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Abstract. We give a complete structure theorem for 1-complex s, t Hamiltonian
paths in rectangular grid graphs. We use the structure theorem to design an algorithm
to reconfigure one such path into any other in linear time, making a linear number of
switch operations in grid cells.

1 Introduction

Let G be an m×n rectangular grid graph, which is an induced, embedded subgraph of the infinite
integer grid and has m rows and n columns in an (m− 1)× (n− 1) rectangle RG. Let s and t be
the top left and bottom right corners of RG.

Definition 1 (1-complex path) A 1-complex path P is an s, t Hamiltonian path (s and t are
the endpoints of the path) of G, where each vertex of G can be connected to a vertex on one of
the sides E ,W,N ,S of RG by a straight line segment consisting of grid edges on the path, as in
Fig. 1(a). Since we regard G as an embedded graph any Hamiltonian path can only travel along
grid edges.
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Figure 1: (a) top and bottom: Two 1-complex s, t Hamiltonian paths P1 and P2. The sides of RG
are N ,S,W, and E . (b) clockwise from upper left: A sequence of switches (shown by red dots)
taking P1 to P2.

The term “1-complex” comes from k-complex paths, which are discussed in Section 7. In this paper,
we give algorithms to reconfigure 1-complex paths using switches in 1× 1 grid cells.

Suppose G has a cover of its vertices consisting of one s, t path (not necessarily Hamiltonian)
together with 0 or more cycles, all disjoint from each other. (For example, initially G is covered
by an s, t Hamiltonian path and no cycles.) If a grid cell has two parallel grid edges that belong
to such a cover and two parallel grid edges that do not, we call it a switchable cell with respect
to the cover; a switch exchanges the edges in that switchable cell that belong to the cover for the
two edges not in the cover (see Figs. 1(b) and 24). A switch may change the edges of the cover
incident to a particular vertex but not the degree of that vertex (each vertex has degree 2 except
for s and t, which have degree 1). Thus a switch produces a new cover comprising one s, t path
and 0 or more cycles, all disjoint from one another, and it may be viewed as an operation on the
family of such covers. Whether a particular grid cell may be switched depends on the cover.

The question we ask is this: given any two 1-complex paths ofG, can one of them be reconfigured
to the other with only O(|G|) switches in grid cells, and if so, can the sequence of switches to be
performed be computed efficiently? When the sequence of switches exists, then the intermediate
results remain in the family of covers having one s, t path and 0 or more cycles, all disjoint. See
Fig. 2(a) for an example where one switch creates a cover consisting of an s, t path and a cycle;
Fig. 2(b) shows the next switch operation, which joins the cycle and the path to give an s, t
Hamiltonian path.

As shown in Fig. 3, a “cross-separator” of Ps,t (i.e., a subpath ηi joining vertices on opposite
sides of RG) may have many forms, depending on whether and where this subpath has bends.
In previous work [34] we introduced a special case of 1-complex s, t Hamiltonian paths we called
“simple”. By definition, a simple s, t path has only “straight” cross-separators, so none of the
subpaths in Fig. 3 that contain “bent” cross-separators can occur in simple paths.

A key contribution of this work is a complete characterization of 1-complex s, t Hamiltonian
paths in rectangular grid graphs, building on our work in [34] which considered only the very
special case of simple paths. Using our characterization (structure theorem) for 1-complex paths,
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Figure 2: The first two switches in Figure 1(b).
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Figure 3: The structure of the s, t path Ps,t is used to break RG into sub-rectangles.

we achieve a linear-time algorithm for reconfiguration of 1-complex s, t Hamiltonian paths Ps,t.
Roughly, our algorithm uses the structure of a Ps,t to define smaller sub-rectangles within RG.
Path Ps,t determines s′, t′ Hamiltonian paths p′s′,t′ within each sub-rectangle. We define the sub-
rectangles so that our structure theorem as well as our new reconfiguration tools (Section 4) apply
to each path p′s′,t′ . See Fig. 3 and Section 5.

1.1 Related work

Reconfiguration of Hamiltonian cycles and Hamiltonian paths has attracted attention in recent
years. Takaoka [47] has shown that for some unembedded graph classes, deciding whether there is
a sequence of “switch” operations between two given Hamiltonian cycles is a PSPACE-complete
problem. An example of that author’s switch operation is shown in Fig. 4. The same switch
operation was used by Lignos [30]; he showed that that it can be decided in linear time whether a
Hamiltonian cycle can be reconfigured to another in a graph of maximum degree 5.

Nishat and Whitesides studied reconfiguration of Hamiltonian cycles of “bend complexity 1” in
grid graphs without holes [36, 37]; an application of their work in the context of 3D printing was
investigated by Bedel et al. [5], where they use reconfiguration to optimize the “toolpath” of 3D
printers under orientation objectives. Nishat defined 1-complex Hamiltonian paths in her doctoral
dissertation [33]. We studied the structure and reconfiguration of “simple” s, t Hamiltonian paths,
which constitute a subclass of 1-complex s, t Hamiltonian paths, in [34]. To the best of our
knowledge, this work initiates the study of characterization of Hamiltonian paths in embedded
graphs. In this paper, we use the characterization to give reconfiguration algorithms; we also give
a foundation for further research in reconfiguring Hamiltonian paths and cycles.
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Figure 4: A switch operation on a Hamiltonian cycle of K5: the edges (a, d) and (b, c) are replaced
with edges (a, b) and (c, d), where the two latter edges are not on the original Hamiltonian cycle.
This produces a new Hamiltonian cycle for K5.

Although reconfiguration of Hamiltonian paths and cycles is a recent topic in the literature, the
complexity and combinatorial aspects of the problem of finding Hamiltonian paths and cycles have
been studied for decades. Itai et al. initiated the study of Hamiltonian paths and cycles in grid
graphs [22]; related problems have been extensively studied over the years [52, 48, 49, 13, 12, 8,
28, 10, 23, 24, 41, 15, 46]. Hamiltonian paths and cycles in triangular and hexagonal grids, as well
as dimensions higher than 2, have also been explored [42, 18, 21, 4]. Researchers have studied the
structural properties of Hamiltonian cycles and paths in grid graphs for the purpose of counting
and enumerating such paths and cycles [27, 26, 25, 1, 29, 43, 11].

Our work was initially inspired by reconfiguration of plane triangulations using ‘flips’ [7].
Călinescu et al. studied reconfiguration of vertex-sets in (infinite) embedded grid graphs [9]. Many
graph problems have been studied for graphs embedded on the plane, including grid graphs, in
computational geometry (e.g., Chapter 10 in [16], Chapter 15 in [44]) and in graph drawing [40, 39].
The ‘sliding token’ puzzle is an example of reconfiguration of objects on the plane [2, 20, 51, 19].
For more information on reconfiguration problems, we refer the reader to the survey paper by
Nishimura [38].

We note that studying and understanding the structure of an entity has been crucial in obtain-
ing enumeration or algorithmic results in many research areas. For example, in graph drawing,
Schnyder [45] showed that any maximal planar graph can be decomposed into three “Schnyder
trees”, and gave a linear-time algorithm to obtain a planar straight-line embedding of such a graph
using the Schnyder trees. Understanding structure of an embedded Hamiltonian cycle in a grid
graph have led to describing the Hamiltonian cycle as a sequence of integers [29], which in turn
have helped to give generating functions for such cycles [11]. Nishat [32] has used the structure
of a “crease pattern” of a map to be folded to give an algorithm that recognizes whether a given
ordering of the unit squares of the map is feasible or not.

1.2 Our contributions

In this paper, we advance knowledge on structure and reconfiguration of Hamiltonian paths, moti-
vated by the many applications of both Hamiltonian cycles and Hamiltonian paths in grid graphs
(see e.g. [31], [17], [6], [14], [5], [3], [50]). We aim not only to study the problem, but also to lay
out the foundations for future research by making the following contributions:
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1. a complete structure for 1-complex s, t Hamiltonian paths (Section 3);

2. two powerful new reconfiguration tools that find cells to switch and then sequence the switches
to create straight path segments (Section 4); and

3. an algorithm to reconfigure any 1-complex Hamiltonian path to any other such path in O(mn)
time, making O(mn) switches in 1× 1 grid cells, where mn is the number of vertices of the
grid graph G, and therefore, the number of vertices of the input and target 1-complex paths.
It serves as a measure of the input size (Sections 5 and 6). The time required for each switch
is constant.

2 Preliminaries

We introduce terminology used throughout the paper, and state some properties of 1-complex s, t
Hamiltonian paths in grid graphs.

Fig. 5 demonstrates the basic terminology related to grid graph G. A vertex of G with coordi-
nates (x, y) is denoted by vx,y, where 0 ≤ x ≤ n− 1 and 0 ≤ y ≤ m− 1. The top left corner vertex
s of G is (0, 0); the positive x-direction is rightward and the positive y-direction is downward.

Assumption. G is an m × n grid graph, where m,n ≥ 4, and α and β are the bottom left and
top right corner vertices of G. Without loss of generality, we assume the input 1-complex path Ps,t

visits α before β as shown in Fig. 6, as otherwise, we can assume that the positive x-direction is
downward and the positive y-direction is rightward, thus interchanging the x and y coordinates.
The target 1-complex path for the reconfiguration as well as intermediate configurations may visit
β before α.

s(0, 0)

y

W

N

S

Column 3

x

E

Row 5

Column 10

Row 2

t(13, 7)
α

β

v10,5

v3,2

Figure 5: An 8× 14 rectangular grid graph.

Column x of G is the shortest path of G between vx,0 and vx,m−1, and Row y is the shortest
path between v0,y and vn−1,y. We call Columns 0 and n− 1 the west (W) and east (E) boundaries
of G (i.e., sides of RG), respectively, and Rows 0 and m−1 the north (N ) and south (S) boundaries
(sides). An internal vertex of G is a vertex that is not on any boundary of G.
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Throughout this paper, a 1-complex path P means a 1-complex s, t Hamiltonian path on G;
P visits each vertex of G exactly once and uses only edges in G. We denote by Pu,v the directed
subpath of P from vertex u to vertex v. Straight subpaths, i.e., subpaths without bends, of P are
called segments, denoted seg[u, v], where u and v are the segment endpoints. An edge (u, v) of G
that lies on P may be regarded as a segment of P and denoted seg[u, v].

s

t

β

α s(η1)

t(η1) t(η11)

s(η11) t(ν1)

s(ν1)

s(µ1)

t(µ1)

u1
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Figure 6: A 1-complex s, t path Ps,t in a 13× 28 grid graph.

Definition 2 (Cookie, cross-separator and corner separator) Every internal vertex v of G
lies on a maximal internal subpath of P , namely the subpath through internal vertices of G that
has endpoints vs and vt, where vs is the first boundary vertex met when travelling along P from
v towards s, and vt is the first boundary vertex met when travelling along P from v towards t.
Such a maximal internal subpath is called a cookie if vs and vt lie on the same boundary, a corner
separator if they lie on adjacent boundaries (e.g., W–N , E–S etc.), and a cross-separator if they
lie on opposite boundaries (i.e., either E–W or N–S). Therefore, every maximal internal subpath
of P is either a cookie, or a corner separator or a cross-separator.

In the 1-complex path in Fig. 6, the maximal internal subpaths Pu1,u2
and Pu3,u4

are two
cookies from the W boundary, the subpaths Ps(µ1),t(µ1) and Ps(ν1),t(ν1) are two corner separators,
and the subpaths Ps(η1),t(η1) and Ps(η11),t(η11) are cross-separators.

A cross-separator can be straight (Ps(η11),t(η11
) in Fig. 6), or it can have two adjacent bends

(Ps(η1),t(η1) in Fig. 6); but a cross-separator cannot have an odd number of bends as its endpoints
are on opposite boundaries. The possibility of a cross-separator with two adjacent bends can arise
because P is 1-complex, so each bend can be connected by a straight segment to a boundary.
Since the bends are adjacent vertices of G, all the other internal vertices of the cross-separator are
connected to a boundary by a segment of P as well. Indeed, if a cross separator has two bends they
must be adjacent in G as otherwise, the vertices between them could not reach a boundary of G by
a straight segment of P . We call a cross-separator with two adjacent bends a bent cross-separator.

