
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 26, no. 4, pp. 589–606 (2022)
DOI: 10.7155/jgaa.00610

Non-Crossing Shortest Paths in Undirected Unweighted
Planar Graphs in Linear Time

Lorenzo Balzotti 1 Paolo G. Franciosa 1

1Dipartimento di Scienze Statistiche, Sapienza Università di Roma, p.le Aldo Moro 5, 00185
Roma, Italy

Submitted: July 2022 Reviewed: October 2022

Revised: October 2022 Accepted: December 2022

Final: December 2022 Published: December 2022

Article type: Regular paper Communicated by: G. Liotta

Abstract. Given a set of terminal pairs on the external face of an undirected
unweighted planar graph, we give a linear-time algorithm for computing the union of
non-crossing shortest paths joining each terminal pair, if such paths exist. This allows
us to compute distances between each terminal pair, within the same time bound. We
also give a novel concept of incremental shortest path subgraph of a planar graph, i.e.,
a partition of the planar embedding in subregions that preserve distances, that can be
of interest itself.

1 Introduction

The problem of computing shortest paths in planar graphs arises in application fields such as
intelligent transportation system (ITS) and geographic information system (GIS) [27, 47], route
planning [6, 21, 40], logistic [36], traffic simulations [2] and robotics [28].

We are given a plane graph G = (V,E), i.e., a planar graph with a fixed planar embedding,
where V is a set of n vertices and E is a set of edges, with |E| = O(n). We are also given a set
of k terminal pairs (s1, t1), (s2, t2), . . . , (sk, tk) lying on the external face of G. The non-crossing
shortest paths problem (NCSP problem) consists in computing the union of k non-crossing shortest
paths in G, each joining a terminal pair (si, ti), provided that such non-crossing paths exist (they
exist if and only if the terminal pairs are well-formed, see Subsection 2.2).

Two paths in a plane graph are non-crossing if the (undirected) curves they describe in the
graph embedding do not cross each other, non-crossing paths may share vertices and/or edges

A preliminary version of this paper appeared in [5].

E-mail addresses: lorenzo.balzotti@uniroma1.it (Lorenzo Balzotti) paolo.franciosa@uniroma1.it (Paolo G. Franciosa)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00610
https://orcid.org/0000-0001-6191-9801
https://orcid.org/0000-0002-5464-4069
mailto:lorenzo.balzotti@uniroma1.it
mailto:paolo.franciosa@uniroma1.it
https://creativecommons.org/licenses/by/4.0/

590 Balzotti and Franciosa Non-Crossing Shortest Paths in Unweighted Planar Graphs

or darts, see Figure 1. This property obviously depends on the embedding of the graph; a com-
binatorial definition of non-crossing paths can be based on the Heffter-Edmonds-Ringel rotation
principle [22]. Non-crossing shortest paths in plane graphs are studied to optimize VLSI lay-
out [9, 33, 34].

(a) (b) (c) (d)

Figure 1: paths in (a) and (b) are crossing, while paths in (c) and (d) are non-crossing.

State of the art and related work Takahashi et al. [44] solved the NCSP problem in a non-
negative edge-weighted plane graph in O(n log k) time (actually, in their paper the time complexity
is O(n log n), that can easily reduced to O(n log k) by applying the planar single source shortest
path algorithm by Henzinger et al. [25]). Their result is improved by Steiger in O(n log log k)
time [43], exploiting the algorithm by Italiano et al. [26]. These two algorithms maintain the same
time complexity also in the unweighted case.

Our problem fits into a wider context of computing many distances in planar graphs. In the
positive weighted case, the all pairs shortest paths (APSP) problem is solved by Frederickson in
O(n2) time [19], while the single source shortest paths (SSSP) problem is solved in linear time by
Henzinger et al. [25]. The best known algorithm for computing many distances in planar graphs is
due to Gawrychowski et al. [20] and it allows us to compute the distance between any two vertices
in O(log n) time after a preprocessing requiring O(n3/2) time. In the plane unweighted case, SSSP
trees rooted at vertices in the external face can be computed in linear time as in [15], as already
mentioned. More results on many distances problem can be found in [10, 11, 13, 18, 37, 38].

If we are interested in distances from any vertex in the external face to any other vertex, then
we can use Klein’s algorithm [29] that, with a preprocessing of O(n log n) time, answers to each
distance query in O(log n) time.

Kowalik and Kurowski [31] deal with the problem of deciding whether any two query vertices
of an unweighted planar graph are closer than a fixed constant k. After a preprocessing of O(n)
time, their algorithm answers in O(1) time, and, if so, a shortest path between them is returned.

Non-crossing shortest paths are also used to compute max-flow in undirected planar graphs [23,
24, 41]. In particular, they are used to compute the vitality of edges and vertices with respect to
the max-flow [1, 4].

Balzotti and Franciosa [3] show that, given the union of a set of non-crossing shortest paths in
a plane graph, the lengths of each shortest path can be computed in linear time. This improves
the result of [44], that can only be applied when the union of the shortest paths is a forest.

Wagner and Weihe [46] present an O(n) time algorithm for finding edge-disjoint (not necessarily
shortest) paths in an undirected plane graph such that each path connects two specified vertices
on the external face of the graph.

In a geometrical setting Papadopoulou [39] finds the set of k non-crossing shortest paths between
k terminal pairs of points on the boundary of a simple polygon with n vertices in O(n+ k) time.

JGAA, 26(4) 589–606 (2022) 591

Eriksson-Bique et al. [17] study the problem of computing shortest paths in a two-dimensional
environment with polygonal obstacles.

More results on disjoint shortest paths for general graphs can be found in [7, 8, 14, 35] and
in [12, 30, 42] for the planar case.

Our results In this paper, we solve the NCSP problem on undirected unweighted plane graphs
in O(n) time. We improve, in the unweighted case, the results in [43, 44]. Given the union of
non-crossing shortest paths we can also compute distances between terminal pairs in total linear
time by algorithm in [3].

Our algorithm relies on two main results:

� an algorithm due to Eisenstat and Klein [15], that gives in O(n) time an implicit represen-
tation of a sequence of shortest path (SSSP) trees in an undirected unweighted plane graph
G, where each tree is rooted at a vertex of the external face of G. Note that, if we want to
compute shortest paths from the implicit representation of shortest path trees given in [15],
then we spend Θ(kn) time; this happens when all k shortest paths share a subpath of Θ(n)
edges.

� the novel concept of incremental shortest paths (ISP) subgraph of a plane graph G. We show
that an ISP subgraph of G partitions the embedding of G into distance preserving regions,
i.e., for any two vertices a, b in G lying in the same region R it is always possible to find a
shortest path in G joining a and b that is contained in R.

Improved results We specialize the problem of finding k non-crossing shortest paths in [44]
to the unweighted case, decreasing the time complexity from O(n log k) to O(n) (for every k).
Therefore, in the case of unweighted graphs we improve the results in [16, 32, 45].

Erickson and Nayyeri [16] generalized the work in [44] to the case in which the k terminal pairs
lie on h face boundaries. They prove that k non-crossing paths, if they exists, can be found in
2O(h2)n log k time. Applying our results, if the graph is unweighted, then the time complexity
decreases to 2O(h2)n.

