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Abstract

Even though a large number of I/O-efficient graph algorithms have
been developed, a number of fundamental problems still remain open. For
example, no space- and I/O-efficient algorithms are known for depth-first
search or breath-first search in sparse graphs. In this paper, we present
two new results on I/O-efficient depth-first search in an important class of
sparse graphs, namely undirected embedded planar graphs. We develop
a new depth-first search algorithm that uses O(sort(N) log(N/M)) I/Os,
and show how planar depth-first search can be reduced to planar breadth-
first search in O(sort(N)) I/Os. As part of the first result, we develop
the first I/O-efficient algorithm for finding a simple cycle separator of
an embedded biconnected planar graph. This algorithm uses O(sort(N))
I/Os.
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1 Introduction

External memory graph algorithms have received considerable attention lately
because massive graphs arise naturally in many applications. Recent web crawls,
for example, produce graphs with on the order of 200 million vertices and 2 bil-
lion edges [11]. Recent work in web modeling uses depth-first search, breadth-
first search, shortest path and connected component computations as primitive
routines for investigating the structure of the web [9]. Massive graphs are also
often manipulated in Geographic Information Systems (GIS), where many com-
mon problems can be formulated as basic graph problems. Yet another example
of a massive graph is AT&T’s 20 TB phone-call data graph [11]. When work-
ing with such massive data sets, the I/O-communication, and not the internal
memory computation, is often the bottleneck. I/O-efficient algorithms can thus
lead to considerable run-time improvements.

Breadth-first search (BFS) and depth-first search (DFS) are the two most
fundamental graph searching strategies. They are extensively used in many
graph algorithms. The reason is that in internal memory both strategies are
easy to implement in linear time; yet they reveal important information about
the structure of the given graph. Unfortunately no I/O-efficient BFS or DFS-
algorithms are known for arbitrary sparse graphs, while known algorithms per-
form reasonably well on dense graphs. The problem with the standard imple-
mentations of DFS and BFS is that they decide which vertex to visit next one
vertex at a time, instead of predicting the sequence of vertices to be visited. As
a result, vertices are visited in a random fashion, which may cause the algorithm
to spend one I/O per vertex. Unfortunately it seems that in order to predict
the order in which vertices are visited, one essentially has to solve the searching
problem at hand. For dense graphs, the I/Os spent on accessing vertices in a
random fashion can be charged to the large number of edges in the graph; for
sparse graphs, such an amortization argument cannot be applied.

In this paper, we consider an important class of sparse graphs, namely undi-
rected embedded planar graphs: A graph G is planar if it can be drawn in the
plane so that its edges intersect only at their endpoints. Such a drawing is
called a planar embedding of G. If graph G is given together with an embed-
ding, we call it embedded. The class of planar graphs is restricted enough, and
the structural information provided by a planar embedding is rich enough, to
hope for more efficient algorithms than for arbitrary sparse graphs. Several
such algorithms have indeed been obtained recently [6, 16, 22, 24]. We develop
an improved DFS-algorithm for embedded planar graphs and show that planar
DFS can be reduced to planar BFS in an I/O-efficient manner.
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1.1 I/O-Model and Previous Results

We work in the standard disk model proposed in [3]. The model defines the
following parameters:

N = number of vertices and edges (N = |V | + |E|),
M = number of vertices/edges that can fit into internal memory, and
B = number of vertices/edges per disk block,

where 2B < M < N . In an Input/Output operation (or simply I/O) one
block of data is transferred between disk and internal memory. The measure of
performance of an algorithm is the number of I/Os it performs. The number
of I/Os needed to read N contiguous items from disk is scan(N) = Θ

(
N
B

)
(the

linear or scanning bound). The number of I/Os required to sort N items is
sort(N) = Θ

(
N
B logM/B

N
B

)
(the sorting bound) [3]. For all realistic values of

N , B, and M , scan(N) < sort(N) � N . Therefore the difference between the
running times of an algorithm performing N I/Os and one performing scan(N)
or sort(N) I/Os can be considerable [8].