A cookie c is one of four types, N , S, E , and W, depending on the boundary where c has its
base, i.e., the grid edge that connects the endpoints of c. See Figure 6. A cookie consists of three
segments of P ; the common length of the two parallel segments of c measures the size sz of c. The
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third segment of c is composed of a single edge, thus, c covers an sz × 1 rectangular region on the
plane.

We say a corner separator cuts off a corner of G. In Fig. 6, Ps(µ1),t(µ1) cuts off the corner s of
G, and Ps(ν1),t(ν1) cuts off the corner t of G.

From now on, we assume that a 1-complex path Ps,t has j ≥ 0 corner separators cutting off
s, and k ≥ 1 cross-separators, and ℓ ≥ 0 corner separators cutting off t. Traveling along Ps,t, we
denote the i-th corner separator cutting off s by µi, where 0 ≤ i ≤ j. We denote its internal bend
by b(µi), and its endpoints by s(µi) and t(µi), where s(µi) is the first endpoint met along Ps,t.

Similarly, we denote the i-th corner separator cutting off t by νi; endpoint s(νi) is met along
Ps,t before t(νi), with internal bend at b(νi), where 0 ≤ i ≤ ℓ. A corner separator that has one of
its endpoints connected to s or t by a segment of P is called a corner cookie. The path in Fig. 6
has j = 2 corner separators cutting off s, and k = 11 cross-separators, and ℓ = 1 corner separator
cutting off t. Note that a corner separator has exactly one bend.

Path P can have at most two corner cookies, one at either end of the path.
Similar to the corner separators, we denote the i-th cross-separator met along Ps,t by ηi where

0 ≤ i ≤ k. We denote its endpoints by s(ηi) and t(ηi), where s(ηi) is the first endpoint met. If ηi
is bent, then b(ηi) denotes the first bend met. In total, we have j corner separators µi cutting off
s, and k cross-separators ηi, and ℓ corner separators νi cutting off t. The path in Fig. 6 has j = 2
corner separators cutting off s, and k = 11 cross-separators, and ℓ = 1 corner separator cutting off t.

Definition 3 (Runs of Cookies) A run of cookies is a subpath of P consisting of cookies of the
same type, spaced one unit apart and joined by the single boundary edges between them, possibly
extended at either end by an edge joining a cookie endpoint to an adjacent boundary vertex.

A run of cookies is denoted Run[u, v], where u and v belong to the same boundary and delimit
the range of boundary vertices covered; Run[u, v] may consist of a single boundary edge (u, v).
The subpath Pu1,u4

in Fig. 6 is a run of two W cookies and is denoted by Run[u1, u4].
To describe the path structure, we define three types of runs, depending on the cookie sizes

along the run: the sizes may remain the same, or be non-increasing (denoted Run≥[u, v]) or
non-decreasing (Run≤[u, v]). Runs are assumed to have cookies of the same size unless specified
otherwise.

Definition 4 (Canonical Paths) A canonical path P is a 1-complex path with no bends at in-
ternal vertices. If m is odd, P can be of type W-E, filling rows of G one by one; if n is odd, P can
be of type N -S, filling columns one by one. Fig. 7 shows example of canonical paths.There are no
other types.

We now observe some properties of path Ps,t that we use in the next sections.

Lemma 1 Let Ps,t be a 1-complex Hamiltonian path from s to t, and let Ps,v be an initial subpath
of Ps,t. Then removal of Ps,v from G leaves exactly one non-empty component of G \ Ps,v.

Proof: Suppose for a contradiction that G \ Ps,v has two or more components. Then Ps,v leaves
at least two vertices uncovered. Hence vertex t cannot be equal to v, nor can t lie on Ps,v. Let Gt

be the component of G \ Ps,v containing t, and let w be a vertex of a component of G \ Ps,v that
is distinct from Gt. Then the subpath Pw,t of Ps,t crosses the initial subpath Ps,v, contradicting
that Ps,t is 1-complex and by definition, non-crossing. Thus the statement of the lemma holds. □
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Figure 7: Left: an W-E canonical path. Right: an N -S canonical path.

The lemma above finds immediate application in the proof of the next lemma, which gives some
basic properties of Ps,t used in later sections. An observation similar to this lemma in the more
restricted setting of “simple” s, t paths was stated without proof in our conference paper [34].

Lemma 2 (Property Lemma) Let Ps,t be a 1-complex Hamiltonian path of G that visits α before
β. Then Ps,t satisfies the following properties:

i) Ps,t visits α before any other vertex of S; vertex β is the last vertex of N that Ps,t visits;

ii) the subpath of Ps,t from s to α, i.e., Ps,α, covers all vertices of W; the subpath of Ps,t from
β to t, i.e., Pβ,t, covers all the vertices of E;

iii) no corner separators cut off α or β;

iv) any corner separators cutting off s occur in the subpath Ps,α of Ps,t; any corner separators
cutting off t occur in the subpath Pβ,t of Ps,t; and all cross-separators occur in the subpath
Pα,β of Ps,t;

v) the number k of cross-separators ηi is odd. The first and last cross-separators η1 and ηk
travel from S to N ;

vi) a cross-separator that travels from S to N is immediately preceded on Ps,t by an edge on S
that lies on the west side of the cross-separator and is immediately succeeded on Ps,t by an
edge on N that lies on the east side of the cross-separator; a cross-separator that travels from
N to S is immediately preceded on Ps,t by an edge of N that lies on the west side of the
separator and is immediately succeeded on Ps,t by an edge of S that lies on the east side of
the separator;

vii) when 1 < i ≤ k, each separator ηi lies east of its predecessor ηi−1.

Proof:

i) Suppose Ps,t visits vertex v on S before α. Then α and t belong to distinct components of
G \ Ps,v, contradicting Lemma 1. Thus Ps,t reaches α before any other vertex of S. Now
consider the 1-complex Hamiltonian path Pt,s. By the same reasoning, it visits β before any
other vertex of N . Hence Ps,t visits all other vertices of N before it reaches β.
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ii) The statement holds as otherwise, the path Ps,α would contradict Lemma 1. By considering
the initial path Pt,β of the reverse path Pt,s, it follows that the final subpath Pβ,t of Ps,t

covers all the vertices of E .

iii) Suppose for a contradiction that Ps,t contains a subpath Pu,v that is a corner separator
cutting off α or β, where u occurs before v on Ps,t. Then the initial subpath Ps,v contradicts
Lemma 1. (See Fig. 8(a) and (b).)

iv) Any corner separator µi cutting off s has one endpoint vW on W and one endpoint vN on
N . By part ii) above, vW lies in Ps,α. We claim that the other endpoint vN of µi also lies
on Ps,α. If vN occurs before vW on Ps,t, the claim is true. If vN occurs after vW , then
Ps,t contains horizontal seg[vW , b(µi)] and vertical segment seg[b(µi), vN ], neither of which
contains α. Therefore the claim is true in this case as well.

By property i) above, all starting endpoints of cross-separators that travel from S to N occur
after α on Ps,t, and their terminal endpoints on N occur before β on Ps,t. Therefore the
cross-separators that travel from S to N occur on Ps,t between α and β. By considering the
reverse path Pt,s and using similar reasoning, it follows that all cross-separators that travel
from N to S occur on Ps,t between α and β.

v) By assumption, Ps,t reaches α before β. After Ps,t reaches α, it must return to N in order to
reach β. Since Ps,α covers W and Pβ,t covers E , path Pα,β must contain a cross-separator to
return to N . Thus the first cross-separator η1 travels from S to N . After η1, path Pα,β may
possibly make round trips from N to S and back to N . To reach β, the last cross-separator
ηk must travel from S to N . Therefore, k ≥ 1 is odd. Recall that the ηi are indexed by the
order in which they are met along Ps,t. If ηi+1 were west of ηi, then Ps,t would cross ηi to
reach t, i.e., Ps,t(η1) contradicts Lemma 1.

vi) Let ηi be a cross-separator that travels from S to N such that the start vertex s(ηi) is
immediately preceded on Ps,t by vertex v, where v lies one unit east of s(ηi) on S. Then the
initial path Ps,v of Ps,t contradicts Lemma 1. The remainder of the statement of this item
follows by similar reasoning.

vii) If some ηi lay west of its predecessor ηi−1 then the subpath Ps,t(ηi−1) would contradict
Lemma 1 as t and ηi would lie in separate components of G \ Ps,t(ηi−1).

This completes the proof. □

3 Structure of 1-Complex Paths

Let Ps,t be a 1-complex Hamiltonian path for a rectangular grid graph G that visits α before β,
where η1 and ηk are the first and last cross-separators of Ps,t. We regard P in its directed form
Ps,t as composed of an initial subpath Ps,s(η1), followed by a middle subpath Ps(η1),t(ηk), and then
a final subpath Pt(ηk),t. By reversing the edge directions, the final subpath of Ps,t can be viewed
as the initial subpath of the Hamiltonian path Pt,s from t to s. Then the grid G can be rotated
by π to place t in the upper left corner and s in the lower right corner. Thus, apart from changes
in notation, the structural possibilities for the final and initial subpaths of Ps,t are the same, and
hence we do not discuss the final subpath in any further detail. We describe the structure of 1-
complex paths by specifying the structure of their initial subpaths in Section 3.1 and their middle
subpaths in Section 3.2.
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Figure 8: A path pu,v of G that cannot belong to Ps,t: (a) under the assumption that the vertex
after v in Ps,t is inside G

′, and (b) when it is outside G′. (c) A cookie must have endpoints adjacent
on a boundary as otherwise, there are uncovered vertices inside the cookie or Ps,t crosses itself.

3.1 Initial subpath

The structure of the initial subpath depends on the form of the first cross-separator η1 of Ps,t. By
Lemma 2(v) and our assumption that Ps,t visits α before β, vertex s(η1) lies on S and vertex t(η1)
lies on N . As η1 may be bent or straight, we identify five possible forms for it (in Fig. 9, see forms
A, B, D, F, and G). Note that the labels assigned to the cross-separator forms are arbitrary and
are not intended to suggest any alphabetical order.

The first cross-separator η1 can be straight (form B). If η1 is not straight, then it may have a
bend one unit above S. At such a bend, η1 may turn left, towards W (form G), but it cannot turn
right, towards E as in that case, it would not be possible for the path to reach the vertex on S in
the column containing t(η1). Similarly, if η1 has a bend one unit below N , then this bend must
turn towards W (form D). If the bends of η1 lie more than one unit from both S and N , then η1
may turn right (form A) or left (form F).

When η1 contains vertices in Column 1, we that η1 is “near” W. In that case, the initial path
Ps,s(η1) is determined, as shown in Fig. 10. When

We discuss and give the structure of the initial subpath for each of these five forms in the next
three subsections: 3.1.1 (considers B or G, which cover the internal vertices in the column of t(η1)),
3.1.2 (considers D, which covers the internal vertices in the column of s(η1)), and 3.1.3 (considers
A or F, which do not cover all the internal vertices of any column).

3.1.1 Separator η1 has form B or G.

In the lemmas below, vertex w is the vertex on N just one column west of t(η1), and a′ is the vertex
on S in the same column as w, as shown in Figs. 11(c) and (d). The vertex v0,2 is denoted by a.

Lemma 3 (η1 has form B or G) (a) If t(η1) is in Column 1 right next to s on the N boundary,
then the initial subpath consists of two boundary segments seg[s, α] on the W boundary and
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Figure 9: Five forms for η1. Segments of separators that has length at least two contains arrows.
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t(η1)
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Figure 10: The structure of the initial subpath when η1 is near W; the grey box denotes a run of
unit size W cookies. Segments of separators that has length at least two contains arrows.

seg[α, s(η1)] on the S boundary; see Fig. 11(a) and (b).

(b) If j = 0 and x(t(η1)) > 1, Ps,s(η1) must have a corner cookie containing s and w. This corner
cookie is connected by a boundary edge to vertex a on W. The path Pa,a′ from a to a′ takes
one of the following four forms: seg[a, α] Run[α, a′]; or Run[a, α] seg[α, a′]; or Run≥[a, α]
seg[α, u] Run≤[u, a′], where u is at least two units from α on S; or Run≥[a, u′], seg[u′, α]
Run≤[α, a′], where u′ is at least two units from α on W. The remainder of path Ps,s(η1) is the
segment seg[a′, s(η1)]. See Fig. 11(c) for an example when η1 has form B.