The same authors of [44] used their algorithm to compute k non-crossing rectilinear paths with
minimum total length in a plane graph with r obstacles [45]. They found such paths in O(n log n)
time, where n = r+ k, which reduces to O(n) time if the graph is unweighted by using our results.

Kusakari et al. [32] showed that a set of non-crossing forests in a plane graph can be found in
O(n log n) time, where two forests F1 and F2 are non-crossing if for any pair of paths p1 ⊆ F1 and
p2 ⊆ F2, p1 and p2 are non-crossing. With our results, if the graph is unweighted, then the time
complexity becomes linear.

Our approach We represent the structure of terminal pairs by a partial order called genealogy
tree as in [44]. We introduce a new class of graphs, ISP subgraphs, that partition a plane graph
into regions that preserve distances. Our algorithm is split in two parts.

In the first part we use Eisenstat and Klein’s algorithm [15] that gives a sequence of shortest
path trees rooted at the vertices of the external face. We choose some specific shortest paths from
each tree to obtain a sequence of ISP subgraphs X1, . . . Xk. By using the distance preserving
property of regions generated by ISP subgraphs, we prove that Xi contains a shortest si-ti path,
for all i ∈ {1, . . . , k}.

592 Balzotti and Franciosa Non-Crossing Shortest Paths in Unweighted Planar Graphs

In the second part of our algorithm, we extract from each Xi a shortest si-ti path and we obtain
a set of non-crossing shortest paths that is our goal. In this part we strongly use the partial order
given by the genealogy tree.

Structure of the paper After giving some definitions in Section 2, in Section 3 we explain
the main theoretical novelty. In Section 4 first we resume Eisenstat and Klein’s algorithm in
Subsection 4.1, then in Subsections 4.2 and 4.3 we show the two parts of our algorithm, and we
prove the whole computational complexity. Conclusions are given in Section 5.

2 Definitions

Let G be a plane graph, we denote by f∞
G (or simply f∞) its unique external face, it will be also

referred to as the external face of G. Given a face f of G we denote by ∂f its boundary cycle.
Topological and combinatorial definitions of planar graph, embedding and face can be found in [22].

We recall standard union and intersection operators on graphs.

Definition 1 Given two undirected (or directed) graphs G = (V (G), E(G)) and H = (V (H),
E(H)), we define the following operations and relations:

� G ∪H = (V (G) ∪ V (H), E(G) ∪ E(H)),

� G ∩H = (V (G) ∩ V (H), E(G) ∩ E(H)),

� G ⊆ H ⇐⇒ V (G) ⊆ V (H) and E(G) ⊆ E(H),

� G \H = (V (G), E(G) \ E(H)).

Given an undirected (resp., directed) graph G = (V (G), E(G)), given an edge (resp., dart) e
and a vertex v we write, for short, e ∈ G in place of e ∈ E(G) and v ∈ G in place of v ∈ V (G).

We denote by uv the edge whose endpoints are u and v and we denote by −→uv the dart from
u to v. For each dart −→uv we define rev[−→uv] = −→vu, head[−→uv] = v and tail[−→uv] = u. For each vertex
v ∈ V (G) we define the degree of v as deg(v) = |{e ∈ E(G) | v is an endpoint of e}|.

For each ℓ ∈ N we denote by [ℓ] the set {1, . . . , ℓ}.
Given a (possibly not simple) cycle C, we define the region bounded by C, denoted by RC , as

the maximal subgraph of G whose external face has C as boundary.

2.1 Paths and non-crossing paths

Given a directed path p we denote by p its undirected version, in which each dart
−→
ab is replaced

by edge ab; moreover, we denote by rev[p] its reverse version, in which each dart
−→
ab is replaced by

dart
−→
ba.

We say that a path p is an a-b path if its extremal vertices are a and b; clearly, if p is a directed
path, then p starts in a and it ends in b. Moreover, given i ∈ [k], we denote by i-path an si-ti path,
where (si, ti) is one of the terminal pairs on the external face.

Given an a-b path p and a b-c path q, we define p ◦ q as the (possibly not simple) a-c path
obtained by the union of p and q.

Let p be a simple path and let a, b ∈ V (p). We denote by p[a, b] the subpath of p with extremal
vertices a and b.

We denote by ω(p) the length of a path p of a general positive weighted graph G. If G is
unweighted, then we denote the length of p as |p|, that is the number of edges.

JGAA, 26(4) 589–606 (2022) 593

2.2 Genealogy tree

W.l.o.g., we assume that terminal pairs are distinct, i.e., there is no pair i, j ∈ [k] such that
{si, ti} = {sj , tj}. Let γi be the path in f∞ that goes clockwise from si to ti, for i ∈ [k]. We also
assume that pairs {(si, ti)}i∈[k] are well-formed, i.e., for all j, ℓ ∈ [k] either γj ⊆ γℓ or γj ⊇ γℓ or γj
and γℓ have no common edges; otherwise it can be easily seen that it is not possible to find a set
of k non-crossing paths joining terminal pairs. This property can be easily verified in linear time,
since it corresponds to checking that a string of parentheses is balanced, and it can be done by a
sequential scan of the string.

We define here a partial ordering as in [3, 44] that represents the inclusion relation between
γi’s. This relation intuitively corresponds to an adjacency relation between non-crossing shortest
paths joining each pair. Choose an arbitrary i∗ such that there are neither sj nor tj , with j ̸= i∗,
walking on f∞ from si∗ to ti∗ (either clockwise or counterclockwise), and let e∗ be an arbitrary
edge on that walk. For each j ∈ [k], we can assume that e∗ ̸∈ γj , indeed if it is not true, then it
suffices to switch sj with tj ; in this way γj ⊆ γi∗ for every j ∈ [k].

We say that i ⪯ j if γi ⊆ γj . We define the genealogy tree TG of a set of well-formed terminal
pairs as the transitive reduction of poset ([k],⪯). By the above choice, i∗ is the root of the
genealogy tree, and there are as many possible genealogy trees as many leaves of each genealogy
tree. W.l.o.g., we assume that i∗ = 1.

If i ⪯ j, then we say that i is a descendant of j and j is an ancestor of i. Moreover, we say
that j is the parent of i, and we write p(i) = j, if i ⪯ j and there is no r such that i ⪯ r and
r ⪯ j. Figure 2 shows a set of well-formed terminal pairs, and the corresponding genealogy tree
for i∗ = 1.

From now on, in all figures we draw f∞ by a solid light grey line. W.l.o.g., we assume that
the external face is a simple cycle and that G is a biconnected plane graph. Indeed, if there is an
articulation point z in G, then it suffices to solve an instance for each component. The solution to
the original problem is the union of the solutions on the two components by observing that if si
and ti are in two distinct components, then every i-path passes through z.

s1t1

s2

t2

s3

t3s4

t4
s5

t5
s6

t6

s7

t7

e∗

1

26

347

5

Figure 2: on the left a set of well-formed terminal pairs. Any value in {1, 3, 5, 7} can be chosen as
i∗. If we choose i∗ = 1, then we obtain the genealogy tree on the right.

