) + 5) < h(w) + 1; by Corollary 18 therefore ℓ ≤ 5.
Among the five spine-vertices on ℓ, we can (by the Erdős-Szekeres theorem [14]) find a subse-

quence of ⌈
√
5⌉ = 3 spine-vertices sj1 , sj2 , sj1 such that j1 < j2 < j3 and either sj1 ≺ sj2 ≺ sj3 or

sj3 ≺ sj2 ≺ sj1 . After a possible horizontal flip3 of Γ we have sj1 ≺ sj2 ≺ sj3 and therefore (C1)
holds.

5.4.2 From (C2) to (C3)

For the rest of the proof, we assume one particular choice of spine-vertices sj1 , sj2 , sj3 satisfying
(C1) has been fixed. We will defer the proof of condition (C2) to Subsection 5.4.4, since it will use
some more complicated ingredients. Instead we show here that (C2) implies (C3). We first need a
few more observations about non-spine children.

Observation 19 Assume that sjk (for some k ∈ {1, 2, 3}) has t ≥ 3 non-spine children g1, . . . , gt
in layer ℓ+1, with g1 ≺ · · · ≺ gt. Then the ccw order of neighbours at sjk contains g1, . . . , gt as
subsequence.

Proof: By Observation 13 edge (sjk , gi) is a straight-line segment for all i = 1, . . . , t. Since the
drawing is plane and g1, . . . , gt are all on the layer below sjk , the order of g1, . . . , gt on the layer
must reflect the ccw order at sjk . □

3Note that flipping the drawing reverses all edge-orders, so we might be proving a lower bound for Crev
w+1.But

Crev
w+1 is isomorphic to Cw+1, so their skirted graphs are isomorphic and this is not a problem.
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Observation 20 Assume that sjk (for some k ∈ {1, 2, 3}) has after-spine children g1, . . . , g5 in
layer ℓ+1, with g1 ≺ · · · ≺ g5. Then g1, g2, g3 or g3, g4, g5 (or both) are in age-order.

Proof: Let gy (with 1 ≤ y ≤ 5) be the youngest among children g1, . . . , g5. Since g1, . . . , g5
reflect the ccw order of neighbours at sjk by Observation 19, the age-order among g1, . . . , g5 hence
is gy+1, . . . , g5, g1, . . . , gy. If y ≥ 3 then g1, g2, g3 are hence in age-order, otherwise y ≤ 2 and
g3, g4, g5 are in age-order. □

Now assume that (C2) holds, and let g1, . . . , g5 be the five good after-spine children of sj2
on layer ℓ+1, in left-to-right order. We can find the subsequence g(1), g(2), g(3) in age-order from
Observation 20. To find point b, let g′ be the before-spine child of sjk on layer ℓ+1 that exists by
(C2).

g′

to sj3

`

`+1

sj2 sj2

g′

to sj1

g(1) g(2) g(3)

-OR-

g(1) g(2) g(3)

Figure 16: Possible arrangements of non-spine children of sj2 on layer ℓ+ 1.

Consider Figure 16. If g′ ≺ g(1), then to reflect the ccw order at sj2 , the spine-edge (sj2 , sj2+1)
(which lies in ccw order between g′ and g(1)) has a bend or endpoint b on layer ℓ+1, and g′ ≺ b ≺
g(1). This satisfies all conditions of (C3). Similarly if g(3) ≺ g′ then spine-edge (sj2 , sj2−1) has a
bend or endpoint on layer ℓ + 1 and (C3) holds. Finally g(1) ≺ g′ ≺ g(3) is impossible since this
would violate the ccw order at sik due to Observation 19 and since g(3) is younger than g(1). So
(C2) implies (C3).

5.4.3 From (C3) to (C4)

Now we show that (C3) implies (C4), but we phrase this claim more generally since we need it also
to argue (C2) below.

Claim 21 Assume sjk (for k ∈ {1, 2, 3}) has three good after-spine children g(1), g(2), g(3) on layer
ℓ+1 with g(1) ≺ g(2) ≺ g(3) and age-order g(1), g(2), g(3). Then there exists a path π̂ within Γ(g(2))
that intersects layers ℓ+1, . . . , ℓ+h(w)+1, and all points in π̂ ∩ (ℓ+ 1) are between g(1) and g(3).

Proof: Figure 17 illustrates the setup for this claim. Let I be the closed interval of points on
layer ℓ + 1 between g(1) and g(3), so the path π̂ that we want to find should intersect layer ℓ + 1
only in I. Recall that F (g(2)) denotes the copy of Fw attached at g(2), and that g(2) has a child p
and a grand-child r that is a root of a copy of Cw. We use the notation C for this copy of Cw. We
need an observation.