(c) If j ≥ 1, then Ps,t(µj)= Run[s, s(µ1)] µ1 Run[t(µ1), s(µ2)] µ2 . . . µi Run[t(µi), s(µi+1)] µi+1

. . . µj−1 Run[t(µj−1), s(µj)] µj. Since µj ends at t(µj) on W, vertex s(µ1) must lie on N
for j odd and on W for j ≥ 1 even. Path Pt(µj),s(η1) either has the structure of Pa,s(η1) in
(b), or, as shown in Fig. 11(a)–(b), the path Pt(µj),s(η1) consists of edge (t(µj), α) followed by
seg[α, s(η1)]. See Fig. 11(d) for an example when η1 has form G.

Proof:

(a) If t(η1) is in Column 1, then s(η1) must be in Column 1 for form B, and in Column 2 for form
G. In either case, the internal vertices in Column 1 are covered by η1. Therefore, there is no
room for any cookies or corner separators in the initial subpath Ps,s(η1).

(b) By Lemma 2(ii), Ps,α must visit all the W vertices. Therefore, there cannot be any N cookies
as there is no corner separator to move to the W boundary from the N boundary. Then w
must be a tip of a corner cookie from theW boundary. The rest follows from Lemma 2(ii) and
(v).

(c) For j ≥ 1, there must be j endpoints of µi on W and j on N . The endpoint t(µj) must lie on
W, not N , and t(µj) must be the corner separator endpoint nearest to α onW. The endpoints
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t(η1) t(η1)

s(η1) s(η1)
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w

a′ a′

s(µ1) = w

b(η1)

B BG
G

Figure 11: (a) Cross-separator η1 has form B and is near W, and (b) η1 has form G and is near
W; the initial subpath does not have any cookies as η1 is near W. (c) Separator η1 has form B
and is far from W, (d) η1 has form G and is far from W. Segments of separators that has length
at least two contains arrows.

of the µi’s must alternate on W as shown in Fig. 12(a) for j ≥ 1 even, and in (d) for j odd.
Thus for j odd, the top endpoint on W is t(µ1), so s(µ1) is on N ; for j ≥ 1 even, s(µ1) is on
W. In either case, Ps,s(µ1) = Run[s, s(µ1)] as shown in Fig. 12(b), (c).

Path Ps(µ1),t(µj) makes round trips (see Fig. 13) between W and N via the µi. These trips
have the form µi Run[t(µi), s(µi+1)] µi+1 and alternate leaving from N or from W, as the
return leg of one trip is the outgoing leg of the next. Furthermore, t(µi+1) must be adjacent
to s(µi); Otherwise, Ps,t cannot be Hamiltonian. Between t(µi) and s(µi+1), the path must
have the form Run[t(µi), s(µi+1)], which may be just a single edge (t(µi), s(µi+1)).

The structure of Pt(µj),s(η1) can be established in a way similar to (b).

This completes the proof. □

3.1.2 Separator η1 has form D.

If η1 has form D, then Ps,s(η1) cannot contain any corner separator cutting off s, as otherwise, P
cannot visit all the internal vertices in the column of t(η1). Thus j = 0 in this case. Since there is
no room for a corner separator, only a corner cookie, the structure of Pa,s(η1) must be the same as
in Lemma 3(b).

The following lemma is straightforward.

Lemma 4 (η1 has form D) (a) If x(t(η1)) = 1, Ps,s(η1) = seg[s, a] Run[a, α] seg[α, s(η1)],
where the W cookies have unit size. See Fig. 14(a).

(b) Otherwise, Ps,s(η1) consists of a corner cookie containing s and w, followed by an edge on W
connecting to Pa,s(η1), which has the structure given in Lemma 3(b). See Fig. 14(b).
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Figure 12: [34] (a) Order of endpoints of µ on W for even j > 0; (b) form of Ps,s(µ1) for even
j > 0; (c) form of Ps,s(µ1) for j odd; and (d) order of endpoints of µ on W for j odd.

3.1.3 Separator η1 has form A or F .

We define two rectangular regions of grid graph G covered by the initial subpath, and use them in
designing our algorithm in Sections 5 and 6. Let w′ denote the vertex on the W boundary in Row
y(b(η1)) for form F , and in Row y(b(η1))− 1 for form A as shown in Figs. 15(c)–(d). Recall that
b(η1) is the first bend met on η1 from the start s(η1) to the end t(η1). Let w

′′ be the vertex on the
W boundary one row below w′. We denote by Rs the rectangular region of G that is delimited by
Columns 0 and x(w) and Rows 0 and y(w′); the rectangular region delimited by Columns 0 and
x(a′) and Rows y(w′′) and m− 1 is denoted Rα.

Lemma 5 (η1 has form A or F ) (a) If t(η1) is in Column 1, η1 has form F , and the initial
subpath is (Rs = seg[s, w′])seg[w′, w′′](Rα = Run[w′′, α], seg[α, a′]) seg[a′, s(η1)]. If s(η1) is
in Column 1, η1 has form A, and the initial subpath is (Rs = Run[s, w′])seg[w′, w′′](Rα =
seg[w′′, α], seg[α, a′]) seg[a′, s(η1)]. In both cases, the run contains unit size W cookies. See
Fig. 10.

(b) Otherwise, if j = 0, then Ps,w′ contains a run of W cookies Run[s, w′] of size x(w). If j ≥ 1,
then Ps,w′= Run[s, s(µ1)] µ1 Run[t(µ1), s(µ2)] µ2 . . . µi Run[t(µi), s(µi+1)] µi+1 . . . µj−1

Run[t(µj−1), s(µj)] µj, followed by Run[t(µj), w
′] if w′ and t(µj) do not coincide. Pw′′,s(η1)

has the structure of Pa,s(η1) in Lemma 3(b).

Proof:

(a) It is straightforward to see that when one of the endpoints of η1 is in Column 1, the other
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Figure 13: [34] Round trips Ps(µi),t(µi+1) start on W (solid gray) or on N (gray striped).

endpoint must be in Column 2. Therefore, the initial subpath can only contain one set of W
cookies of unit size, and no S cookies or corner separators.

(b) First consider the case when j = 0. Then any internal path through vertices of G to the left
of η1 must be a cookie. If η1 has form A, then the vertices in column x(w) must be covered by
a W corner cookie and then by W cookies above the lower segment of η1. Now assume that
η1 has form F , and that there is an S cookie covering some vertices of Column x(w) on or
above Row y(b(η1)). Then the internal vertices of Column x(w)+1 that lie in rows below Row
y(b(η1)) cannot be covered by any cookies and P fails to be Hamiltonian. Therefore, internal
vertices of column x(w) on or above Row y(b(η1)) can only lie on N or W cookies or on a W
corner cookie. Since j is 0, no N cookies are possible. Now consider j ≥ 1. The structure of
the subpath Ps,t(µj) can be established as in Lemma 3. The remaining vertices of Rs, if any,
must be covered by W cookies of size x(w) by the logic above.

The proof for the structure of Rα is similar to the proof of Lemma 3.

This completes the proof. □

Using the above lemmas, we define some terminology that we use in the algorithms in Sections 5
and 6. We say Rs is W compatible if it contains an even number of rows, and Rα is W compatible
if it contains an odd number of rows. When a region is W compatible, the subpath occupying this
region (i.e., Rs and Rα) can be composed of only W cookies and boundary edges.

Fig. 16 illustrates the above terminology with some examples.

Lemma 6 When η1 has form A or F :

(a) Rs is W compatible iff any N cookie in Rs has even size; Rα is W compatible iff any S cookie
in Rα has even size.
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Figure 14: (a) Cross-separator η1 has form D and is near W; the initial subpath does not have
any cookies. (b) Separator η1 has form D and is far from W. In both cases, there is no room for
corner separators. Segments of separators that has length at least two contains arrows.

(b) At least one of Rs and Rα must be W compatible.

Proof:

(a) We first prove that all the N cookies in the initial subpath must have the same parity in
size, i.e., either they all have even sizes or all have odd sizes. From Lemma 5, two runs of N
cookies must be separated by an even number of corner separators and together with sets of
W cookies. Since each W cookie occupies two rows, the difference between the sizes of the N
cookies must be even. Therefore, if the first run of N cookies has odd sized cookies, all the
following N cookies have odd size; the same holds for even sizes.

First assume that Rs is W compatible. Then the total number of rows in Rs is even by
definition of W compatibility. If j = 0, by Lemma 5, Rs contains a run of W cookies. If
j > 0 is even, then all the vertices of Column 1 in Rs are covered by W cookies including a W
corner cookie, and even number of corner separators. Then any N cookie between µi and µi+1,
where i is odd, must cover an odd number of rows and thus has even size. For the case j > 0
odd, vertices of Column 1 in Rs must be covered by an N cookie, an odd number of corner
separators, and some W cookies. Since there are an odd number of separators occupying an
odd number of rows, the first corner N cookie must occupy an odd number of rows and must
have even size. Therefore, all the N cookies in the initial subpath have even size.

We now assume that the N cookies have even sizes in the initial subpath. If j ≥ 0 is even,
then Column 1 is covered by W cookies, and if j > 0 by an even number of corner separators.
Therefore, the number of rows in Rs must be even. If j > 0 is odd, then Column 1 is covered
in some order by a combination of an even sized N cookie, an odd number of separators, and
possibly some W cookies. Therefore, the total number of rows in Rs must be even, and Rs is
W compatible. The claim for Rα can be proved similarly.
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Figure 15: (a) Separator η1 is near W and has form A of η1; (b) η1 is near W and has form F . (a)
Separator η1 is far fromW and has form A of η1; (b) η1 is far fromW and has form F . Rectangular
regions are shown in grey. Segments of separators have arrows when they have length at least two.

(b) If m is even, then either one or both Rs and Rα contain an even number of rows, or else both
of them contain an odd number of rows. Therefore, one of them must be W compatible. If
m is odd then one of them has an even number of rows and the other has an odd number of
rows. If Rs contains an even number of rows then both Rs and Rα are W compatible.

We now assume for a contradiction that m is odd and Rα contains an even number of rows, and
hence is not W compatible; consequently, Rs contains an odd number of rows. By Lemma 5,
subpath Pa,a′ is a Hamiltonian path between two diagonally opposite corners of a rectangular
grid (i.e., Rα). Since Rα has an even number of rows, Rα must have an odd number of
columns [11]. Since the number of columns in Rs is one less or one more than in Rα, Rs must
have an even number of columns. But the subpath Ps,w′ is a Hamiltonian path between the
top-left and bottom-left corners of the rectangular grid Rs, which cannot exist when Rs has
an even number of columns and an odd number of rows [11]. Therefore, Rs cannot have an
odd number of rows when m is odd, a contradiction. Thus, Rα must have an odd number of
rows, and so is W compatible, when m is odd.

This completes the proof. □

3.1.4 Summary of forms for the initial subpath

The following theorem follows from Lemmas 3–5, and summarizes the structure of the initial
subpath for all the forms of η1.

Theorem 1 (Structure of Initial Subpath) (a) If η1 is near W, Ps,α is either a segment
seg[a, α] (η1 has form B or G), or composed of a segment and a run of unit W cookies (η1 has
form D, F or A). The subpath Pα,s(η1) is always a segment on the S boundary. See Fig. 17.

(b) If η1 is far from W and j = 0, Ps,s(η1) must have a corner cookie containing s and w followed
by an edge on the W boundary connecting the base of the corner cookie to vertex a. The path
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Figure 16: (a) Separator η1 has form A and Rs is W compatible but Rα is not W compatible.
(b) Rs is not W compatible but Rα is W compatible. (c) Separator η1 has form F and Rs is
W compatible but Rα is not W compatible. Segments of separators have arrows when they have
length at least two.

Pa,a′ from a to a′ takes one of the following four forms: seg[a, α] Run[α, a′]; or Run[a, α]
seg[α, a′]; or Run≥[a, α] seg[α, u] Run≤[u, a′], where u is at least two units from α on S; or
Run≥[a, u′], seg[u′, α] Run≤[α, a′], where u′ is at least two units from α on W. The remainder
of path Ps,s(η1) is the segment seg[a′, s(η1)]. See Fig. 18.