3 ISP subgraphs

In this section we introduce the concept of incremental shortest paths (ISP) subgraph of a plane
graph G, that is a subgraph incrementally built by adding a sequence of shortest paths in G starting
from f∞ (see Definition 2). The interest towards ISP subgraphs is due to the fact that for any two
vertices a, b in G lying in a same face f of the ISP subgraph there is always a shortest path in G

594 Balzotti and Franciosa Non-Crossing Shortest Paths in Unweighted Planar Graphs

joining a and b contained in f (boundary included). All the results of this section hold for positive
weighted graphs, where the length of a path is the sum of edge weights instead of the number of
edges.

This is the main novel result of this paper, that allows us to prove that, in order to build the
union of shortest paths joining terminal pairs, we can start from the union of some of the shortest
paths computed by the algorithm in [15].

Definition 2 A graph X is an incremental shortest paths (ISP) subgraph of a positive weighted
undirected plane graph G if X = Xr, where X1, X2, . . . , Xr is a sequence of subgraphs of G built
in the following way: X1 = f∞ and Xi = Xi−1 ∪ pi, where pi is a shortest xi-yi path in G with
xi, yi ∈ Xi−1.

Remark 1 All degree one vertices of an ISP subgraph of G are in f∞.

We define now operator ↓, that given a path π and a cycle C, in case π crosses C, replaces
some subpaths of π by some portions of C, as depicted in Figure 3(b). We observe that π ↓ ∂f
could be not a simple path even if π is.

Definition 3 Let C be a cycle in a positive weighted undirected plane graph G. Let a, b be two
vertices in RC and let π be a simple a-b path. In case π ⊆ RC we define π ↓ C = π. Otherwise,
let (v1, v2, . . . , v2r) be the ordered subset of vertices of π that satisfies the following: π[a, v1] ⊆ RC ,
π[v2r, b] ⊆ RC , π[v2i−1, v2i] and RC have no common edges and π[v2i, v2i−1] ⊆ RC , for all i ∈ [r].
For each i ∈ [r], let µi be the v2i−1-v2i path on C such that the region bounded by µi ◦ π[v2i−1, v2i]
does not contain RC . We define π ↓ C = π[a, v1]◦µ1◦π[v2, v3]◦µ2 . . .◦π[v2r−2, v2r−1]◦µr◦π[v2r, b].

Definition 2 and Definition 3 are depicted in Figure 3.

x1

y1x2

y2

x4

y4

x3
y3

x5

y5

(a)

C

π
π ↓ C

a

b

v1

v2

v3

v4 v5

v6

(b)

Figure 3: (a) an ISP subgraph X of G; extremal vertices xi, yi of pi are drawn, for i ∈ [5]. Different
faces of X have different colors. An example of Definition 3 is given in (b).

Note that every face f of an ISP subgraph X of G induces the region R∂f
in G, and this region

may contain vertices in G that are not in X. In the following theorem we show that, given any
face f of an ISP subgraph X of G, every path π in G whose extremal vertices are in R∂f is not
shorter than π ↓ ∂f .

Theorem 1 Let X be an ISP subgraph of a positive weighted undirected plane graph G. Let
f be any face of X, and let a, b be two distinct vertices in R∂f . For any a-b path π we have
ω(π ↓ ∂f) ≤ ω(π).

JGAA, 26(4) 589–606 (2022) 595

Proof: Let {Xi}i∈[r] be the sequence of ISP subgraphs such that X = Xr, and let pi be the path
that builds Xi from Xi−1. We assume that pi has no vertices in Xi−1 other than its endpoints xi

and yi, otherwise we can split pi on intersections with Xi−1 and repeatedly apply the same proof
to each portion of pi. We prove the thesis by induction on r for every choice of a face f of Xr,
a, b ∈ R∂f and a-b path π.

In the base case, where r = 1, Xr is equal to f∞ by Definition 2, thus for every path π we
trivially have that π ↓ ∂f∞ = π. Hence, ω(π ↓ ∂f) = ω(π) and the thesis holds. Let us assume
that the thesis is true for r − 1 and let us prove it for r.

Let f be a face of Xr and let f ′ be the unique face of Xr−1 such that f ⊂ f ′ (Figure 4(a) and
Figure 4(b) show faces f and f ′, respectively). Let a, b ∈ V (R∂f) and let π be an a-b path. Three
cases may occur:

case π ⊆ R∂f : the thesis trivial holds, since π ↓ ∂f = π;

case π ⊆ R∂f ′ and π ̸⊆ R∂f : since π ⊆ R∂f ′ and π ̸⊆ R∂f , then π crosses pr an even number
of times, thus π ↓ ∂f is not longer than π, since some subpaths of π have been replaced by
subpaths of pr with the same extremal vertices and pr is a shortest path (see Figure 4(c)
where π is the red dashed path);

case π ̸⊆ R∂f ′ : since f ⊆ f ′, it is easy to see that π ↓ ∂f = (π ↓ ∂f ′) ↓ ∂f . Let us consider
π′ = π ↓ ∂f ′. By induction, it holds that ω(π′) ≤ ω(π). We observe now that π′ ⊆ R∂f ′ and
π′ ̸⊆ R∂f , hence the previous case applies, showing that ω(π′ ↓ ∂f) ≤ ω(π′). Finally, the two
previous inequalities imply ω(π ↓ ∂f) = ω((π ↓ ∂f ′) ↓ ∂f) = ω(π′ ↓ ∂f) ≤ ω(π′) ≤ ω(π) (see
Figure 4(c) where π is the green continue path). □

f

pr

Xr

(a) a face f in Xr

f ′

Xr−1

(b) a face f ′ in Xr−1

Xr

a b

(c) two examples of π in the
second case (dashed red) and
third case (continuous green)

Figure 4: in (a) and (b) faces f and f ′ build on the ISP subgraph in Figure 3(a). In (c) we depict
the second and third case of the proof of Theorem 1.

We can state now the main property of ISP subgraphs.

Corollary 2 Let X be an ISP subgraph of a positive weighted undirected plane graph G and let f
be a face of X. For every a, b ∈ R∂f there exists a shortest a-b path of G contained in R∂f .

4 Our algorithm

We summarize in Subsection 4.1 the result of Eisenstat and Klein’s paper [15], that deals with
the multiple-source shortest paths problem. For the sake of clarity, we split our algorithm in two
parts:

596 Balzotti and Franciosa Non-Crossing Shortest Paths in Unweighted Planar Graphs

� in Subsection 4.2 we introduce algorithm NCSPsupergraph, that builds a sequence {Xi}i∈[k]

of subgraphs of G such thatXk contains a shortest path for each terminal pair, and it possibly
contains some extra edges. We anticipate that Xi∪f∞ is an ISP subgraph of G, for all i ∈ [k].

� in Subsection 4.3 we present algorithm NCSPunion that, by using the sequence of graphs
{Xi}i∈[k] found by algorithm NCSPsupergraph, builds a directed graph that is exactly the
union of the shortest directed paths joining each terminal pair contained in the output of
algorithm NCSPsupergraph.