I/O-efficient graph algorithms have been considered by a number of authors
[1, 2, 4, 5, 6, 10, 12, 14, 16, 19, 20, 21, 22, 23, 24, 26, 30]. We review the
previous results most relevant to our work (see Table 1). The best known gen-
eral DFS-algorithms on undirected graphs use O (|V | + scan(|E|)) · log2 |V |) [19]
or O

(
|V | + |V |

M · scan(E)
)

I/Os [12]. Since the best known BFS-algorithm for

general graphs uses only O

(√
|V |(|V |+|E|)

B + sort(|V | + |E|)
)

I/Os [23], this

suggests that on undirected graphs, DFS may be harder than BFS. For di-
rected graphs, the best known algorithms for both problems use O

((
|V |+ |E|

B

)
·

log2
|V |
B +sort(|E|)

)
I/Os [10]. For most graph problems Ω(min{|V |, sort(|V |)})

is a lower bound [5, 12], and, as discussed above, this is Ω(sort(|V |)) in all prac-
tical cases. Still, all of the above algorithms, except the recent BFS-algorithm
of [23], use Ω(|V |) I/Os. For sparse graphs, the same I/O-complexity can

Problem General graphs Planar graphs

DFS O
(
|V | + |V |

M · scan(E)
)

[12] O(N)

O ((|V | + scan(|E|)) · log2 |V |) [19]

BFS O

(√
|V |(|V |+|E|)

B + sort(|V | + |E|)
)

[23] O
(
N/

√
B

)
[23]

Table 1: Best known upper bounds for BFS and DFS on undirected graphs (and
linear space).
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be achieved much easier using the standard internal memory algorithm. Im-
proved algorithms have been developed for special classes of planar graphs. For
undirected planar graphs the first o(N) DFS and BFS algorithms were devel-
oped by [24]. These algorithms use O( N

γ log B + sort(NBγ)) I/Os and O(NBγ)
space, for any 0 < γ ≤ 1/2. BFS and DFS can be solved in O(sort(N))
I/Os on trees [10, 12] and outerplanar graphs [20]. BFS can also be solved
in O(sort(N)) I/Os on k-outerplanar graphs [21].

1.2 Our Results

The contribution of this paper is two-fold. In Section 3, we present a new DFS-
algorithm for undirected embedded planar graphs that uses
O(sort(N) log(N/M)) I/Os and linear space. For most practical values of B,
M and N this algorithm uses o(N) I/Os and is the first algorithm to do so
using linear space. The algorithm is based on a divide-and-conquer approach
first proposed in [27]. It utilizes a new O(sort(N)) I/O algorithm for finding
a simple cycle in a biconnected planar graph such that neither the subgraph
inside nor the one outside the cycle contains more than a constant fraction of
the vertices of the graph. Previously, no such algorithm was known.

In Section 4 we obtain an O(sort(N)) I/O reduction from DFS to BFS
on undirected embedded planar graphs using ideas similar to the ones in [15].
Contrary to what has been conjectured for general graphs, this shows that for
planar graphs, BFS is as hard as DFS. Together with two recent results [6, 22],
this implies that planar DFS can be solved in O(sort(N)) I/Os. In particular,
Arge et al. [6] show that BFS and the single source shortest path problem
can be solved in O(sort(N)) I/Os, given a multi-way separator of a planar
graph. Maheshwari and Zeh [22] show that such a separator can be computed
in O(sort(N)) I/Os.

A preliminary version of this paper appeared in [7].

2 Basic Graph Operations

In the algorithms described in Sections 3 and 4 we make use of previously
developed O(sort(N)) I/O solutions for a number of basic graph problems. We
review these problems below. Most of the basic computations we use require
a total order on the vertex set V and on the edge set E of the graph G =
(V,E). For the vertex set V , such a total order is trivially provided by a unique
numbering of the vertices in G. For the edge set E, we assume that an edge
{v, w} is stored as the pair (v, w), v < w, and we define (v, w) < (x, y) for edges
(v, w) and (x, y) in E if either v < x or, v = x and w < y. We call this ordering
the lexicographical order of E. Another ordering, which we call the inverted
lexicographical order of E, defines (v, w) < (x, y) if either w < y, or w = y and
v < x.