(c) If j ≥ 1 (η1 must be far from W and has form B, G, F or A), then Ps,t(µj)= Run[s, s(µ1)]
µ1 Run[t(µ1), s(µ2)] µ2 . . . µi Run[t(µi), s(µi+1)] µi+1 . . . µj−1 Run[t(µj−1), s(µj)] µj. Path
Pt(µj),s(η1) either has the structure of Pa,s(η1) in (b), or, consists of edge (t(µj), α) followed by
seg[α, s(η1)]. See Fig. 19.

F
A

DGB

α

s s s s s

α

t(η1)

s(η1)

Figure 17: The structure of the initial subpath when η1 is near W; the grey box denotes a run of
unit size W cookies. Segments of separators have arrows when they have length at least two.
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Figure 18: The initial subpath when η1 is far from W and j = 0; there are no corner separator
cutting off s. The grey boxes are explained in Theorem 1(b). Segments of separators have arrows
when they have length at least two.
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Figure 19: The initial subpath when η1 is far from W and j ≥ 1; there is at least one corner
separator cutting off s. The grey boxes are explained in Theorem 1(c). Segments of separators
have arrows when they have length at least two.

3.2 Middle subpath

The middle subpath Ps(η1),t(ηk) travels from the start vertex s(η1) of the first cross-separator η1
to the terminal vertex of the last cross-separator ηk and thus by definition contains all the cross-
separators ηi, 1 ≤ i ≤ k. For an example of a middle subpath, see Fig. 6, which shows a 1-complex
path with a middle subpath that passes through 11 cross-separators as it travels from its start
vertex s(η1) to its terminal vertex t(η11).

In this subsection, we determine all the possible structures for the middle subpath of a 1-complex
s, t Hamiltonian path Ps,t. Since the number k of cross-separators is not fixed, we describe these
structures by giving a table in Theorem 2 at the end of this section; this table can be used to
generate the possibilities for the middle subpath, based on any given form for the first cross-
separator η1.

Recall that by Lemma 2(v), k is odd. When k = 1, the middle subpath is comprised entirely of
η1, i.e., Ps(η1),t(η1) = η1. The possible forms for the first cross-separator η1 have been given already
in Subsection 3.1 and shown in Fig. 9. We used these forms in Subsection 3.1 to determine the
boundary of the region that the initial path Ps,s(η1) has to cover. We will later introduce additinal
forms for k > 1.

The rest of this subsection is devoted to the case k > 1, i.e., k is odd and at least 3. We first
give a brief overview of our approach and then give a key lemma, Lemma 7. One part of this
lemma motivates our notation for forms for ηi, i > 1. Once the notation is in place, we them
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provide a further guide to the remainder of the subsection.
Our approach to handling k ≥ 3 cross-separators is as follows. The middle subpath begins

with η1, which travels from S to N , and then makes one or more roundtrips that each travel from
N to S and back to N ; see Figures 20 and 21. We refer to such roundtrips as NSN roundtrips.
Similarly, the middle subpath may make SNS roundtrips. Roundtrips of either type are comprised
of two consecutive cross-separators ηi and ηi+1 together with the part of the middle subpath that
joins them. Our goal is to provide a table that, based on the form of ηi for i odd, i ≤ k − 2, lists
all the possibilities for the NSN roundtrip that follows ηi. Hence by stepping through the odd
values of i, 1 ≤ i ≤ k − 2, and repeatedly using the possibilities for the next NSN roundtrip, we
obtain all the possible structures for the middle subpaths when k ≥ 3.

The next lemma provides key properties of roundtrips of either type, NSN or SNS. Both types
will be used later. This is because the first cross-separator ηi+1 of an NSN roundtrip containing
ηi+1 and ηi+2 is in fact the return portion of the preceding SNS roundtrip that contains ηi and
ηi+1, i.e., ηi+1 is shared by the two roundtrips. Thus the properties of roundtrips of either type
are essential. In the lemma below, index i may be even or odd. Recall that odd-indexed ηi travel
from S to N and even-indexed ηi travel from N to S.

Lemma 7 (constraints on roundtrips ηi, ηi+1) (a) When ηi is bent, then its terminal vertex
t(ηi) and its start vertex s(ηi) lie in adjacent columns: x(t(ηi)) = x(s(ηi)) ± 1. Otherwise,
when ηi is straight, the vertices lie in the same column: x(t(ηi)) = x(s(ηi)).

(b) The subpath of P from s(ηi) to t(ηi+1) covers all the grid vertices that lie in G between ηi and
ηi+1. In particular, the terminal vertex t(ηi+1) of ηi+1 lies one unit east of the start vertex
s(ηi) of ηi: x(t(ηi+1)) = 1 + x(s(ηi)).

(c) The terminal vertex t(ηi) of ηi and the start vertex s(ηi+1) of ηi+1 are 1, 2, or 3 units apart.

(d) When start vertex of ηi+1 lies 3 units east of t(ηi), the subpath of P between them contains
exactly one cookie: Pt(ηi),s(ηi+1) is comprised of one cookie and its adjoining boundary edge on
each side of the cookie. When ηi+1 has bends in a row one unit from N or S, then the cookie
has size 0 and becomes an edge on the boundary.

Proof:

(a) The two bends of a cross-separator are adjacent in G, as otherwise, any vertex between them
would not reach a boundary by a segment of P . Since P is 1-complex, the bends themselves
connect directly to opposite boundaries by segments of P . This implies statement (a), as the
second part of the statement is clear.

(b) The path Ps(ηi),t(ηi+1
) forms a round trip between opposite boundaries. By Lemma 1, removal

of the path Ps,t(ηi+1
from s to t(ηi+1) leaves only one connected component of G. Since this

component contains t, there can be no grid vertices between ηi and ηi+1 left uncovered by the
subpath from s to t(ηi+1). In particular, there can be no uncovered vertex on the boundary
between ηi and ηi+1. Since ηi+1 lies east of ηi by Lemma 2 vii), it follows that the terminal
vertex t(ηi+1) of ηi+1 lies one unit east of s(ηi).

(c) Statement (c) follows immediately from statement (a).

(d) The subpath Pt(ηi),s(ηi+1) of Ps,t between the terminal vertex of ηi and the start vertex of
ηi+1 belongs to the roundtrip subpath Ps(ηi),t(ηi+1), which by statement (b) covers all grid
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vertices lying in G strictly between ηi and ηi+1. Hence Pt(ηi),s(ηi+1) must cover all grid vertices
strictly between ηi and ηi+1. Since cross-separators are indexed in the order they are met along
Ps,t, subpath Pt(ηi),s(ηi+1) cannot contain any cross- separator. Clearly no corner separators,
no west cookies, and no east cookies can contain a vertex between t(ηi) and s(ηi+1) on the
boundary, nor can any cookie based on the opposite boundary. Therefore the two boundary
vertices between t(ηi) and s(ηi+1) must be covered by a cookie based on that boundary. The
statement now follows.

This completes the proof. □

We now introduce our notation for the possible forms of cross-separators when k ≥ 1. (Refer to
Figs. 20 and 21, explained in more detail below.) Recall that since P is 1-complex, each internal
grid point of G is connected to a boundary by a straight line segment consisting of one or more
grid edges belonging to P . Hence cross-separators are either straight, or bent towards E or W
by one unit from their start vertices s(ηi). The bends of a cross-separator must be adjacent on
the grid, as otherwise, the vertices between them could not reach any boundary along a straight
segment of P .

The first five forms for i odd have been previously introduced as possibilities for η1; they are
also possibilities for i odd but greater than one. In addition, there are two more possibilities for
i > 1 and odd. We discuss these further below.

As shown in Figs. 20 and 21, we distinguish between a cross-separator that bends in a row one
unit from the N or S boundary and one that bends in the same direction, but at least two units
from either boundary (e.g., we distinguish among forms G, D, and F). This is useful because forms
with bends one unit from a boundary must be preceded or followed by two boundary edges on
P , as shown by the white dot in the figures. Thus even though such a cross-separator bends, it
nevertheless assures coverage on an entire column of grid vertices.

In the figures of this subsection, an arrow on a segment indicates that the segment must have
length at least 2; segments without arrows are grid edges of length 1 that lie on P .

E
C

G
D

A

FB

Figure 20: Seven forms for ηi, when i is odd. Forms C and E apply only when t(ηi−1) is 3 units
west of s(ηi), as these forms by definition include the S cookie required by Lemma 7(d). Segments
of separators have arrows when they have length at least two.

By Condition (d) of Lemma 7, it can occur that after η1, some bent separator ηi, i > 1, must
have a preceding cookie. To describe this situation, we introduce two special cases E and C (see
Fig. 20) of forms D and F , respectively. Forms E and C describe the scenario that an S cookie
must occur on Ps,t between t(ηi−1) and s(ηi), where this cookie is joined to s(ηi) by a boundary
edge on Ps,t. These forms can apply only to those ηi such that i > 1 is odd. They facilitate
checking that all grid vertices between η1 and ηk are covered. It may occur that in the initial path
Ps,s(η1), an S cookie is joined by an edge on S to the start vertex s(η1) of η1; such a cookie has
no effect on the middle subpath Ps(η1),t(ηk). As forms E and C are not needed to characterize the
initial subpath, they are only introduced now for the middle subpath.
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Figure 21: Seven forms for ηi when i is even. The forms for i even and for i odd are mirror
images with respect to the horizontal midline of RG, e.g., K and B correspond, as do J and G, etc.
Segments of separators have arrows when they have length at least two.

Form A is the only form for ηi where i is odd such that ηi bends one unit towards the east to
reach its terminal point: x(t(ηi)) = x(s(ηi)). This is because the bends of such a cross-separator
cannot occur in the row one unit above S or one unit below N ; in the former case, the vertex on
S one unit east of s(ηi) cannot be covered by P , and in the latter case, the vertex on N one unit
west of t(ηi) cannot be covered by P .

Fig. 21 enumerates all the forms for cross-separators ηi, where i > 1 is even. Each of these
forms is the mirror image, with respect to the horizontal mid-line of RG, of a corresponding form
for i odd.

Our approach for the remainder of the subsection is as follows. First, we use Lemma 7 (roundtrip
constraints) to prove Lemma 8 (SNS roundtrip forms) below. This lemma lists all the possible
SNS roundtrips, i.e., roundtrips containing ηi and ηi+1 for odd i. Then we exploit the fact that
cross-separator ηi+1 is the first cross-separator of the NSN roundtrip that immediately follows ηi
for i odd (i ≤ k−2). Given the form of ηi, the possibilities for the next NSN roundtrip can easily
be determined by taking the mirror images, with respect to the horizontal midline of RG, of the
list of possibilities for the preceding roundtrip that also travels along ηi+1. Because the notation
must be suitably adjusted and for ease of reference, we state the “mirror image” of Lemma 8 as a
separate lemma, Lemma 9 (NSN roundtrip forms).

Finally, we put the lists of possibilities for the first roundtrip, which contains ηi and ηi+1

together with the second roundtrip, which contains ηi+1 and ηi+2, to obtain the list of possibilities
for the NSN roundtrips that come just after each of the forms of ηi, i ≤ k − 2 and odd. This
yields the theorem that specifies the middle subpath structure.

Now we state and prove the lemma that lists the possibilities for the SNS roundtrips. The
proof makes repeated use of Lemma 7, especially the fact that the start and end vertices of a
roundtrip must be adjacent grid points on the same boundary and the fact that the start and end
vertices of a cross-separator lie in the same or adjacent columns of G. These facts, combined with
other items in Lemma 7 and Lemma 2, enable a straight-forward case analysis.