Observation 22 H−(C) uses no points in I.

Proof: Define a cycle κ as follows (see also Figure 17a). Start at child p of g(2), go to its last
child (which is a leaf of F (g(2))) and go from there along the cycle-edges to a leaf of F (g(3)). Go
upwards in tree F (g(3)) to g(3) and from there to sjk . Continue symmetrically through F (1), i.e.,
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go from sjk to g(1) to a leaf of F (g(1)), then along cycle-edges to the first child of p and then to p.
Cycle κ has g(2) and r on opposite sides due to the ccw order at p.

Now study the closed poly-line K traced by κ in Γ. Since ⟨g(1), si, g(3)⟩ is drawn with straight-
line segments between layers ℓ + 1 and ℓ, all points of I are on the same side of K as g(2) (or on
K). Since r (and therefore all of H−(C)) is on the opposite side of κ in the plane drawing, the
claim holds. □

g(1)
sjk

p

K

Γ(g(1)) Γ(g(3))

C

Γ(g(2))

I
g(2) g(3)

r

(a)

π̂

g(1)
sjk

Γ(g(1)) Γ(g(3))

B1

P

σ
B3

q

q̂

b3b1

Γ(g(2))

C

I
g(2) g(3)

`+1

`+h(w)

(b)

Figure 17: (a) Poly-line K separates I from H−(C). (b) The pocket P .

Let the pocket P be defined as follows, see also Figure 17b. For k = 1, 3, child g(k) is good,
hence Γ(g(k)) contains no point of layer ℓ, and hence contains points in layers ℓ+1, . . . , ℓ + h(w)
(and possible other layers below). Let Bk be a poly-line within Γ(g(k)) that connects g(k) to a
point bk on layer ℓ+ h(w). Choose bk such that Bk is minimal, i.e., no subset of Bk would do; in
particular all points in Bk \ bk are above layer ℓ+h(w). This implies that b1 ≺ b3 since g(1) ≺ g(3)

and poly-lines B1 and B3 are disjoint and intersect the same set of layers. Let the lid σ be the
line-segment b1b3; note that σ is not necessarily a segment of Γ. Now define pocket P to be the
closed set bounded by B1 ∪ ⟨g(1), si, g(3)⟩ ∪B3 ∪ σ.

Note that the points that belong both to layer ℓ+1 and to the interior of P belong to I, because
B1 andB3 are in layer ℓ+1 and below. Assume for contradiction that all of Γ(g(2)) (and in particular
therefore H−(C)) resides within pocket P . Since Γ(g(2)) is disjoint from Γ(g(1)),Γ(g(3)) and poly-
line ⟨g(1), sjk , g(2)⟩, it resides in the interior of P , except perhaps at lid σ. Therefore any points
of Γ(g(2)) on layer ℓ+ 1 are in the interior of P , hence in I. But H−(C) ⊂ Γ(g(2)) uses no points
on layer ℓ + 1 by Observation 22. Therefore H−(C) contains no points on layer ℓ + 1, hence fits
within h(w)− 1 layers, a contradiction.

So Γ(g(2)) must use points outside P , and also inside P (at g(2)), and by connectivity hence
contains points on the boundary of P . As discussed above, therefore Γ(g(2)) contains a point q on
the interior of lid σ. Furthermore, to reach the outside of P there must (for some choice of q) be
a poly-line within Γ(g(2)) that goes downward from q. Let q̂ be the next bend of this edge, which
is on layer ℓ+ h(w) + 1 by the preprocessing. Let π̂ be the poly-line within Γ(g(2)) from g(2) (on
layer ℓ + 1) to point q̂ (on layer ℓ + h(w) + 1). If we choose q such that π̂ is minimal, then with
the exception of the segment from q to q̂, poly-line π̂ is inside pocket P . In particular π̂ uses no
points on layer ℓ+1 except the ones that are in the pocket, hence on I. This proves the claim. □

Applying Claim 21 to the three vertices g(1), g(2), g(3) from Condition (C3) shows that (C3)
implies (C4).
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5.4.4 Condition (C2)

With Claim 21 in hand, we are finally in a position to prove that Condition (C2) holds. Consider
vertex sjk (for k ∈ {1, 2, 3}), which we know by (C1) to be on layer ℓ with ℓ ≤ min{5, h/2}. Vertex
sjk has has at least D − 72 ≥ 9 good after-spine children by Claim 17. Any such good child g
cannot be on layer ℓ by definition of good, so g is on layer ℓ− 1 or ℓ+ 1 by Observation 13.