4.1 Eisenstat and Klein’s result

The algorithm in [15] takes as input an undirected unweighted plane graph G, where v1, v2, . . . , vr
is the sequence of vertices in the external face of G in clockwise order, and returns an implicit
representation of a sequence of shortest path trees Tvi , for i ∈ [r], where each Tvi is rooted at vi.

The sequence of trees Tvi , for i ∈ [r], is represented by explicitly listing the darts in Tv1 , and
listing the darts that are added to transform Tvi into Tvi+1 , for 1 < i ≤ r (for each added dart from
x to y, the unique dart that goes to y in Tvi is deleted; with the only two exceptions of the added
dart leading to vi, and the deleted dart leading to vi+1). Hence, the output of their algorithm is
Tv1 and a sequence of sets of darts. A key result in [15] shows that if a dart d appears in Tvi+1

\Tvi ,
then d cannot appear in any Tvj+1

\Tvj , for j > i. Thus the implicit representation of the sequence
of shortest path trees has size O(n). This representation can be computed in O(n) time.

4.2 Algorithm NCSPsupergraph

Algorithm NCSPsupergraph builds a sequence {Xi}i∈[k] of subgraphs of G by using the sequence
of shortest path trees given by Eisenstat and Klein’s algorithm. We point out that we are not
interested in the shortest path trees rooted at every vertex of f∞, but we only need the shortest
path trees rooted at si’s. So, we define Ti as the shortest path tree rooted at si, for i ∈ [k], i.e.,
Ti = Tsi . We denote by Ti[v] the path in Ti from si to v.

The algorithm starts by computing the first subgraph X1, that is just the undirected 1-path
in T1, i.e., T1[t1] (we recall that all Ti’s trees given by algorithm in [15] are rooted directed trees,
thus T1 is the undirected version of T1). Then the sequence of subgraphs Xi, for i = 2, . . . , k is
computed by adding some undirected paths extracted from the shortest path trees Ti’s defined by
Eisenstat and Klein’s algorithm.

We define the set Hi ⊆ Xi of vertices h such that at least one dart d is added while transforming
Ti−1 into Ti such that head[d] = h. Hence, Hi is the set of vertices of Xi whose parent in Ti differs
from the parent in Ti−1. At iteration i, we add path Ti[h] to Xi, for each h in Hi.

Lemma 1 Algorithm NCSPsupergraph has O(n) time complexity.

Proof: Eisenstat and Klein’s algorithm requires O(n) time, implying that the Hi’s and the Ti’s
can be found in O(n) time. Algorithm NCSPsupergraph visits each edge of G at most O(1) times
because it builds Xi without visiting edges in Xi−1 (in Line 7, Ti[h] can be found by starting in h
and by walking backwards on Ti until a vertex of Xi is found). The thesis follows. □

Figure 5 shows how algorithm NCSPsupergraph builds X4 starting from X3. Starting from X3

in Figure 5(a), Figure 5(b) shows the darts whose head is in H4. Consider the unique dart d whose
head is the vertex x: we observe that d is already in X3, this happens because rev[d] ∈ T3[t3].
Indeed, it is possible that at iteration i some portions of some undirected paths that we add in

JGAA, 26(4) 589–606 (2022) 597

Algorithm NCSPsupergraph:

Input: an undirected unweighted plane graph G and k well-formed terminal pairs
{(si, ti)}i∈[k] on the external face of G

Output: an undirected graph Xk that contains a set of non-crossing paths
P = {π1, . . . , πk}, where πi is a shortest si-ti path, for i ∈ [k]

1 Compute a shortest path tree T1 rooted at s1;

2 X1 = T1[t1];
3 for i = 2, . . . , k do
4 Xi = Xi−1;
5 Compute Ti from Ti−1 by the algorithm by Eisenstat and Klein [15];
6 Compute the set Hi of vertices of Xi whose parent in Ti differs from the parent in Ti−1;

7 For all h ∈ Hi, Xi = Xi ∪ Ti[h];
8 Let ηi be the undirected path on Ti that starts in ti and walks backwards until a

vertex in Xi is reached;
9 Xi = Xi ∪ ηi;

Line 7 are already in Xi−1. Figure 5(c) highlights
⋃

h∈H4
T4[h] and η4, while in Figure 5(d) X4 is

drawn.
Subgraphs {Xi}i∈[k] built by algorithm NCSPsupergraph, together with f∞, satisfy all the

hypothesis of Theorem 1. Indeed, paths added in Line 7 and Line 9 are shortest paths in G joining
vertices in Xi−1, thus fulfilling Definition 2. So, we exploit Theorem 1 to prove that Xi contains
an i-path, for i ∈ [k], and, in particular, Xk contains a set of non-crossing paths P = {π1, . . . , πk},
where πi is a shortest i-path, for i ∈ [k]. The main idea is to show that Xi contains an undirected
path that has the same length as the shortest i-path found by the algorithm by Eisenstat and
Klein. This is proved in Theorem 3.

Given a subgraph X of G, we say that an i-path p is the leftmost i-path in X if for every i-path
q ⊆ X it holds Rp◦γi

⊆ Rq◦γi
.

We say that an undirected path p always turns left if p chooses the leftmost edge, w.r.t. the
fixed embedding, in each vertex going from a to b, where a and b are the extremal vertices of
p. Note that the leftmost a-b path is not necessarily the path that starts in a and always turns
left until b is reached. To better understand the previous definition and the πi’s paths defined
in the following theorem, we refer to Figure 6, showing paths π1, π2, π3, π4 built on graph X4 in
Figure 5(d).

Note that the following theorem describes a set of non-crossing shortest paths, but it does not
solve our problem. Indeed if we extract πi from Xi, for each i ∈ [k], then we may spend O(kn)
time. We show how do it in linear time in the next section.

Theorem 3 Let πi be the undirected leftmost i-path in Xi, for i ∈ [k]. The following statements
hold:

3.(1) πi is the si-ti path in Xi that always turns left, for i ∈ [k],

3.(2) πi is a shortest i-path, for i ∈ [k],

3.(3) for all i, j ∈ [k], πi and πj are non-crossing.

Proof: We prove all the statements separately.

598 Balzotti and Franciosa Non-Crossing Shortest Paths in Unweighted Planar Graphs

s1t1 s2 t2 s3t3

(a) X3 in black

s1t1 s2 t2 s3t3

x

(b) X3 in grey and the darts
whose head is in H4 in red

s1t1 s2 t2 s3t3

s4

t4

(c)
⋃

h∈H4
T4[h] in red and η4
in green

s1t1 s2 t2 s3t3

s4

t4

(d) X4 in black

Figure 5: how algorithm NCSPsupergraph builds graph X4 starting from X3.

3.(1) For convenience, for each i ∈ [k], let λi be the undirected path on Xi that starts in si and
always turns left until it reaches either ti or a vertex x of degree one in Xi; we observe that
λi is well defined. We have to prove that λi = πi.

Let i ∈ [k]. First, we observe that si ∈ Xi because si−1 ∈ Hi, thus, by Line 7, Ti[si−1] ⊆ Xi.
This implies si ∈ Xi as we have claimed.