Lemma 8 (SNS roundtrip forms) Let ηi be a cross-separator of a 1-complex path P where ηi
is directed S to N and i is odd and less than k. Then based on the form of ηi, the SNS roundtrip
from s(ηi) to t(ηi+1) can only take the following forms (see Figures 20 and 21 for the forms):

(a) ηi bends towards W one unit above S (form G): GN where N bends one unit above S, and
GM where M bends two units above S;

(b) ηi bends towards W two or more units from both S and N (forms E and F): EL and FL where
the bends of E or F and the bends of L are in the same row, and EM and FM where the
bends of M lie in the row one unit above the row of bends of E or F ;
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(c) ηi bends towards W one unit below N (forms C and D): CJ , CK, DJ , DK;

(d) ηi is straight (form B): BJ , BK;

(e) ηi bends towards E (form A): AH and AI, where the bends of A are exactly 2 units above S.

Proof:

(a) By Lemma 7 part (b), the terminal vertex t(ηi+1) lies one unit east of s(ηi), and by part (c),
the location of the start vertex s(ηi+1) must lie one, two, or three units east of t(ηi).

If s(ηi+1) lies one unit east of t(ηi), then ηi+1 must bend towardsW to reach t(ηi+1). The row
of its bends must lie one unit above the row of the bends of ηi, so that as required by Lemma 7,
the roundtrip does not leave any uncovered grid vertices between ηi and ηi+1. Thus the bends
of ηi+1 are at least two units above S; furthermore, they cannot lie one unit below N because
in that case, the grid vertex on N above the second bend of ηi+1 could not be covered by the
middle path. Note that by definition of form M , its bends are at least two units from both S
and N . Hence the form GM is possible.

If s(ηi+1) lies two units east of t(ηi), then ηi+1 is straight and has form K. By Lemma 2
part (vi), the two grid edges on N between t(ηi) and s(ηi+1) must lie on the roundtrip path,
which contradicts the requirement of Lemma 7 part (b) because the interior grid vertices in
the column of s(ηi) above the first bend of ηi would not be covered by the roundtrip. Thus
GK is not a possible roundtrip.

Finally, if s(ηi+1) lies three units east of t(ηi), then ηi+1 must bend towardsW to reach t(ηi+1).
By Lemma 7 part (d), there must be a single N cookie between t(ηi) and s(ηi+1). In order
to satisfy the vertex coverage requirement of Lemma 7 part (b), the end of this cookie must
lie one unit above the row containing the bends of ηi. To avoid collision with the cookie, ηi+1

must have its bends in the row one unit above S, just like ηi. Note that by definition, the
bends of N are one unit above S. Thus GN is a possible form for the roundtrip containing ηi
and ηi+1.

(b) The analysis is the same as for item (a). However the labels of the forms are different because
their bends occur at least two units above S.

(c) Vertex t(ηi+1) must lie one unit east of s(ηi) by Lemma 7(b). Hence by part (c) of that Lemma,
s(ηi+1) could only lie 1, 2, or 3 units east of t(ηi). If s(ηi+1) were one unit east of t(ηi), then
C would have to bend eastward to reach t(ηi+1), and its first bend would intersect ηi, so CM
and DM cannot be SNS roundtrips.

If s(ηi+1) were 2 units east of t(ηi), then s(ηi+1) would lie in the same column as t(ηi+1). This
possibility gives rise to form K, so CK and DK are possible SNS roundtrips as they leave no
vertices uncovered between the two cross-separators.

If s(ηi+1) were 3 units east of t(ηi), then by Lemma 7( ), there would have to be an N cookie
between them, joined to them by their edges on N . The cookie and adjoining edges would
have to lie on P by part (d) of the lemma. However, a bend in this cookie would intersect
ηi unless the cookie had size 0 and degenerated to a boundary edge. The latter possibility
gives rise to an SNS roundtrip of the form CJ or DJ because the path Ps(ηi),t(ηi+1) leaves no
vertices uncovered between ηi and ηi+1.
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(d) Vertex t(ηi+1) lies in the column one unit east of ηi. Hence s(ηi+1) can only lie in this column,
in which case ηi+1 is straight and has form K, or in the next column to the east. In this case,
ηi+1 must bend to the west in order to reach t(ηi+1). To ensure coverage of all internal vertices
between ηi and ηi+1 as required by Lemma 7 part(b), in particular the internal vertices in the
column of t(ηi+1) above the bend of ηi+1 in that column, the bend must lie one unit below
N , so ηi+1 has form J. By Lemma 2 part vi), the grid edges on N between t(ηi) and s(ηi+1)
belong to the path P , so the vertex between those two vertices is covered by the roundtrip.
Hence BK and BJ are possible SNS roundtrips.

(e) The bends in form A cannot lie in the row next to S or N , as otherwise, by Lemma 2 (vi),
path P would not be able to cover the grid vertex on the S boundary or the N boundary that
is adjacent to the first or second bend on A, respectively. Thus the vertical segments of A
each have length at least 2. By Lemma 7( b), t(ηi+1) must lie one unit east of s(ηi). By part
(c) of the same lemma, s(ηi+1) must lie one unit west of t(ηi), or at t(ηi), or one unit east of
t(ηi). Only the last possibility avoids self-intersection. Hence ηi+1 bends to the west to reach
t(ηi+1). If the bends of ηi+1 occur at least two units above S, then the roundtrip has form
AH, and if the bends are exactly 2 units above S, then the roundtrip has form AI. Both the
roundtrips are possible as they leave no vertices between the cross-separators uncovered.

This completes the proof. □

The next lemma “mirrors” the previous lemma with respect to the horizontal midline of RG.

Lemma 9 (NSN roundtrip forms) Let ηi be a cross-separator of a 1-complex path P where ηi
is directed N to S and i is even. Then based on the form of ηi, the NSN roundtrip from s(ηi) to
t(ηi+1) can only take the following forms (see Figures 20 and 21 for the forms):

(a) ηi bends towards W one unit below N (form J): JC where C bends one unit below N , and JA
where A bends two units below N ;

(b) ηi bends towards W two or more units from both N and S (forms L and H): LE and HE
where the bends of L or H and the bends of E are in the same row, and LA and HA where
the bends of A lie in the row one unit below the row of bends of L or H;

(c) ηi bends towards W one unit one unit above S (forms N and I): NG, NB, IG, IB;

(d) ηi is straight (form K): KG, KB;

(e) ηi bends towards E (form M): MF , where the bends of M are one unit below N .

Proof: The proof is the same as the proof of Lemma 8 after a change of notation as follows.

• Interchange the forms (refer to Figures 20 and 21 for the forms): B ←→ K, G ←→ J ,
D ←→ I, A←→M , F ←→ H, C ←→ N , and E ←→ L.

• Interchange the horizontal boundaries N ←→ S.

• Interchange the terms above and below.

This completes the proof. □

Based on the previous two lemmas, we now can give the possible forms this situation: a cross-
separator ηi, where i is odd and k ≥ 3, followed by a NSN roundtrip containing ηi+1 and ηi+2. In
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Theorem 2 below, we present the possible forms for this triple of cross-separators as a table that
lists the ways to append a NSN roundtrip to a middle subpath currently ending with a given
form for ηi, i odd. The forms for ηi are listed in groups that admit the same possibilities for the
following roundtrip.

The content of the table is illustrated in Fig. 22.
An illustration of the application of the table is given in Figure 23. This figure shows the

generation of a middle subpath with 5 cross-separators in a grid with 6 rows. The figure gives a
layered graph whose first layer lists all the possibilities for the form of η1. The next layer uses
the table to list all the possibilities for ηi+1, where edges from layer 1 to layer 2 show the allowed
successors. Each layer is labelled below with its corresponding ηi.

Each layer is represented as a grey box, where one side of the box lists forms in a suitable
order with respect to the incoming edges from the previous layer, and the other side of the box
permutes the list of forms to a good order with respect to the outgoing edges to the next layer.
The permutations are chosen to reduce edge crossings in the diagram. Edges internal to any box
are drawn between identical forms.

Any middle subpath with 5 cross-separators in a grid with 6 rows corresponds to a path in the
layered diagram from the first to the fifth layer. Each pair of adjacent layers represents a roundtrip
that satisfies the roundtrip lemmas (Lemma 8 and Lemma 9) of this section. The upper part of
Fig. 23 highlights with colors three example paths in the layered graph. Their corresponding paths
in the grid are shown in the same color in the lower part of the figure.

Theorem 2 (Structure of Middle Subpath) Let ηi be a cross-separator of a 1-complex path
P , where ηi is directed S to N and i is odd, 1 ≤ i ≤ k− 2. i.e., k ≥ 3 and ηi is followed by at least
one NSN roundtrip. Then based on the form of ηi, the NSN roundtrip from s(ηi+1) to t(ηi+2)
must take one of the forms listed in the table below. See Figures 20 and 21 for the forms.

Form of ηi NSN roundtrip of ηi+1 and ηi+2

Group I A HA, HE, IB, or IG
Group II B, D or C JC, JA, KB, or KG
Group III F or E LA, LE, MD, or MF
Group IV G MD, MF , NB, or NG

Proof: The proof follows immediately from Lemma 8 and Lemma 9. For each group, the first form
in the list of NSN roundtrips (shown as pairs in the second column) is obtained from Lemma 8,
based on the form or forms for ηi for each group. The second form in each pair in the list of NSN
roundtrips is obtained from Lemma 9, based on the first form of the pair. □

4 Zip Procedure

In this section, we define a zip procedure Z (zip for short) that applies a sequence of switches to
cells that appear on two sides of a line (row or column) of G; see Fig. 25(b) and Fig. 26. The cells
must be switchable, i.e., each such grid cell has two parallel grid edges that belong to a cycle-path
cover of G and two parallel grid edges that do not. We call the line (row or column of G) on which
the switchable cells are incident a zipline, and denote it by lq1,q2z (the superscript may be omitted
for short), directed from vertex q1 to vertex q2 where q1 and q2 are not corners of RG.

We begin by observing some properties of the switch operation. As mentioned in Section 1, a
cycle-path cover P of G is a set of cycles and paths that collectively cover all the vertices of G;
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Figure 22: The adjacency constraints on ηi and the following roundtrip containing ηi+1 and ηi+2,
where i is odd and 1 ≤ i ≤ k − 2: (a) ηi in Group I; (b) ηi in Group II (η1 cannot have form C);
and (c) ηi in Group III (η1 cannot have form E) and ηi in Group IV.
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from s(η1) to t(η5) for the red, blue and purple paths above. Segments of separators have arrows
when they have length at least two.
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a switch operation applied to a cycle-path cover always produces a cycle-path cover. To see this
note that a switch may change the edges of the cover incident to a vertex but not the degree of
the vertex (degree 2 for each vertex except s and t, which remain degree 1). See Fig. 24(b)–(c)
for an example. The following observation shows that a switch operation on a cover when chosen
carefully can give a Hamiltonian path.
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Figure 24: (a) A switch in a cell f of an embedded grid graph. (b) A switch in a switchable cell
a, b, d, c of an embedded s, t Hamiltonian path P in cycle-path cover P = {P} yields new cover
P′ = {P ′, C}. (c) Switching the cell e, f, h, g joins P ′ and C into another s, t Hamiltonian path.

Observation 1 A switch operation in a grid cell that is switchable for s, t Hamiltonian path P of
G gives a cycle-path cover of G: P = {C,P ′} where C is a cycle and P ′ is a path with ends s and
t. A switch in a switchable cell of P, where each of C and P ′ covers one edge of the cell, gives an
s, t Hamiltonian path.

Proof: Assume that the vertices on the switchable cell f ′ are a, c, d, b in counterclockwise order,
and the edges (a, c) and (b, d) are on P as shown in Fig. 24. Without loss of generality, we assume
that the vertices appear on P in the same order a, c, d, b. If neither of s and t is on f ′, then
P = Ps,a, (a, c), Pc,d, (d, b), Pb,t. Removing edges (a, c) and (d, b) gives us a cycle-path cover of G
consisting of three paths Ps,a, Pc,d and Pb,t. Adding the edges (a, b) and (c, d) gives a cycle-path
cover of G consisting of a single path P ′ = Ps,a, (a, b), Pb,t and a cycle C containing the edge (c, d)
on it. See Fig. 24(b).

Now assume that s = a; the case when t = d is similar. When, s = a, the given s, t Hamiltonian
path is P = (s, c), Pc,d, (d, b), Pb,t. Removing edges (s = a, c) and (d, b) gives a cycle-path cover of
G− s consisting of two paths Pc,d, and Pb,t. Adding edges (s, b) and (c, d) gives a cycle-path cover
of G consisting of a single path from (s, b), Pb,t and a single cycle containing edge (c, d).