L. Arge et al., On External-Memory Planar DFS , JGAA, 7(2) 105–129 (2003)109

Set difference: Even though strictly speaking set difference is not a graph
operation, we often apply it to the vertex and edge sets of a graph. To compute
the difference X \ Y of two sets X and Y drawn from a total order, we first
sort X and Y . Then we scan the two resulting sorted lists simultaneously, in a
way similar to merging them into one sorted list. However, elements from Y are
not copied to the output list, and an element from X is copied only if it does
not match the current element in Y . This clearly takes O(sort(N)) I/Os, where
N = |X| + |Y |. We use SetDifference as a shorthand for this operation.

Duplicate removal: Given a list X = 〈x1, . . . , xN 〉 with some entries poten-
tially occurring more than once, the DuplicateRemoval operation computes
a list Y = 〈y1, . . . , yq〉 such that {x1, . . . , xN} = {y1, . . . , yq}, yj = xij

, for in-
dices i1 < · · · < iq, and xl �= yj , for 1 ≤ l < ij . That is, list Y contains the first
occurrences of all elements in X in sorted order. (Alternatively we may require
list Y to store the last occurrences of all elements in X.) To compute Y in
O(sort(N)) I/Os, we scan X and replace every element xi with the pair (xi, i).
We sort the resulting list X ′ lexicographically. Now we scan list X ′ and discard
for every x, all pairs that have x as their first component, except the first such
pair. List Y can now be obtained by sorting the remaining pairs (x, y) by their
indices y and scanning the resulting list to replace every pair (x, y) with the
single element x.

Computing incident edges: Given a set V of vertices and a set E of edges,
the IncidentEdges operation computes the set E′ of edges {v, w} ∈ E such
that v ∈ V and w �∈ V . To compute E′ in O(sort(N)) I/Os where N = |V |+|E|,
we sort V in increasing order and E in lexicographical order. We scan V and
E and mark every edge in E that has its first endpoint in V . We sort E in
inverted lexicographical order and scan V and E again to mark every edge in
E that has its second endpoint in V . Finally we scan E and remove all edges
that have not been marked or have been marked twice.

Copying labels from edges to vertices: Given a graph G = (V,E) and a
labeling λ : E → X of the edges in E, the SumEdgeLabels operation computes
a labeling λ′ : V → X of the vertices in V , where λ′(v) =

⊕
e∈Ev

λ(e), Ev is
the set of edges incident to v, and ⊕ is any given associative and commutative
operator on X. To compute labeling λ′ in O(sort(N)) I/Os, we sort V in
increasing order and E lexicographically. We scan V and E and compute a
label λ′′(v) =

⊕
e∈E′

v
λ(e), for each v, where E′

v is the set of edges that have v
as their first endpoint. Then we sort E in inverted lexicographical order and
scan V and E to compute the label λ′(v) = λ′′(v) +

⊕
e∈E′′

v
λ(e), for each v,

where E′′
v is the set of edges that have v as their second endpoint.

Copying labels from vertices to edges: Given a graph G = (V,E) and a
labeling λ : V → X of the vertices in V , the CopyVertexLabels operation
computes a labeling λ′ : E → X × X, where λ′({v, w}) = (λ(v), λ(w)). We can
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compute this labeling in O(sort(N)) I/Os using a procedure similar to the one
implementing operation SumEdgeLabels.

Algorithms for lists and trees: Given a list stored as an unordered sequence
of edges {(u, next(u))}, list ranking is the problem of determining for every
vertex u in the list, the number of edges from u to the end of the list. List
ranking can be solved in O(sort(N)) I/Os [4, 12] using techniques similar to the
ones used in efficient parallel list ranking algorithms [18]. Using list ranking and
PRAM techniques, O(sort(N)) I/O algorithms can also be developed for most
problems on trees, including Euler tour computation, BFS and DFS-numbering,
and lowest common ancestor queries (Q queries can be answered in O(sort(Q+
N)) I/Os) [12]. Any computation that can be expressed as a “level-by-level”
traversal of a tree, where the value of every vertex is computed either from the
values of its children or from the value of its parent, can also be carried out in
O(sort(N)) I/Os [12].