Let x be the extremal vertex of λi other than si; by Remark 1 and definition of λi, x ∈ f∞.
Assume by contradiction that x ̸= ti. Two cases are possible: either x ∈ V (f∞) \ V (γi) or
x ∈ V (γi) \ {ti}.

The first case cannot occur because Line 7 and Line 9 imply Ti[ti] ⊆ Xi, thus λi would cross
ηi, absurdum. In the second case, let us assume by contradiction that x ∈ V (γi) \ {ti}. Let
d ∈ λi be the dart such that head[d] = x. By definition of λi, vertex x has degree one in Xi.
By Line 2, Line 7 and Line 9, all vertices with degree one are equal to either sℓ or tℓ, for
some ℓ ∈ [k], and this implies that there exists j < i such that x ∈ {sj , tj}. This is absurdum
because there is not sj or tj in V (γi) \ {si, ti} such that j < i. Hence λi is an i-path, and,
by its definition, λi is the leftmost i-path in Xi. Therefore λi = πi.

3.(2) We prove that πi is a shortest i-path by using Theorem 1, indeed, Xi ∪ f∞ is an ISP
subgraph of G by construction. Let G′ be the graph obtained from G by adding a dummy
path q from si to ti in f∞ with high length (for example, |q| = |E(G)|). Let C be the cycle
πi ◦ q. We observe that Ti[ti] ↓ C = πi and C is the boundary of a face of G′. Thus, by
Theorem 1, |πi| ≤ |Ti[ti]|. Since Ti[ti] is a shortest path, then πi is a shortest path in G′,
hence it also is a shortest path in G.

JGAA, 26(4) 589–606 (2022) 599

3.(3) Let us assume by contradiction that there exist i, j ∈ [k] such that πi and πj are crossing,
with i < j. Thus πj has not turned always left in Xj , absurdum. □

s1t1 s2 t2 s3t3

s4

t4

Figure 6: paths π1, π2, π3, π4 built on graph X4 in Figure 5(d).

4.3 Algorithm NCSPunion

The graph Xk given by the algorithm NCSPsupergraph contains a shortest path for each terminal
pair, but Xk may also contain edges that do not belong to any shortest path. To overcome this
problem we apply algorithm NCSPunion, that builds a directed graph Yk =

⋃
i∈[k] ρi, where ρi is

a directed shortest i-path, for i ∈ [k]. Moreover, we prove that Yk can be built in linear time.
This implies that, by using the results in [3], we can compute the length of all shortest i-paths, for
i ∈ [k], in O(n) time (see Theorem 5).

We use the sequence of subgraphs {Xi}i∈[k]. By Theorem 3, we know thatXi contains a shortest
undirected i-path πi and we can list its edges in O(|πi|) time. But if an edge e is shared by many
πi’s, then e is visited many times. Thus obtaining

⋃
i∈[k] πi by this easy procedure requires O(kn)

time. To overcome this problem, we should visit each edge in
⋃

i∈[k] πi only a constant number of
times.

Now we introduce two useful lemmata. The first lemma shows that two directed paths λi

and λj that are uncomparable in the genealogy tree TG (i.e., such that i ⪯̸ j and j ⪯̸ i) cannot

share a dart, although it is possible that
−→
ab ∈ λi and

−→
ba ∈ λj . The second lemma deals with the

intersection of non-crossing paths joining comparable pairs.

Lemma 2 Let λi be a shortest directed i-path and let λj be a shortest directed j-path, for some
i, j ∈ [k]. If j is not an ancestor neither a descendant of i in TG, then λi and λj have no common
darts.

Proof: Let us assume by contradiction that λi and λj have at least one common dart, and let

d be the dart in λi ∩ λj that appears first in λi. Let R be the region bounded by λj [sj , tail[d]],

λi[si, tail[d]] and the clockwise undirected si-sj path in f∞ (Figure 7(a) shows λi, λj and R).
Being λj a simple path, then λj crosses λi in at least one vertex in λi[si, tail[d]]. Let x be the first
vertex in λi[si, tail[d]] after head[d] in λj .

Now by looking at cycle λi[x, head[d]] ◦ λj [head[d], x] shown in Figure 7(b), we prove that λi

and λj can be both shortest paths. Indeed, if λi is a shortest path, then λj [sj , tail[d]]◦λi[tail[d], x]◦
λj [x, tj] is shorter than λj because it does not contain d. Finally, if λj is a shortest path, then
λi[si, x] ◦ λj [x, head[d]] ◦ λi[head[d], ti] is shorter than λi because it does not contain d. □

600 Balzotti and Franciosa Non-Crossing Shortest Paths in Unweighted Planar Graphs

Lemma 3 Let {λi}i∈[k] be a set of non-crossing directed i-paths. Let i, j ∈ [k], if i ⪯ j, then
λi ∩ λj ⊆ λℓ, for all ℓ ∈ [k] such that i ⪯ ℓ ⪯ j.

Proof: Let us assume λi and λj have at least one common vertex and choose ℓ ∈ [k] such that

i ⪯ ℓ ⪯ j. Let v be a vertex in λi ∩ λj and let Q be the region bounded by λj [sj , v], λi[si, v] and
the clockwise undirected sj-si path in f∞ (region Q and vertex v are shown in Figure 7(c)). It is
clear that if v ̸∈ λℓ, then {λi, λj , λℓ} is not a set of non-crossing paths, absurdum. □

d

R si

tisj
tj

(a)

x

si

tisj
tj

(b)

Q

v

si
ti

sℓtℓ

sjtj

(c)

Figure 7: in (a) and (b) paths λj and λi, dart d, region R and vertex x used in the proof of
Lemma 2. In (c) region Q and vertex v used in the proof of Lemma 3.

Now we show how to use these two lemmata for our goals. Let ρi be a shortest directed i-path
and let ρj be a shortest directed j-path, for some i, j ∈ [k], i ̸= j. By Lemma 2, if i and j are
not comparable in TG, then ρi and ρj have no common darts. Moreover, by Lemma 3, if i is a
descendant of j in TG, then ρi ∩ ρj ⊆ ρp(i). By using these two facts, in order to list darts in ρi,
then it suffices to find darts in ρi \ ρp(i), for all i ∈ [k] \ {1} (we remind that i = 1 is the root of
TG). To this goal we use algorithm NCSPunion, that builds a sequence of directed graphs {Yi}i∈[k]

such that Yk is equal to
⋃

i∈[k] ρi, where ρi is a shortest directed i-path, for i ∈ [k].
We prove the correctness of algorithm NCSPunion in Theorem 4. At iteration i we compute

ρi \ ρp(i), showing that ρi \ ρp(i) = σi ∪ rev[τi], where σi and τi are computed in Line 5 and Line 6,
respectively. We observe that if ρi and ρp(i) have no common darts, then σi = rev[τi] = ρi.

To better understand Line 2 of algorithm NCSPunion, we recall that X1 is an undirected 1-path,
hence Y1 is the directed version of this path.

Lemma 4 Algorithm NCSPunion has O(n) time complexity.