We now prove that a switch in a switchable cell f ′′ of P, where each of the s, t path P ′ and
the cycle C of P contribute one edge on f ′′, gives an s, t Hamiltonian path. Let the vertices on f ′′

be e, g, h, f in counterclockwise order as shown in Fig. 24(c). Without loss of generality, assume
that the edges (f, e) and (g, h) are on P ′ and C, respectively.

First assume that none of the vertices s and t are on f ′′. If P ′ encounters f before e, then
P ′ = Ps,f , (f, e), Pe,t, where edge (a, b) is either on subpath Ps,f or on Pe,t. Removing the
two edges (f, e) and (g, h) gives a cycle-path cover of G consisting of three paths Ps,f , Pe,t and
Pg,h. Adding the edges (e, g) and (f, h) connects the three subpaths to the s, t Hamiltonian path
Ps,f , (f, h), Ph,g, (g, e), Pe,t of G.

Now assume that s = a. The case when t = d is similar. Without loss of generality assume
that P ′ = (s = f, e), Pe,t. Removing the two edges (s = f, e) and (g, h) gives a cycle-path cover of
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G − s consisting of two paths Pe,t and Ph,g. Adding the edges (s = f, h) and (e, g) connects the
two subpaths and the vertex s = f into the s, t Hamiltonian path (a = f, h), Ph,g, (g, e), Pe,t of G.

□

The zone RZ of a zip is a rectangle determined by the zipline lq1q2z and the two adjacent and
parallel grid lines la = [a1, a2] and lb = [b1, b2], where a1 and b1 are adjacent to q1 on a boundary
of G and a2 and b2 are adjacent to q2 on the opposite boundary. Thus the corners of RZ are a1,
a2, b1, b2. We call the subgraph of G induced by la and lz the main track tr of the zip, and the
subgraph with sides lz and lb the side track tr′.

To describe the structure of a Hamiltonian path P inside the zone RZ of a zip, we define the
notion of a local cookie. See Figs. 25 and 26.

Definition 5 (local cookie) Let f ′ be a switchable cell for P in the side track tr′ of the zone RZ

of a zipline lz, such that the two sides (a, d) and (b, c) of f ′ that belong to P are perpendicular to
lz and lb, and the other two sides (a, b) and (d, c) lie in lz and lb, respectively. Let C be a cycle of
grid edges in tr such that (a, b) belongs to C and is the only edge of C not in P . Then the edges
(a, d) and (b, c) of f ′ together with the edges of C except for (a, b) determine a subpath of P called
a local cookie with base (d, c) on lb. Depending on its shape, a local cookie has one of four types:
I, T , q1-facing and q2-facing. For example, C and f ′

2 in Fig. 26 make a type T local cookie.

The goal of a zip procedure is to create a new s, t Hamiltonian path P ′ that contains all of la
and lz as two segments in P ′ and joins them with a boundary edge of tr in P ′. These two segments
and the boundary edge that connects them can be viewed as a round trip from one boundary to
the opposite boundary and back. This goal motivates the following definition.

Definition 6 The main track tr is locally covered by P provided (i) P contains edge (a1, q1) or
else contains a regular cookie whose base is the edge (a1, q1) – either way, P contains the edge
(q1, b1), and (ii) P covers the remaining vertices of tr with local cookies with base in lb (e.g.,
Fig. 26 (Left)).

Note that here, either a1 has degree 1 on path P and lies at a corner of RG, or else a1 is incident
to a boundary edge that belongs to P but lies outside tr.

Definition 7 The zone RZ of a zip Z is zippable provided the main track tr is locally covered by
P (See Fig. 26 (Left)).

Observation 2 (Special switchable cells) (a) By Definition 5, each grid cell f ′ of tr′ that
contains the base of a local cookie of RZ is switchable. Switching any such f ′ creates a cycle-path
cover P = {P ′, C} of G where cycle C lies in tr. (b) Each grid cell f in the main track tr of a
zippable zone RZ that does not lie inside a local cookie is switchable for P .

We now define two special sets of switchable cells Str in tr and Str′ in tr′ for a zippable zone
RZ and tell how we index the cells.

The set Str consists of the following cells of tr: any cell that has one side in each of two distinct
local cookies; any cell that has a1q1 as a side where (a1, q1) belongs to P , and has its parallel side
in a local cookie; and any cell that has as one side the end of a cookie lying in tr with base a1, q1,
and has for a parallel side an edge in a local cookie. We index the cells of Str f1 . . . in their order
of occurrence from the q1 end to the q2 end of tr. We define the set Str′ to be all the cells in tr′

that have a side on lb that is the base of a local cookie. We index the cells of Str′ f
′
1 . . . in order

of their occurrence in tr′. We note that |Str| = |Str′ |. We index each local cookie according to the
cell f ′

i it encloses.



JGAA, 27(4) 281–327 (2023) 309

tr

la

lz

lb

a b

d c
f ′

tr′

C

(a)

f1

f2

f3

f ′
1

f ′
2

f ′
3

a1q1b1 b1 q1 a1

a2 a2q2 q2b2 b2

lalzlb

trtr′

(b)

q1 q2

Figure 25: (a) Local cookie shapes I, T, q1-facing, and q2-facing. (b) A vertical zip procedure. Zip
Z turns la and lz into segments. Left: RZ (in grey) before zip Z. Track tr is covered locally. The
cells in Str and Str′ are labeled fi and f ′

i . Right: The big dots mark the switched cells after the
zip. Not all details of lb are shown in either the left or right part.
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Figure 26: A horizontal zip procedure: zip Z turns la and lz into segments. Left: RZ (in grey)
before zip Z. Dotted edges do not belong to P . Track tr is covered locally. The cells in Str and
Str′ are labeled fi and f ′

i . Right: The big dots mark the switched cells after the zip. Not all details
of lb are shown in either the left or right part.

Definition 8 (Zip for zippable RZ) Let lq1,q2z be a zipline of G whose zone RZ is zippable, and
let Str and Str′ be the special sets of switchable cells in the two tracks tr and tr′ of RZ . The zip
operation Z = zip(G, P, lq1,q2z , tr) applies switch to all the cells of Str and Str′ in the following
order: f1, f

′
1, f2, f

′
2, . . ..

Note that the zip procedure is only defined for a zippable zone RZ . Proofs of correctness of
our algorithms will show that the zips are done in zippable zones.

Observation 3 Let P ′ be the s, t path resulting from a zip Z on an s, t path P of G, where the
zone RZ is zippable. Then, the following hold: (1) Path P ′ is Hamiltonian and differs from P only
in the cells of Str and Str′ ; (2) P ′ contains segments seg[a1, a2] on la and seg[q2, q1] on lz and
the boundary edge (a2, q2) joining their end points a2 and q2; (3) The boundary edge (q1, b1) is the
only edge of P ′ that joins seg[q2, q1] to lb; and (4) P ′ can be obtained from P in O(max{m,n})
switches.

In the next section, we will use path structure (Section 3) to show that doing a zip leaves the
next pair of tracks zippable. When this condition holds, we will be able to apply a sequence of
zips advancing the zipline by 2 units each time. We refer to such a sequence of zips as a sweep.

Definition 9 (Sweep) A sweep procedure S = Sweep(G, P, lq1,q2z , p, r, d) applies a sequence of
zips with zipline lq1,q2z starting from row/column p and ending on row/column r, where the zipline
is moved 2 units in direction d after each zip except the last one. The direction d of the sweep is
either left or down. For all the zips in a sweep procedure, the main track tr is on the right of lz if
d = left, and it is above lz if d = down.

Fig. 27 shows an example of sweep down from Row p = 1 to r = m − 2. Note that after each
zip the main track is covered by two straight line segments joined by an edge on the E boundary.

5 Reconfiguring 1-Complex Paths to Canonical Forms

We give an algorithm called 1ComplexToCanonical to reconfigure any 1-complex s, t path P
to a canonical path (see Definition 4 in Section 2). In Section 6, we will use this algorithm to
design another algorithm to reconfigure between any two 1-complex paths.

We first define some terminology in order to describe the algorithm. A sub-rectangle Gi is
an m × ni, ni ≤ n, subgrid of G such that the subpath Pi of P covering the vertices of Gi is a
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Figure 27: An example of sweep down procedure.

Hamiltonian path between two corner vertices of Gi; we call Pi a sub-rectangular path. We use
sub-rectangle and sub-rectangular path interchangeably for the rest of the section.

We now give a brief overview of the algorithm. It works in three steps.

1. First we break G into sub-rectangles using the structure of P (by Theorems 1 and 2), so that
each sub-rectangle Gi contains an s′, t′ Hamiltonian path P ′

s′,t′ that can be reconfigured to
a canonical path of Gi using at most two sweeps in Gi. See Section 5.1.

2. We then reconfigure each sub-rectangle into a canonical form. Note that each sub-rectangle
is incident to at least two boundaries that are opposite to each other. See Section 5.2.

3. Finally, we merge all the canonical sub-rectangular paths into an s, t Hamiltonian path of G;
and using at most one sweep in G, we reconfigure it to a canonical path of G. See Section 5.3.

5.1 Breaking P into (extended) sub-rectangles

We break P into sub-rectangles Gh, 1 ≤ h ≤ Q, by removing the following edges: all straight
separators, and the edges on N and S preceding and following them; the edge between Columns x
and x+1 on N or S, when the internal vertices of Column x are completely covered by a separator
of form D or I, respectively, or the internal vertices of Column x+ 1 are completely covered by a
separator of form J or G. In the path in Fig. 3, removing the bold black edges will break the path
into the Q = 8 sub-rectangles in Fig. 30(a). We call G1 and GQ the terminal sub-rectangles, and
the others the middle sub-rectangles.

We now define some terminology for the sub-rectangles. We will then observe some properties
of the middle and terminal sub-rectangles which we use in our algorithm in the next section. Let
sh and th be the starting and ending points of the sub-rectangular path Ph of Gh. If sh is on S, we
flip Gh along S when h < Q. In case of GQ, we rotate it by π about its center. If th is on N , we
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add a column to the east of Gh, 1 ≤ h ≤ Q, to create the extended sub-rectangle G′
h, then connect

th to the bottom-right corner t′h of G′
h through the new edges to get an sh, t

′
h Hamiltonian path of

G′
h. From now on, we use Gh to denote the final sub-rectangle obtained after the optional flipping

and/or extending steps. We observe some properties of the sub-rectangles.

Observation 4 Gh, 1 ≤ x ≤ Q, does not contain cross-separators of form I, G, or J ; if Gh has
a separator of form D, then it must be the last cross-separator.

(a) (b) (c) (d)

(e) (f)

Figure 28: (a)–(b) The endpoints of the subpaths are diagonally opposite corners of the rectangle;
(c) both endpoints are on the S boundary, (d) both endpoints are on the N boundary; blue dotted
lines show the dummy edges added to the subpaths; (e) and (f) show the rectangles in (b) and (c),
respectively, after flipping them along the S boundary.

We now observe some properties of the middle and terminal sub-rectangles, then describe
Algorithm ReconfigSubRect, to reconfigure a sub-rectangle to a canonical form.

5.1.1 Middle sub-rectangles

As shown in Fig. 30, each middle sub-rectangle Gh, 1 < h < Q, must have a corner W cookie c of
unit size. If an S cookie follows c, then it must be followed by a separator of form D and then the
dummy E boundary. Otherwise, c is followed by a separator of form F , which is the start of the
middle subpath of Ph.

Lemma 10 Let Pi be a middle sub-rectangular path. Then any S cookie of Pi has the same parity
as m and any N cookie has even size.

Proof: We assume that Pi has at least one S or N cookie, as the claim trivially holds in the other
case.
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(a) (b) (c)

Figure 29: (a) Only form of Pi where the initial subpath has an S cookie; (b) otherwise, the first
cookie of Pi must be of type S. (c) There are odd number of separators between an S and an N
cookie.

If there is an S cookie in the initial subpath, then Pi must have the form shown in Fig. 29(a).
The claim holds in this case as the size of the only S cookie is m− 2 and there are no N cookie.