Algorithms for planar graphs: Even though no O(sort(N)) I/O algorithms
for BFS or DFS in planar graphs have been developed, there exist O(sort(N)) I/O
solutions for a few other problems on planar graphs, namely computing the
connected and biconnected components, spanning trees and minimum spanning
trees [12]. All these algorithms are based on edge-contraction, similar to the
PRAM algorithms for these problems [13, 29]. We make extensive use of these
algorithms in our DFS-algorithms.

3 Depth-First Search using Simple Cycle Sepa-
rators

3.1 Outline of the Algorithm

Our new algorithm for computing a DFS-tree of an embedded planar graph in
O(sort(N) log(N/M)) I/Os and linear space is based on a divide-and-conquer
approach first proposed in [27]. First we introduce some terminology used in
this section.

A cutpoint of a graph G is a vertex whose removal disconnects G. A con-
nected graph G is biconnected if it does not have any cutpoints. The biconnected
components or bicomps of a graph are its maximal biconnected subgraphs. A
simple cycle α-separator C of an embedded planar graph G is a simple cycle such
that neither the subgraph inside nor the one outside the cycle contains more
than α|V | vertices. Such a cycle is guaranteed to exist only if G is biconnected.

The main idea of our algorithm is to partition G using a simple cycle α-
separator C, recursively compute DFS-trees for the connected components of
G \ C, and combine them to obtain a DFS-tree for G. If each recursive step
can be carried out in O(sort(N)) I/Os, it follows that the whole algorithm takes
O(sort(N) log(N/M)) I/Os because the sizes of the subgraphs of G we recurse
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on are geometrically decreasing, and we can stop the recursion as soon as the
current graph fits into main memory. Below we discuss our algorithm in more
detail, first assuming that the graph is biconnected.

Given a biconnected embedded planar graph G and some vertex s ∈ G, we
construct a DFS-tree T of G rooted at s as follows (see Figure 1):

1. Compute a simple cycle 2
3 -separator C of G.

In Section 3.2, we show how to do this in O(sort(N)) I/Os.

2. Find a path P from s to some vertex v in C.

To do this, we compute an arbitrary spanning tree T ′ of G, rooted at s, and
find a vertex v ∈ C whose distance to s in T ′ is minimal. Path P is the path
from s to v in T ′. The spanning tree T ′ can be computed in O(sort(N))
I/Os [12]. Given tree T ′, vertex v can easily be found in O(sort(N))
I/Os using a BFS-traversal [12] of T ′. Path P can then be identified by
extracting all ancestors of v in T ′. This takes O(sort(N)) I/Os using
standard tree computations [12].

3. Extend P to a path P ′ containing all vertices in P and C.

To do this, we identify one of the two neighbors of v in C. Let w be this
neighbor, and let C ′ be the path obtained by removing edge {v, w} from C.
Then path P ′ is the concatenation of paths P and C ′. This computation
can easily be carried out in O(scan(N)) I/Os: First we scan the edge list
of C and remove the first edge we find that has v as an endpoint. Then
we concatenate the resulting edge list of C ′ and the edge list of P .

4. Compute the connected components H1, . . . , Hk of G \P ′. For each com-
ponent Hi, find the vertex vi ∈ P ′ furthest away from s along P ′ such
that there is an edge {ui, vi}, ui ∈ Hi.

s v

w C

Figure 1: The path P ′ is shown in bold. The connected components of G \ P ′

are shaded dark gray. Medium edges are edges {ui, vi}. Light edges are non-tree
edges.
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The connected components H1, . . . , Hk can be computed in O(sort(N))
I/Os [12]. We find vertices v1, . . . , vk in O(sort(N)) I/Os as follows: First
we mark every vertex in P ′ with its distance from s along P ′. These
distances can be computed in O(sort(N)) I/Os using the Euler tour tech-
nique and list ranking [12]. Then we apply operation IncidentEdges to
V (P ′) and E(G), to find all edges in E(G)\E(P ′) incident to P ′. We sort
the resulting edge set so that edge {v, w}, v ∈ Hi, w ∈ P ′, precedes edge
{x, y}, x ∈ Hj , y ∈ P ′, if either i < j or i = j and the distance from s to
w is no larger than the distance from s to y. Ties are broken arbitrarily.
We scan the resulting list and extract for every Hi the last edge {ui, vi},
ui ∈ Hi, in this list.