Proof: Algorithm NCSPunion uses algorithm NCSPsupergraph, that has O(n) time complexity by
Lemma 1. Moreover, algorithm NCSPunion visits each dart of the “directed version” of Xk at most
O(1) times, where the directed version of Xk is the directed graph built from Xk by replacing each

edge ab with the pair of darts
−→
ab and

−→
ba. Thus, algorithm NCSPunion requires O(n) time, since

Xk is a subgraph of G. □

Theorem 4 Graph Yk computed by algorithm NCSPunion is the union of k shortest directed non-
crossing i-paths, for i ∈ [k].

Proof: Let {πi}i∈[k] be the set of paths defined in Theorem 3. For all i ∈ [k], we denote by −→πi the
directed version of πi, oriented from si to ti.

First we define ρ1 = −→π1 and for all i ∈ [k] \ {1} we define

JGAA, 26(4) 589–606 (2022) 601

Algorithm NCSPunion:

Input: an undirected unweighted plane graph G and k well-formed terminal pairs
{(si, ti)}i∈[k] on the external face of G

Output: a directed graph Yk formed by the union of directed non-crossing shortest paths
from si to ti, for i ∈ [k]

1 Compute X1 as in algorithm NCSPsupergraph;
2 Y1 is the directed version of X1 oriented from s1 to t1;
3 for i = 2, . . . , k do
4 Compute Xi as in algorithm NCSPsupergraph;
5 σi is the directed path that starts in si and always turns left in Xi until either σi

reaches ti or the next dart di of σi satisfies di ∈ Yi−1;
6 τi is the directed path that starts in ti and always turns right in Xi until either τi

reaches si or the next dart d′i of τi satisfies rev[d
′
i] ∈ Yi−1;

7 Yi = Yi−1 ∪ σi ∪ rev[τi];

ρi =

{−→πi [si, ui] ◦ ρp(i)[ui, vi] ◦ −→πi [vi, ti], if −→πi and ρp(i) share at least one dart,
−→πi , otherwise,

(1)

where we assume that if −→πi and ρp(i) share at least one dart, then ui and vi are the tail of the first
common dart and the head of the last common dart, respectively, where the order is with respect
to −→πi . The definition of ρi as in (1) is shown in Figure 8. Now we split the proof into three parts:
first we prove that {ρi}i∈[k] is a set of shortest paths (we need it to apply Lemma 2); second we
prove that {ρi}i∈[k] is a set of non-crossing paths (we need it to apply Lemma 3); third we prove
that Yk =

⋃
i∈[k] ρi (we prove it by Lemma 2 and Lemma 3).

{ρi}i∈[k] is a set of shortest paths: we proceed by induction on i. The base case is trivial
because π1 is a shortest path by definition. Let us assume that ρj is a shortest j-path, for
j < i, we have to prove that ρi is a shortest i-path. If −→πi and ρp(i) have no common darts,
then ρi =

−→πi by (1), thus the thesis holds because {πi}i∈[k] is a set of shortest paths. Hence
let us assume that −→πi and ρp(i) have at least one common darts, then it suffices, by definition
of ρi, that |πi[ui, vi]| = |ρp(i)[ui, vi]|. It is true by induction.

{ρi}i∈[k] is a set of non-crossing paths: we proceed by induction on i. The base case is trivial
because there is only one path. Let us assume that {ρj}j∈[i−1] is a set of non-crossing paths,
we have to prove that ρi does not cross ρj , for any j < i.

By construction of ρi, ρi can not cross ρp(i). Thus if ρi and ρj are crossing and j is not an
ancestor of i, then either ρp(i) and ρj are crossing or πi and πj are crossing; that is absurdum
in both cases by induction and Theorem 3. Moreover if ℓ is an ancestor of i such that
ℓ ̸= p(i), then ρi does not cross ρℓ otherwise ρℓ would cross ρp(i), absurdum by induction.
Hence {ρi}i∈[k] is a set of non-crossing paths.

Yk is the union of ρi’s: now we prove that Yk =
⋃

i∈[k] ρi. In particular we show that ρ1 = −→π1

and for all i ∈ [k] \ {1}

ρi =

{
σi ◦ ρp(i)[ui, vi] ◦ rev[τi], if −→πi and ρp(i) share at least one dart,
−→πi , otherwise.

(2)

602 Balzotti and Franciosa Non-Crossing Shortest Paths in Unweighted Planar Graphs

Again, we proceed by induction on i. The base case is trivial, thus we assume that (1) is
equivalent to (2) for all i < ℓ. We have to prove that (1) is equivalent to (2) for i = ℓ.

If −→πℓ does not intersect any dart of ρp(ℓ), then (1) is equivalent to (2). Thus we assume that
−→πℓ and ρp(ℓ) share at least one dart. By (1) and (2) and by definition of σi and τi in Line 5
and Line 6, respectively, it suffices to prove that di ∈ ρp(i) and rev[d′i] ∈ ρp(i).

Now, by induction we know that di ∈ ρℓ for some ℓ < i, we have to show that di ∈ ρp(i).
By Lemma 2 and being {ρj}j∈[k] a set of shortest paths, it holds that ℓ is an ancestor or a
descendant of i. Being the sj ’s visited clockwise by starting from s1, then ℓ is an ancestor
of i. Finally, by Lemma 3 and being {ρj}j∈[k] a set of non-crossing paths, it holds that
ρi ∩ ρℓ ⊆ ρp(i). Being p(i) < i, then di ∈ ρp(i) as we claimed. By a similar argument, it holds
that rev[d′i] ∈ ρp(i). □

si
ti

sp(i)tp(i)
−→πi

ρp(i)
ui

vi

(a) path −→πi and ρp(i)

si
ti

sp(i)tp(i)
ρi

ρp(i)

(b) path ρi

Figure 8: proof of Theorem 4, explanation of (1).

It is proved in [3] that, starting from the union of a set of shortest (not necessarily non-crossing)
paths between well-formed terminal pairs, distances between terminal pairs can be computed in
linear time. Thus we can give the following main theorem.

Theorem 5 Given an undirected unweighted plane graph G and a set of well-formed terminal
pairs {(si, ti)} on the external face f∞ of G we can compute U =

⋃
i∈[k] pi and the lengths of all

pi, for i ∈ [k], where pi is a shortest i-path and {pi}i∈[k] is a set of non-crossing paths, in O(n)
time.

Proof: By Theorem 4, the required graph U is the undirected version Yk of the graph computed
by algorithm NCSPunion, that has O(n) time complexity by Lemma 4. Moreover, we compute the
length of pi, for all i ∈ [k], in O(n) time by using the results in [3]. □

Remark 2 If G is a plane graph with small integer weights, then we can obtain all the previous
results in O(n+L) time, where L is the sum of all edge weights of G, by splitting an edge of weight
r in G in r unweighted edges.

5 Conclusions

In this paper we have shown a linear time algorithm to compute the union of non-crossing shortest
paths whose extremal vertices are in the external face of an undirected unweighted plane graph.

The algorithm relies on the algorithm by Eisenstat and Klein for computing SSSP trees rooted
on the vertices of the external face and on the novel concept of ISP subgraph of a plane graph,

JGAA, 26(4) 589–606 (2022) 603

that can be of interest itself. The same approach cannot be extended to weighted plane graphs,
because the algorithm by Eisenstat and Klein works only in the unweighted case.