Now assume that there are no S cookie in the initial subpath (Fig. 29(b)). Then the first cookie
c1 must be an S cookie. Suppose for a contradiction that c1 is an N cookie. Then it must be
preceded by a separator of form F , which can be preceded by form M . In this way, if we trace
back, we will end up at a separator of form G, which is not possible according to Observation 4; or
a separator of form E with an S cookie, contradicting our claim that the first cookie had type N.

The cookie c1 must be preceded by round trips of AH, following the unitW cookie. Then each
such round trip will bend on an even row on the way up and then on an odd row on the way down;
and the size of c1 would be m − x, where x is even. Therefore, the number of rows occupied by
c1 must have the same parity as m. If there is a cookie after c1, then it must be an N cookie,
since c1 must be followed by separator of form F (E if we consider c1 and the separator together),
and Pi does not have a separator of form J by Observation 4. Since there are an odd number of
separator between c1 and the N cookie, each bending on a different row above c1, the N cookie
occupies x − x′ rows, where x is even and x′ is odd. Therefore, the size of the N cookie must be
even. In this way the cookies must alternate between the S and N boundaries, since Pi does not
have separators of forms G and J by Observation 4, and the number of rows occupied by any S
cookie must have the same parity as m and the size of all the N cookies will be even. □

5.1.2 Terminal sub-rectangles

We limit our discussion of terminal sub-rectangles to G1 in this section, since GQ has similar
structure. If η1 of the 1-complex path P of G has form B or G, then G1 contains only the initial
subpath of P . Otherwise, G1 contains η1 of P as the first cross-separator of P1, where η1 must
have either form D, A or F . If η1 has form D, then it must also be the last separator, and there
are no corner separators or N cookies in G1 by Lemma 4. We now assume that η1 has either form
A or F and thus can have cookies in the middle subpath. We show that the size of those cookies
depends on the W compatibility of Rs and Rα.

Lemma 11 Let η1 of G1 have form A or F . (a) If Rs is W compatible, then any N cookie in
the middle subpath of G1 must have even size, and the size of all S cookies have opposite parity as
m. (b) Otherwise, any S cookie in the middle subpath must have even size, and the sizes of the N
cookies will have the opposite parity of m.
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Proof: By definition of W compatibility, if Rs is W compatible then it must contain an even
number of rows. Otherwise, if Rs is not W compatible, then Rα must be W compatible by
Lemma 6(b), and Rα must contain an odd number of rows.

(a) We first assume that η1 has form A. Since Rs is W compatible, η1 must bend on an even
row. As in the proof of Lemma 10, the first cookie in the middle subpath must be an S cookie,
and there are round trips of separators of form AH, bending on even rows on the way up and on
odd rows on the way down to the S boundary. Therefore, the number of rows occupied by the S
cookie must have the same parity as m. Since S and N cookies must alternate and there are odd
number of separators between two consecutive S and N cookies, the size of the N cookies must
be even.

We now assume that η1 has form F , which must bend on an odd row. Now in this case, the first
cookie in the middle subpath must be a N cookie, preceded by N -S-N round trips of separators
of forms MF , bending on an even row on the way down and bending on an odd row on the way
up. Therefore, the first N cookie covers x− x′ rows, where x is the number of rows covered by Rs

and x′ is the number of separator preceding the N cookie. Since x is even, and x′ is odd, the N
cookie covers an odd number of rows making its size even. Similar to the case when η1 has form
A, we can prove that N and S cookies must alternate in the middle subpath and the S cookies
will occupy rows of the same parity as m.

(b) We first assume that η1 has form A. Since Rs is not W compatible, η1 must bend on an
odd row. Following the same reasoning as in (a), the number of rows any S cookie will occupy has
the opposite parity as m, and any N cookies in the middle subpath must have odd size. We can
prove the same claim when η1 has form F .

Now, Rs must be W compatible if m is odd, by Lemma 6. Therefore, m must be even in this
case, and any S cookie in the middle subpath must occupy an odd number of rows; hence, they
will have even size. We can prove in a similar way as in (a) that the N cookies will have the same
parity as m. □

5.2 Reconfiguring sub-rectangles

We now describe Algorithm ReconfigSubRect. If Gh is a middle sub-rectangle, we apply a
SweepDown procedure, first placing the zipline on Row 1, and moving down two rows after each
zip until we reach the S boundary. If m is odd, we get an E − W canonical path of Gh at this
point. Otherwise, we will end up with unit size S cookies after the sweep; therefore, we SweepLeft
to grow the S cookies all the way to the N boundary and obtain an N − S canonical path of Gh.

If G1 contains only the initial subpath of P , then we apply a SweepLeft, and then a SweepDown
if we end up with unit size W cookies in Column 1 after the first sweep. Otherwise, depending on
the W compatibility of η1, we either SweepDown or SweepUp (that is, SweepDown after rotation),
and then we SweepLeft if we have unit size S or N cookies, respectively, after the first sweep.
We now give an algorithm to reconfigure any sub-rectangle of G to a canonical form based on the
above property.

Algorithm SubRectToCanonical(Gi, Pi,m, ni)
Input: A sub-rectangle Gi of G, the sub-rectangular path Pi of Gi, number of rows m and number

of columns ni of Gi.
Output: A canonical Hamiltonian path of Gi

1. if Gi is a terminal sub-rectangle
2. if Gi does not have any cross-separator of P
3. then P = Sweep(Gi, Pi, l

m−1,0
z , ni − 2, 1, left)
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Figure 30: (a) Extended sub-rectangles of the path in Fig. 3; (b) the canonical forms for the sub-
rectangles; (c) the canonical sub-rectangles merged.
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4. if ni is even
5. then P = Sweep(Gi, Pi, l

0,ni−1
z , 1,m− 2, down)

6. else if Rs is not W compatible
7. then Rotate Gi by 180◦ cw
8. P = Sweep(Gi, Pi, l

0,ni−1
z , 1,m− 2, down)

9. if m is even
10. then P = Sweep(Gi, Pi, l

m−1,0
z , ni − 2, 1, left)

11. else
12. P = Sweep(Gi, Pi, l

0,ni−1
z , 1,m− 2, down)

13. if m is even
14. then P = Sweep(Gi, Pi, l

m−1,0
z , ni − 2, 1, left)

15. return P

Lemma 12 For each middle sub-rectangle Gh, 1 < h < Q, the zone of each zip in Algorithm Sub-
RectToCanonical is zippable.

Proof: Zips in Sweep Down: By Lemma 10, all the N cookies have even size, so the top of an
N cookie will always be in an even row except Row 0; and all the S cookies have the same parity
as m, so the top of an S cookie must also be on an even row except Row 0. Since, the line lb is for
the first zip procedure is on Row 2, and moves two rows after every zip, the top of any N cookie
must be on the line lb for some zip. Similarly, la is Row 0 for the first zip, and moves two rows
down after every zip, so any S cookie must have its top on the line la for some zip.

In the first zip procedure Z1, the main track trh0 contains a corner W cookie with base is the
edge (s = a1, q1), and the remaining vertices of the track is covered by local coolies based in lb,
where each cookie is formed by either a SNS round trip of the cross-separators; or a cross-separator
and one side of an N cookie; and the last local cookie is formed by the last cross-separator and
the edged on the E boundary. Since each cross-separator except the last one has form F , M , A, or
H by Observation 4, all the local cookies will have I shape; if the last cross-separator has form D,
then the last local cookie will be q1-facing. Therefore, by Definition 6, the main track trh0 is locally
covered from q1 on the W boundary to q2 on the E boundary. Hence, by Definition 7, the zone of
the first zip is zippable. Set Str will have cells from the following list: a cell between the corner
W cookie and the first cross-separator, cells covered by NSN round trips of cross-separators, cells
inside an N cookie. The set Str′ contains cells from the following list: cells covered by SNS
round Strips of cross-separators, cells with one side on a SN cross-separator and the other on an
N cookie, cells with one side on an N cookie and the other side on an NS cross-separator, cell
incident to the last cross-separator and E boundary.

After Z1 is applied, by Observation 3, Rows 0 and 1 will be two segments of the s, t Hamiltonian
path returned by Z1, connected by the edge of track trh0 on the E boundary. Let Z2 be the second
zip procedure. Then the a1, a2 subpath in Z2 does not go above line la.

In Z2, the main track contains the edge (a1, q1). The local cookies will be formed in a similar
way as in the first zip procedure; however, there may be other shapes of local cookies as well as
I. We can have q1-facing or q2-facing when we reach a bend of a cross-separator, and T shaped
local cookies if we reach the top of an N cookie, between two cross-separators. The sets Str and
Str′ for Z2 may contain the types of cells that were available for the same sets for Z1; additionally
Str may contains cells between a cross-separator and an S cookie, and Str′ may contain cells that
are inside an S cookie. Therefore, the zone of Z2 is zippable by Definitions 6 and 7. After Z2 is
applied, by Observation 3, Rows 2 and 3 will be segments on the returned s, t Hamiltonian path.
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All the remaining zip procedures follow the same format as Z2; we can prove in a similar way
that the zones of each of those zip procedures is zippable, and after the zip procedure, lines la and
lz will be two segments of the s, t Hamiltonian path returned by the zip.

Zips in Sweep Left: If we sweep left, all the rows 0 to m − 3 must be segments on the
Hamiltonian paths, and Row m − 2 must be covered by unit S cookies. Therefore, the zone of
each zip procedure during the sweep will have similar zone: a cookie in the main track with base
on edge (a1, q1), then I shaped local cookies formed by two segments of the s, t Hamiltonian path.
Therefore, the zone of each such zip procedure is zippable. The set Str contains the cell between
the S cookie and line on Row m− 3, and cells between lines x and x+1, where x < m− 4 is odd;
set Str′ contains cells between lines x′ and x′ + 1, where x < m− 3 is even. □

Lemma 13 For each terminal sub-rectangle G1 and GQ, the zone of each zip in Algorithm Sub-
RectToCanonical is zippable.

Proof: Gi has some cross-separators of P : In this case, the algorithm progresses in a way
similar to Algorithm MiddleSubRectToCanonical.

First assume that Rs is W compatible. By Lemma 11, all the N cookies in the middle subpath
have even size; by Lemma 6 all the N cookies in the initial subpath has even size. Therefore, the
top of each N cookie will be in an even row except Row 0.

Since Rs has an even number of rows, and the size of S cookies in the initial subpath must
have opposite parities as the number of rows in Rα by Lemma 6(a), size of the S cookies have the
opposite parity of m. By Lemma 11, the S cookies in the middle subpath have opposite parities
of m. So the top of an S cookie must also be on an even row except Row 0. Since, the line lb is for
the first zip procedure is on Row 2, and moves two rows after every zip, the top of any N cookie
must be on the line lb for some zip. Similarly, la is Row 0 for the first zip, and moves two rows
down after every zip, so any S cookie must have its top on the line la for some zip.

In each zip procedure, the edge (s = a1, q1) in the main track is either the base of a W cookie
(when the number of corner separators j ≥ 0 is even), or an edge on the W boundary (when j
is odd). The rest of the main track contains round trips of corner separators and N cookies by
Lemma 5, then SNS round trips of cross-separators, and cookies nested between cross-separators
forming local cookies based in lb. Therefore, by Definition 6, the main track is locally covered from
q1 on the W boundary to q2 on the E boundary. Hence, by Definition 7, the zone of each zip is
zippable. Set Str will have cells from the following list: cell between the W cookie and the first
cross-separator (when j = 0), or between theW cookie and the first corner separator; cells covered
by NSN round trips of cross-separators, or NWN round trips of corner separators; cells inside
an N cookie; and cell between µj and η1. The set Str′ contains cells from the following list: cells
covered by SNS round Strips of cross-separators, or WNW round trip of corner separators; cells
with one side on a cross/corner separator and the other on an N cookie; cell incident to the last
cross-separator and E boundary. After each zip is applied, by Observation 3, the two rows of the
main track will be segments on the returned s, t Hamiltonian path.

If m is even, we apply an optional SweepLeft, in a similar way as in reconfiguration of a middle
sub-rectangle to a canonical form.