5. Recursively compute DFS-trees T1, . . . , Tk for components H1, . . . , Hk,
rooted at vertices u1, . . . , uk, and construct a DFS-tree T for G as the
union of trees T1, . . . , Tk, path P ′, and edges {ui, vi}, 1 ≤ i ≤ k. Note
that components H1, . . . , Hk are not necessarily biconnected. Below we
show how to deal with this case.

To prove the correctness of our algorithm, we have to show that T is indeed a
DFS-tree for G. To do this, the following classification of the edges in E(G) \
E(T ) is useful: An edge e = (u, v) in E(G) \ E(T ) is called a back-edge if u is
an ancestor of v in T , or vice versa; otherwise e is called a cross-edge. In [28] it
is shown that a spanning tree T of a graph G is a DFS-tree of G if and only if
all edges in E(G) \ E(T ) are back-edges.

Lemma 1 The tree T computed by the above algorithm is a DFS-tree of G.

Proof: It is easy to see that T is a spanning tree of G. To prove that T is a
DFS-tree, we have to show that all non-tree edges in G are back-edges. First
note that there are no edges between components H1, . . . , Hk. All non-tree
edges with both endpoints in a component Hi are back-edges because tree Ti is
a DFS-tree of Hi. All non-tree edges with both endpoints in P ′ are back-edges
because P ′ is a path. For every non-tree edge {v, w} with v ∈ P ′ and w ∈ Hi,
w is a descendant of the root ui of the DFS-tree Ti. Tree Ti is connected to P ′

through edge {vi, ui}. By the choice of vertex vi, v is an ancestor of vi and thus
an ancestor of ui and w. Hence, edge {v, w} is a back-edge. �

In the above description of our algorithm we assume that G is biconnected.
If this is not the case, we find the bicomps of G, compute DFS-trees for all
bicomps, and join these trees at the cutpoints of G. More precisely, we compute
the bicomp-cutpoint-tree TG of G containing all cutpoints of G and one vertex
v(C) per bicomp C (see Figure 2). There is an edge between a cutpoint v and a
bicomp vertex v(C) if v is contained in C. We choose the bicomp vertex v(Cr)
corresponding to a bicomp Cr that contains vertex s as the root of TG. The
parent cutpoint of a bicomp C �= Cr is the parent p(v(C)) of v(C) in TG. TG can
be constructed in O(sort(N)) I/Os, using the algorithms discussed in Section 2.
We compute a DFS-tree of Cr rooted at vertex s. For every bicomp C �= Cr,
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(a) (b) (c)

Figure 2: (a) A connected graph G with its bicomps shaded. Cutpoints are
hollow. Other vertices are solid. (b) The bicomp-cutpoint-tree of G. Bicomp
vertices are squares. (c) The DFS tree of G obtained by “gluing together”
DFS-trees of its bicomps.

we compute a DFS-tree rooted at the parent cutpoint of C. The union of the
resulting DFS-trees (see Figure 2c) is a DFS-tree for G rooted at s, since there
are no edges between different bicomps. Thus, we obtain our first main result.

Theorem 1 A DFS-tree of an embedded planar graph can be computed in
O(sort(N) log(N/M)) I/O operations and linear space.

3.2 Finding a Simple Cycle Separator

In this section, we show how to compute a simple cycle 2
3 -separator of an embed-

ded biconnected planar graph, utilizing ideas similar to the ones used in [17, 25].
As in the previous section, we start by introducing the necessary terminology.

Given an embedded planar graph G, the faces of G are the connected regions
of R2 \ G. We use F to denote the set of faces of G. The boundary of a face f
is the set of edges contained in the closure of f . For a set F ′ of faces of G, let
GF ′ be the subgraph of G defined as the union of the boundaries of the faces in
F ′ (see Figure 3a). The complement GF ′ of GF ′ is the graph obtained as the
union of the boundaries of all faces in F \ F ′ (see Figure 3b). The boundary of
GF ′ is the intersection between GF ′ and its complement GF ′ (see Figure 3c).
The dual G∗ of G is the graph containing one vertex f∗ per face f ∈ F , and
an edge between two vertices f∗

1 and f∗
2 if faces f1 and f2 share an edge (see

Figure 3d). We use v∗, e∗, and f∗ to refer to the face, edge, and vertex that
is dual to vertex v, edge e, and face f , respectively. The dual G∗ of a planar
graph G is planar and can be computed in O(sort(N)) I/Os [16].