As stated in [16] our results may be applied in the case of terminal pairs lying on h face
boundaries, where h is any positive integer.

We wish to investigate the non-crossing shortest paths problem when each terminal pair contains
only one vertex on the external face.

Acknowledgements

The authors appreciate the unknown referee’s valuable and deep comments.

References

[1] G. Ausiello, P. G. Franciosa, I. Lari, and A. Ribichini. Max-flow vitality in undirected un-
weighted planar graphs. CoRR, abs/2011.02375, 2020. URL: https://arxiv.org/abs/2011.
02375, arXiv:2011.02375.

[2] Z. K. Baker and M. B. Gokhale. On the Acceleration of Shortest Path Calculations in Trans-
portation Networks. In IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, FCCM 2007, pages 23–34, 2007. doi:10.1109/FCCM.2007.46.

[3] L. Balzotti and P. G. Franciosa. Computing Lengths of Non-Crossing Shortest Paths in
Planar Graphs. CoRR, abs/2011.04047, 2020. URL: https://arxiv.org/abs/2011.04047,
arXiv:2011.04047.

[4] L. Balzotti and P. G. Franciosa. Max Flow Vitality of Edges and Vertices in Undirected
Planar Graphs. CoRR, abs/2201.13099, 2022. URL: https://arxiv.org/abs/2201.13099,
arXiv:2201.13099.

[5] L. Balzotti and P. G. Franciosa. Non-Crossing Shortest Paths in Undirected Unweighted
Planar Graphs in Linear Time. In Computer Science - Theory and Applications - 17th
International Computer Science Symposium in Russia, CSR 2022, Proceedings, volume
13296 of Lecture Notes in Computer Science, pages 77–95. Springer, 2022. doi:10.1007/

978-3-031-09574-0_6.

[6] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner. Combining
Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM Journal
of Experimental Algorithmics, 15, 2010. doi:10.1145/1671970.1671976.

[7] M. Bentert, A. Nichterlein, M. Renken, and P. Zschoche. Using a Geometric Lens to Find k
Disjoint Shortest Paths. In 48th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2021, volume 198 of LIPIcs, pages 26:1–26:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.26.

[8] K. Bérczi and Y. Kobayashi. The Directed Disjoint Shortest Paths Problem. In 25th An-
nual European Symposium on Algorithms, ESA 2017, volume 87 of LIPIcs, pages 13:1–13:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.

13.

https://arxiv.org/abs/2011.02375
https://arxiv.org/abs/2011.02375
http://arxiv.org/abs/2011.02375
https://doi.org/10.1109/FCCM.2007.46
https://arxiv.org/abs/2011.04047
http://arxiv.org/abs/2011.04047
https://arxiv.org/abs/2201.13099
http://arxiv.org/abs/2201.13099
https://doi.org/10.1007/978-3-031-09574-0_6
https://doi.org/10.1007/978-3-031-09574-0_6
https://doi.org/10.1145/1671970.1671976
https://doi.org/10.4230/LIPIcs.ICALP.2021.26
https://doi.org/10.4230/LIPIcs.ESA.2017.13
https://doi.org/10.4230/LIPIcs.ESA.2017.13

604 Balzotti and Franciosa Non-Crossing Shortest Paths in Unweighted Planar Graphs

[9] S. N. Bhatt and F. T. Leighton. A Framework for Solving VLSI Graph Layout Problems. Jour-
nal of Computer and System Sciences, 28(2):300–343, 1984. doi:10.1016/0022-0000(84)

90071-0.

[10] S. Cabello. Many Distances in Planar Graphs. Algorithmica, 62(1-2):361–381, 2012. doi:

10.1007/s00453-010-9459-0.

[11] D. Z. Chen and J. Xu. Shortest Path Queries in Planar Graphs. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, pages 469–478. ACM, 2000.
doi:10.1145/335305.335359.

[12] É. C. de Verdière and A. Schrijver. Shortest Vertex-Disjoint Two-Face Paths in Planar Graphs.
ACM Transactions on Algorithms, 7(2):19:1–19:12, 2011. doi:10.1145/1921659.1921665.

[13] H. N. Djidjev. Efficient Algorithms for Shortest Path Queries in Planar Digraphs. In Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science, pages 151–165. Springer,
1996.

[14] T. Eilam-Tzoreff. The Disjoint Shortest Paths Problem. Discrete Applied Mathematics,
85(2):113–138, 1998. doi:10.1016/S0166-218X(97)00121-2.

[15] D. Eisenstat and P. N. Klein. Linear-Time Algorithms for Max Flow and Multiple-Source
Shortest Paths in Unit-Weight Planar Graphs. In Symposium on Theory of Computing Con-
ference, STOC’13, pages 735–744. ACM, 2013. doi:10.1145/2488608.2488702.

[16] J. Erickson and A. Nayyeri. Shortest Non-Crossing Walks in the Plane. In Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pages
297–208. SIAM, 2011. doi:10.1137/1.9781611973082.25.

[17] S. D. Eriksson-Bique, J. Hershberger, V. Polishchuk, B. Speckmann, S. Suri, T. Talvitie,
K. Verbeek, and H. Yildiz. Geometric k Shortest Paths. In Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages 1616–1625.
SIAM, 2015. doi:10.1137/1.9781611973730.107.

[18] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, and
near linear time. Journal of Computer and System Sciences, 72(5):868–889, 2006. doi:

10.1016/j.jcss.2005.05.007.

[19] G. N. Frederickson. Fast Algorithms for Shortest Paths in Planar Graphs, with Applications.
SIAM Journal on Computing, 16(6):1004–1022, 1987. doi:10.1137/0216064.

[20] P. Gawrychowski, S. Mozes, O. Weimann, and C. Wulff-Nilsen. Better Tradeoffs for Ex-
act Distance Oracles in Planar Graphs. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 515–529. SIAM, 2018. doi:10.1137/1.

9781611975031.34.

[21] A. V. Goldberg. Point-to-Point Shortest Path Algorithms with Preprocessing. In SOF-
SEM 2007: 33rd Conference on Current Trends in Theory and Practice of Computer Sci-
ence, volume 4362 of Lecture Notes in Computer Science, pages 88–102. Springer, 2007.
doi:10.1007/978-3-540-69507-3_6.

[22] J. L. Gross and T. W. Tucker. Topological Graph Theory. Courier Corporation, 2001.

https://doi.org/10.1016/0022-0000(84)90071-0
https://doi.org/10.1016/0022-0000(84)90071-0
https://doi.org/10.1007/s00453-010-9459-0
https://doi.org/10.1007/s00453-010-9459-0
https://doi.org/10.1145/335305.335359
https://doi.org/10.1145/1921659.1921665
https://doi.org/10.1016/S0166-218X(97)00121-2
https://doi.org/10.1145/2488608.2488702
https://doi.org/10.1137/1.9781611973082.25
https://doi.org/10.1137/1.9781611973730.107
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1137/0216064
https://doi.org/10.1137/1.9781611975031.34
https://doi.org/10.1137/1.9781611975031.34
https://doi.org/10.1007/978-3-540-69507-3_6

JGAA, 26(4) 589–606 (2022) 605

[23] R. Hassin. Maximum Flow in (s,t) Planar Networks. Information Processing Letters, 13(3):107,
1981. doi:10.1016/0020-0190(81)90120-4.