Assume for contradiction that there are at most four good after-spine children on layer ℓ + 1.
So there are (at least) five good after-spine children that are on layer ℓ − 1; enumerate them as
g1, . . . , g5 with g1 ≺ · · · ≺ g5. Drawing Γ(gi) (for i = 1, . . . , 5) cannot use layer ℓ since gi is good,
and uses layer ℓ−1 at gi, so it must fit within layers 1, . . . , ℓ−1. This implies ℓ > h(w) since Γ(gi)
uses at least h(w) layers by induction.

If w ≥ 2 then this is impossible, because then h(w) ≥ 9 while ℓ ≤ 5 by (C1). So we must
have w = 1, hence h(w) = 3, and we know ℓ > 3. But we also know that h = h(w) + 5 = 8 and
ℓ ≤ h/2 = 4, so ℓ = 4. For purposes of applying Claim 21, rotate Γ by 180◦ to obtain drawing Γ′.
Since Γ has 8 layers, si (which was on layer ℓ=4 in Γ) is located on layer 5 in Γ′. Furthermore, its
after-spine children g5, . . . , g1 are on layer 6 (in this order), and their drawings only use layers 6,7,8.
By Observation 20, either g5, g4, g3 or g3, g2, g1 are in age-order. By Claim 21 drawing Γ′(g2) or
Γ′(g4) contain a path π̂ that spans h(w) + 1 = 4 layers. Contradiction, so (in Γ) there are at least
five good after-spine children of sjk on layer ℓ+1. This proves the claim of (C2) about after-spine
children, and the claim about before-spine children is proved similarly.

So we know (C1) and (C2) hold if S ≥ 42 and D ≥ 81, and we have argued that (C2) implies
(C3) which in turn implies (C4). This proves Lemma 6.

5.5 Proving the lower bounds

With Lemma 6 in place, we can now prove the lower-bound theorems. To do so, we first bound
the (rooted) pathwidth of Fw and trees derived from it.

Observation 23 We have rpw(Fw) ≤ w + 1, and for w ≥ 2 one possible spine for the rooted
pathwidth is ⟨g, p, s1, . . . , sS⟩.

Let F ′′
w be the leaf-reduction of the inner skeleton of H(Fw). Then pw(F ′′

w) ≤ w − 1, and for
w ≥ 2 one possible main path for the pathwidth ends at the root.

Proof: We proceed by induction on w. Tree F1 consists of a path ⟨g, p, r, c⟩ with leaves attached;
this has rooted pathwidth 2. Also F ′′

1 is a single vertex, since it is obtained from F1 by first deleting
all leaves (this gives a path), and then doing the leaf-reduction. So pw(F ′′

1 ) = 0.
Now consider Fw+1 for w ≥ 1. This consists of a path ⟨g, p, s1, . . . , sS⟩ with some leaves

and some copies of Fw attached. Using this path as spine, we immediately get rpw(Fw+1) ≤
rpw(Fw) + 1 ≤ w + 2. Also, F ′′

w+1 consists of path ⟨g, p, s1, . . . , sS−1⟩ with copies of F ′′
w attached;

using this path as main path therefore pw(F ′′
w+1) ≤ pw(F ′′

w) + 1 ≤ w. □

Thus far all constructions and lower bounds have been for plane drawings. But we can easily
prove lower bounds even if only planarity is required.

Proof: (of Theorem 9) We want to construct a regular Halin-graph H(T ) such that any planar
poly-line drawing of H(T ) requires at least 6pw(T ′′) + 3 layers, where T ′′ is the leaf-reduction of
the inner skeleton of H(T ).

For any w ≥ 2, consider the tree T obtained by taking two copies of Fw and combining them by
adding an edge between the two copies of the root g. Then T has no vertex of degree 2, so H(T )
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is regular. Fix an arbitrary planar poly-line drawing Γ of H(T ). Since H(T ) is 3-connected [22],
drawing Γ either respects the ccw orders at all vertices, or it uses the reverse orders everywhere
(in case of which we flip Γ horizontally and then it respect the ccw orders). But it is possible that
the infinite region of Γ is incident to some inner face of H(T ), i.e., some face different from the
one bounded by the cycle-edges. Tree T contains two copies of Fw, and the infinite region of Γ
can be an inner face of H−(Fw) for at most one of them. Therefore Γ contains a plane drawing of
H−(Fw), hence also one of H−(Cw). By Lemma 6 this requires at least h(w) = 6w − 3 layers.