We now assume that Rs is not W compatible. Then by Lemma 6, Rα must be W compatible;
and m must be even. Then by Lemma 6 all the S cookies in the initial subpath have even size;
by Lemma 6, the size of the N cookies will be odd; by Lemma 11, the S cookies in the middle
subpath must have even size and the N cookies will have odd size (the opposite parity of m).

After rotating, the S and N cookies in the initial subpath become N and cookies in the final
subpath, respectively; the W cookies become E cookies; and the N and S cookies in the middle
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subpath exchange their cookie types. Therefore, all the N cookies have even size, and the S cookies
have odd size. We can prove in a similar way as in the case of Rs being W compatible that the
zones of all the zips are zippable.

Gi has no cross-separator of P : Then we first sweep to the left, where the first zipline is placed
on Column n−2. If we follow the zipline from q1 on the S boundary to q2 on the N boundary, the
main track either contains the edge (a1, q1) on the S boundary or an S cookie based on that edge,
followed by zero or more W cookies; and in case of j > 0, the vertical segment seg[s(µj), b(µj)]
of uj . If j > 0, then the zipline will contain either the segment seg[b(µj−1), s(µj−1)] or part of
an N cookie preceding µj . Therefore, the main track contains I shaped local cookies formed by
W cookies; and the last cookie may be q2 facing if j > 0. All the local cookies have base on lb.
By Definition 6 and 7, the zone of the first zip Z1 is zippable. Let P1 be the s, t Hamiltonian
path obtained by applying the first zip procedure. We now show that P1 is 1-complex. All the W
cookies are shortened by 2 units by Z1. If an N cookie precedes µj , then the vertical segment of
µj is shifted to the west segment of the N cookie, and the number j remains the same. In case
µj−1 was incident to the zipline, both µj and µj−1 are dissolved and a W cookie is created by the
horizontal segments of those two corner separators. Therefore, in P1 all the cookies in the initial
subpath is 1-complex, and thus, P1 is 1-complex.

Moving lz two columns westward, we apply the next zip on P1 and obtain another 1-complex
path. In case there are even number of columns in the sub-rectangle we have Column 1 covered by
unit size W cookies at the end of the SweepLeft. We apply a SweepDown to grow the W cookies
which is very similar to the optional SweepLeft in the previous case.

□

Theorem 3 Algorithm ReconfigSubRect reconfigures a sub-rectangle Gh to a canonical form
in O(|Gh|) switch operations.

Proof: It follows from Lemmas 12 and 13, that the algorithm returns a canonical form. At most
two sweeps are required, one downward and one leftward.

Let mh = m and nh be the number of rows and columns, respectively, of Gh. The downward
sweep applies zips on a horizontal zipline, where the zipline is placed on the odd numbered rows
only. Therefore, at most mh/2 zips are performed, where each zip consists of at most O(nh) switch
operations. Therefore, the downward sweep requires O(|Gh|) switch operations. In a similar way,
the leftward sweep performs nh/2 zips each of which performs O(mh) switches. Therefore, O(|Gh|)
switch operations are required by the two sweeps in total. To show that the sweeps take O(Gh)
time, we now show that each switch operation can be performed in O(1) time using the following
data structure.

We create an m × n two-dimensional array AG whose entries correspond to the vertices of G.
For each vertex vi,j of G, the entry A[i][j] stores the indices of the two neighbors of vi,j on P ,
the first one is the neighbor on the path to s and the second one is on the path to t from vi,j .
(See Fig. 31 for an example, where the dots indicate selected vi,j ’s in G and their corresponding
entries in A.) To check whether a cell c is switchable, we just check the entries in A of the four
vertices on c; each of the vertices will have a neighbor on the cell and one not on the cell c. If cell
c is switchable with respect to the 1-complex cycle, performing a switch in c requires changing the
entries in A corresponding to the four vertices of c only. Therefore, determining switchability of a
cell of G and performing a switch operation take O(1) time each.

□
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Figure 31: (a) A 1-complex path P in a 10 × 13 grid graph. (b) The 10 × 13 2D array A storing
P ; entries corresponding to the vertices shown with dots are given.

5.3 Merging the canonical sub-rectangles

For each Gh, if the E boundary is a dummy column, and m is odd, we apply one vertical zip
with the zipline on Column ni − 2 of Gh such that both Columns n − 2 and n − 1 become path
segments after the zip (Fig. 30(b)). We remove the dummy edges; flip the sub-rectangle back, if
it was flipped before; then add all the straight separators and edges on the N and S boundaries
that were removed, to get an s, t Hamiltonian path P ′ of G. If P ′ is not a canonical path, it must
have “comb” shaped subpaths connected by straight separators as shown in Fig. 30(c). We then
apply one more SweepDown to obtain an E −W canonical path of G.

Algorithm 1ComplexToCanonical(G, P,m, n)
Input: An m× n grid graph G, and an 1 complex s, t Hamiltonian path P of G, number of rows

m and number of columns n of G.
Output: A canonical Hamiltonian path of G
1. Break G into Q sub-rectangles G1,G2, . . . ,GQ

2. Let Pi and ni, where 1 ≤ i ≤ Q, be the sub-rectangular path and number of columns of Gi.
The number of rows for all Gi is m.

3. for i = 1 to Q
4. Pi = SubRectToCanonical(Gi, Pi,m, ni)
5. if Gi has a dummy E boundary
6. then Pi = Sweep(Gi, Pi, l

m−1,0
z , ni − 2, ni − 2, left)

7. Remove the dummy edges
8. Flip back Gi along the S boundary if it was flipped before
9. Merge the sub-rectangles into P ′

10. if m is odd
11. then P ′ = Sweep(G, P ′, l0,n−1

z , 1,m− 2, down)
12. return P ′
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Figure 32: Reconfiguring the 8 sub-rectangles of the path in Fig. 3: G2 and G3 are flipped, and
G2–G6 have been extended using dummy edges while creating the sub-rectangles. When merging
the canonical forms of the sub-rectangular paths, we remove dummy edges from G2–G6, and then
flip G2 and G3. In this way we find a ’comb’ structure, and one final sweep gives a canonical path
in the original grid G.
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Theorem 4 Algorithm 1ComplexToCanonical reconfigures a 1-complex s, t Hamiltonian path
to a canonical Hamiltonian path of G in O(|G|) time using O(|G|) switch operations.

Proof: The correctness and the number of required switch operations follow from Theorem 3.
Applying each switch operation takes O(1) time. Therefore, applying all the switch operations will
take O(|G|) time.

We break P into subpaths using the following algorithm. We assign s as the starting endpoint
s1 of the first subpath. If η1 of P , occupying Column i of G, has either form B or G, then we take
the vertex of Column i − 1 on the S boundary to be the other endpoint t1 of the first subpath.
Otherwise, we go through the list of separators sequentially to find the first cross-separator η of
form D or I, occupying Column i; then we assign the vertex on the N (form D) or S (form I)
boundary on Column i to be t1. We then find the next cross-separator η′ of form G or J , occupying
Column i′, assign the the vertex on the N (form J) or S (form G) boundary on Column i as s2,
the starting of the next subpath; find the first cross-separator of form D or I that comes after
that in order to find t2. In this way, we keep assigning endpoints of subpaths. When passing the
last cross-separator ηk of P in the list, we have two cases to consider: if we have already assigned
the starting point sQ of a subpath (the last one), and are looking for the ending point, we simply
assign t = tQ; otherwise, ηk must have form D or B, occupying Column i′′, and we assign the
vertex of Column i′′ +1 on the N boundary as sQ and t = tQ. Since the algorithm make one pass
through the list of separators, which has size less than n, the breaking up process takes O(n) time.

After assigning all the endpoints of the subpaths, we can add a dummy E boundary and rotate
the sub-rectangles in O(|G|) time.

Reconfiguring any sub-rectangle Gi, 1 ≤ i ≤ Q, takes O(|Gi|) time by Theorem 3. It is straight
forward to see that the merging of the sub-rectangles and the final sweep will take O(|G|) time each.

Therefore, the total time required by the algorithm is O(n) +
∑Q

i=1 O(|Gi|) + O(|G|) + O(|G|) =
O(|G|). □

6 Reconfiguring between 1-Complex Paths

In this section, we give an algorithm called 1ComplexTo1Complex to reconfigure between any
two 1-complex s, t Hamiltonian paths P1 and P2 in O(|G|) time (see Definition 4 in Section 2).
Our strategy is to use two canonical Hamiltonian paths P1 and P2 as intermediate paths, where
the two canonical paths may or may not be the same based on the parity of m and n. Recall
from Definition 4 and Fig. 7 that a canonical path is a 1-complex path with no bends at internal
vertices.

The reconfiguration sequence is as follows: (a) P1 to P1, (b) P1 to P2 if they are different,
and finally (c) P2 to P2. Algorithm 1ComplexToCanonical suffices for Steps (a) and (c), since
reconfiguring P2 to P2 is similar to reversing the steps of the reconfiguration of P2 to P2.

To check whether P1 and P2 are different canonical paths, we check the first edge on each
path. If the edge is on the W boundary then the path is an N -S canonical path; otherwise, it is
an W-E canonical path. If P1 and P2 are the different canonical paths, then we call Algorithm
CanonicalToCanonical to reconfigure one canonical Hamiltonian path to the other.

We now describe Algorithm CanonicalToCanonical. If P1 is N -S and P2 isW-E , we apply
a SweepDown procedure on P1 starting from Row 1 and ending on Row m−2, as shown in Fig. 33.

In the remaining case, when P1 is W-E and P2 is N -S, we apply SweepLeft on P1 with the
zipline sweeping from Column 1 to Column n− 2. To conclude,
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Figure 33: SweepDown procedure to reconfigure N–S canonical path P1 to E–W canonical path
P2.

Theorem 5 Suppose G has two distinct canonical paths P1 and P2. Then Algorithm Canoni-
calToCanonical reconfigures P1 to P2 in O(|G|) time using O(|G|) switches.

Proof: Each of Sweep Down and Sweep Left procedures requires O(|G|) switch operations. Since
applying each switch operation takes O(1) time, applying all the switch operations will take O(|G|)
time. □

We observe that reconfiguring between two distinct canonical Hamiltonian paths requires at
least |P |/2 switch operations as each switch operation switches only two path edges. This gives
a worst case lower bound on the number of switches required in reconfiguration between two
1-complex s, t paths of G.

Theorem 6 Reconfiguring between two distinct canonical paths P1 and P2 requires Ω(|G|) switch
operations.

We summarize our main algorithmic result, based on Theorems 4 and 5.

Theorem 7 [Main algorithmic result.] Let P1 and P2 be two 1-complex s, t Hamiltonian paths
of a grid graph G. Then Algorithm 1ComplexTo1Complex reconfigures P1 to P2 in O(|G|)
time, using O(|G|) switches in total.

Proof: Each of Steps (a) and (c) requires O(|G|) time by Theorem 4; Step (b) requires O(|G|)
time by Theorem 5. □
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7 Conclusion

We established the structure of any 1-complex s, t Hamiltonian path in G. We gave an O(|G|)-time
algorithm to reconfigure between any two given 1-complex paths of G using switches in grid cells,
where |G| denotes the size of the grid graph G in terms of the total number of vertices mn of G. It
would be interesting to find an algorithm that keeps the s, t Hamiltonian paths in the intermediate
steps 1-complex.

Generalization: k-complex paths. A k-complex path P is an s, t Hamiltonian path of G
where each vertex of G is connected to a vertex on the boundary rectangle RG by at most k straight
line segments on P . We leave the following questions open.

• Is the Hamiltonian path graph for k-complex paths of G connected for switch operation?
What is the diameter of that graph?

• For general grid graphs, deciding whether a Hamiltonian path exist between two given vertices
s and t is NP-complete. What is the complexity of deciding whether there is a reconfiguration
sequence between two given s, t Hamiltonian paths in such a grid graph?

The reconfiguration problem remains open for grid graphs with arbitrary boundary, and in
d-dimension, d ≥ 3.

We conclude with a problem suggested by one of our anonymous reviewers. Let p ≥ 1 be the
maximum length of path segment that connects two internal bends of an s, t Hamiltonian path.
For 1-complex paths, p = 1. Can we reconfigure s, t Hamiltonian paths with parameter p > 1 using
switch operations?
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