[24] R. Hassin and D. B. Johnson. An O(n log2n) Algorithm for Maximum Flow in Undirected
Planar Networks. SIAM Journal on Computing, 14(3):612–624, 1985. doi:10.1137/0214045.

[25] M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian. Faster Shortest-Path Algorithms
for Planar Graphs. Journal of Computer and System Sciences, 55(1):3–23, 1997. doi:10.

1006/jcss.1997.1493.

[26] G. F. Italiano, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen. Improved Algorithms for Min
Cut and Max Flow in Undirected Planar Graphs. In Proceedings of the 43rd ACM Symposium
on Theory of Computing, pages 313–322. ACM, 2011. doi:10.1145/1993636.1993679.

[27] N. Jing, Y. Huang, and E. A. Rundensteiner. Hierarchical Optimization of Optimal Path
Finding for Transportation Applications. In CIKM ’96, Proceedings of the Fifth International
Conference on Information and Knowledge Management, pages 261–268. ACM, 1996. doi:

10.1145/238355.238550.

[28] D. Kim and N. F. Maxemchuk. Simple Robotic Routing in Ad Hoc Networks. In 13th IEEE
International Conference on Network Protocols (ICNP 2005), pages 159–168. IEEE Computer
Society, 2005. doi:10.1109/ICNP.2005.37.

[29] P. N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 146–155. SIAM, 2005. URL:
http://dl.acm.org/citation.cfm?id=1070432.1070454.

[30] Y. Kobayashi and C. Sommer. On shortest disjoint paths in planar graphs. Discrete Opti-
mization, 7(4):234–245, 2010. doi:10.1016/j.disopt.2010.05.002.

[31] L. Kowalik and M. Kurowski. Short Path Queries in Planar Graphs in Constant Time. In
Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 143–148.
ACM, 2003. doi:10.1145/780542.780565.

[32] Y. Kusakari, D. Masubuchi, and T. Nishizeki. Finding a Noncrossing Steiner Forest in Plane
Graphs Under a 2-Face Condition. Journal of Combinatorial Optimization, 5(2):249–266,
2001. doi:10.1023/A:1011425821069.

[33] F. T. Leighton. Complexity issues in VLSI: optimal layouts for the shuffle-exchange graph
and other networks. MIT press, 1983.

[34] F. T. Leighton. New Lower Bound Techniques for VLSI. Mathematical systems theory,
17(1):47–70, 1984.

[35] W. Lochet. A Polynomial Time Algorithm for the k-Disjoint Shortest Paths Problem. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages
169–178. SIAM, 2021. doi:10.1137/1.9781611976465.12.

[36] A. P. Masucci, K. Stanilov, and M. Batty. Exploring the evolution of London’s street network
in the information space: A dual approach. Physical Review E, 89(1):012805, 2014.

https://doi.org/10.1016/0020-0190(81)90120-4
https://doi.org/10.1137/0214045
https://doi.org/10.1006/jcss.1997.1493
https://doi.org/10.1006/jcss.1997.1493
https://doi.org/10.1145/1993636.1993679
https://doi.org/10.1145/238355.238550
https://doi.org/10.1145/238355.238550
https://doi.org/10.1109/ICNP.2005.37
http://dl.acm.org/citation.cfm?id=1070432.1070454
https://doi.org/10.1016/j.disopt.2010.05.002
https://doi.org/10.1145/780542.780565
https://doi.org/10.1023/A:1011425821069
https://doi.org/10.1137/1.9781611976465.12

606 Balzotti and Franciosa Non-Crossing Shortest Paths in Unweighted Planar Graphs

[37] S. Mozes and C. Sommer. Exact Distance Oracles for Planar Graphs. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pages 209–222. SIAM,
2012. doi:10.1137/1.9781611973099.19.

[38] Y. Nussbaum. Improved Distance Queries in Planar Graphs. In Algorithms and Data Struc-
tures - 12th International Symposium, WADS, volume 6844 of Lecture Notes in Computer
Science, pages 642–653. Springer, 2011. doi:10.1007/978-3-642-22300-6_54.

[39] E. Papadopoulou. k-Pairs Non-Crossing Shortest Paths in a Simple Polygon. International
Journal of Computational Geometry and Applications, 9(6):533–552, 1999. doi:10.1142/

S0218195999000315.

[40] B. Raney and K. Nagel. Iterative route planning for large-scale modular transportation sim-
ulations. Future Generation Computer Systems, 20(7):1101–1118, 2004. doi:10.1016/j.

future.2003.11.001.

[41] J. H. Reif. Minimum s-t Cut of a Planar Undirected Network in O(n log2(n)) time. SIAM
Journal on Computing, 12(1):71–81, 1983. doi:10.1137/0212005.

[42] A. Schrijver. Finding k Disjoint Paths in a Directed Planar Graph. SIAM Journal on Com-
puting, 23(4):780–788, 1994. doi:10.1137/S0097539792224061.

[43] A. J. Steiger. Single-Face Non-Crossing Shortest Paths in Planar Graphs. M.S. thesis, Uni-
versity of Illinois at Urbana-Champaign, 2017. URL: https://hdl.handle.net/2142/98345.

[44] J. Takahashi, H. Suzuki, and T. Nishizeki. Shortest Noncrossing Paths in Plane Graphs.
Algorithmica, 16(3):339–357, 1996. doi:10.1007/BF01955681.

[45] J. Takahashi, H. Suzuki, and T. Nishizeki. Shortest Non-Crossing Rectilinear Paths in Plane
Regions. International Symposium on Algorithms and Computation, 7(5):419–436, 1997. doi:
10.1142/S0218195997000259.

[46] D. Wagner and K. Weihe. A Linear-Time Algorithm for Edge-Disjoint Paths in Planar Graphs.
Combinatorica, 15(1):135–150, 1995. doi:10.1007/BF01294465.

[47] A. Ziliaskopoulos, D. Kotzinos, and H. S. Mahmassani. Design and implementation of parallel
time-dependent least time path algorithms for intelligent transportation systems applications.
Transportation Research Part C: Emerging Technologies, 5(2):95–107, 1997.

https://doi.org/10.1137/1.9781611973099.19
https://doi.org/10.1007/978-3-642-22300-6_54
https://doi.org/10.1142/S0218195999000315
https://doi.org/10.1142/S0218195999000315
https://doi.org/10.1016/j.future.2003.11.001
https://doi.org/10.1016/j.future.2003.11.001
https://doi.org/10.1137/0212005
https://doi.org/10.1137/S0097539792224061
https://hdl.handle.net/2142/98345
https://doi.org/10.1007/BF01955681
https://doi.org/10.1142/S0218195997000259
https://doi.org/10.1142/S0218195997000259
https://doi.org/10.1007/BF01294465

	Introduction
	Definitions
	Paths and non-crossing paths
	Genealogy tree

	ISP subgraphs
	Our algorithm
	Eisenstat and Klein's result
	Algorithm NCSPsupergraph
	Algorithm NCSPunion

	Conclusions