Now consider the leaf-reduction T ′′ of the inner skeleton of T . For w = 1, the inner skeleton is
a path and hence T ′′ is a single vertex with pathwidth 0 = w − 1. For w ≥ 2, the leaf-reduction
T ′′ consists of two copies of F ′′

w (defined as in Observation 23). Each copy has pathwidth at most
w − 1, and this bound is obtained with a main path that ends at the root. Therefore we can
combine these two paths into one path and use it as main path for T ′′ to show pw(T ′′) ≤ w − 1.
Thus H(T ) requires 6w − 3 ≥ 6pw(T ′′) + 3 layers. □

We note that this lower bound implies a lower bound of Ω(logn) on the height, since Cw contains
cw vertices for some (rather large) constant c. However, this is not a new result; any Halin-graph
where the skeleton contains a tree of pathwidth Ω(log n) (e.g. a complete binary tree) requires
height Ω(log n) [15]. The main contribution of Theorem 9 is that it matches the upper bound in
Theorem 1. (This was also the reason why we used the leaf-reduction of the inner skeleton, rather
than the skeleton, in Theorem 1.)

Proof: (of Theorem 10) We want to construct a regular Halin-graph H(T ) such that any planar
poly-line drawing of H(T ) requires at least 6rpwmin(T )− 9 layers.

For any w ≥ 2, again let T be two copies of Fw, combined by adding an edge between the two
copies of g. We know that rpw(Fw) ≤ w + 1. The spine of Fw is ⟨g, p, s1, . . . , sS⟩; if we root T
at one copy of sS then we can use as its spine the two combined spines of the two copies of Fw

and so have rpwmin(T ) = rpw(Fw) ≤ w + 1. Graph H(T ) is a regular Halin-graph and since (as
above) any planar drawing of it includes a plane drawing of H−(Cw), graph H(T ) requires at least
h(w) = 6w − 3 ≥ 6rpwmin(T )− 9 layers by Lemma 6. □

Proof: (of Theorem 11) We want to show that there exists an extended Halin-graph H(T ) such
that any planar poly-line drawing of H(T ) requires at least 6rpw(T )− 7 layers. We give the lower
bound only for a plane poly-line drawing; it can be converted to one for planar poly-line drawings
by doubling the tree as above.

v1

v2

v3

r

Ĉ

Figure 18: The modified construction for Theorem 11. Tree T1 uses black circles.

We construct a rooted tree Ĉw that differs from Cw only in the base case. See Figure 18. Start
with the tree T1 from [1] that requires 3 layers in any plane drawing. This tree consists of a path
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⟨v1, v2, v3⟩, with three leaves attached at each of v1, v3, and six leaves attached at v2, three on each
side of path ⟨v1, v2, v3⟩. To obtain Ĉ2, attach a degree-1 vertex at every degree-1 vertex of T1, and
let r be the middle of the new degree-1 vertices near v1. Make r the root, and add two further
children at r that become first and last leaf of the resulting tree Ĉ2. Note that H−(Ĉ2) consists of
a cycle Ĉ (using the cycle-edges and edges from r to the first and last leaf) that surrounds T1. Any
plane poly-line drawing of H−(Ĉ2) therefore requires five layers because Ĉ encloses the drawing of
T1 that requires 3 layers. Also note that rpw(Ĉ2) = 2, using the path from r to v3 as the spine.

Now construct F̂w from Ĉw and Ĉw+1 from F̂w exactly as done in Definition 12. Set ĥ(2) = 5 and

ĥ(w) = ĥ(w−1) + 6 for w ≥ 3. Then H−(Ĉw) requires ĥ(w) layers in any plane poly-line drawing,
because this was shown for Ĉ2 above, and is proved for Ĉw for w ≥ 3 exactly as the induction step
of Lemma 6. Also as before rpw(Ĉw) ≤ rpw(Ĉw−1) + 1 for w ≥ 3, therefore rpw(Ĉw) ≤ w. So

any plane drawing of H(Ĉw) (which includes H−(Ĉw)) must use ĥ(w) = 6w − 7 ≥ 6rpw(Ĉw)− 7
layers. □

6 Conclusion

In this paper, we studied drawings of Halin-graphs whose height depends on the pathwidth of
the skeleton and therefore is within a constant factor of the optimum height. We gave a 6-
approximation for the height of poly-line drawings of such graphs, and a 12-approximation for the
height of straight-line drawings. We also showed that there exists a Halin-graph for which our
constructions give the minimum possible height. Many open problems remain:

� Can we find straight-line drawings of height c · pw(T ) +O(1), for c < 12 and ideally c = 6?

� We have focused on the height and ignored the width. For straight-line drawings, the detour
through flat visibility representations means that the width may be exponential [3]. Are there
straight-line drawings of height O(pw(T )) for which the width is polynomial (and preferably
linear)?

Last but not least, are there other planar graph classes that have approximation algorithms for
height (or perhaps the area) of planar graph drawings?
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