The idea in our algorithm is to find a set of faces F ′ ⊂ F such that the
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(a) (b) (c) (d)

Figure 3: (a) A graph G and a set F ′ of faces shaded gray. The edges in GF ′ are
shown in bold. (b) The shaded faces are the faces in F \F ′. The bold edges are
in ḠF ′ . (c) The boundary of GF ′ shown in bold. (d) The dual of G represented
by hollow squares and dashed edges.

boundary of GF ′ is a simple cycle 2
3 -separator. The main difficulty is to ensure

that the boundary of GF ′ is a simple cycle. We compute F ′ as follows:

1. Checking for heavy faces: We check whether there is a single face
whose boundary has size at least |V |

3 (Figure 4a). If we find such a face,
we report its boundary as the separator C, as there are no vertices inside
C and at most 2

3 |V | vertices outside C.

2. Checking for heavy subtrees: If there is no heavy face, we compute a
spanning tree T ∗ of the dual G∗ of G, and choose an arbitrary vertex r as
its root. Every vertex v ∈ T ∗ defines a subtree T ∗(v) of T ∗ that contains
v and all its descendants. The vertices in this subtree correspond to a
set of faces in G whose boundaries define a graph G(v). Below we show
that the boundary of G(v) is a simple cycle. We try to find a vertex v
such that 1

3 |V | ≤ |G(v)| ≤ 2
3 |V |, where |G(v)| is the number of vertices in

G(v) (Figure 4b). If we succeed, we report the boundary of G(v) as the
separator C.

3. Splitting a heavy subtree: If Steps 1 and 2 fail to produce a simple
cycle 2

3 -separator of G, we are left in a situation where for every leaf
l ∈ T ∗ (face in G), we have |G(l)| < 1

3 |V |; for the root r of T ∗, we have
|G(r)| = |V |; and for every other vertex v ∈ T ∗, either |G(v)| < 1

3 |V | or
|G(v)| > 2

3 |V |. Thus, there has to be a vertex v with |G(v)| > 2
3 |V | and

|G(wi)| < 1
3 |V |, for all children w1, . . . , wk of v. We show how to compute

a subgraph G′ of G(v) consisting of the boundary of the face v∗ and a
subset of the graphs G(w1), . . . , G(wk) such that 1

3 |V | ≤ |G′| ≤ 2
3 |V |, and

the boundary of G′ is a simple cycle (Figure 4c).

Below we describe our algorithm in detail and show that all of the above
steps can be carried out in O(sort(N)) I/Os. This proves the following theorem.

Theorem 2 A simple cycle 2
3 -separator of an embedded biconnected planar

graph can be computed in O(sort(N)) I/O operations and linear space.
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(a) (b) (c)

Figure 4: (a) A heavy face. (b) A heavy subtree. (c) Splitting a heavy subtree.

3.2.1 Checking for Heavy Faces

In order to check whether there exists a face f in G with a boundary of size at
least 1

3 |V |, we represent each face of G as a list of vertices along its boundary.
Computing such a representation takes O(sort(N)) I/Os [16]. Then we scan
these lists to see whether any of them has length at least 1

3 |V |. In total, this
step uses O(sort(N)) I/Os.

3.2.2 Checking for Heavy Subtrees

First we prove that the boundary of G(v) defined by the vertices in T ∗(v) is a
simple cycle. Consider a subset F ′ of the faces of an embedded planar graph G,
and let H be the subgraph of G that is the union of the boundaries of the faces
in F ′. Let H∗ be the subgraph of the dual G∗ of G induced by the vertices that
are dual to the faces in F ′. We call H∗ the dual of H. We call graph H uniform
if H∗ is connected. Since for every vertex v ∈ T ∗, T ∗(v) and T ∗ \ T ∗(v) are
both connected, G(v) and its complement G(v) are both uniform. Using the
following lemma, this implies that the boundary of G(v) is a simple cycle.

Lemma 2 (Smith [27]) Let G′ be a subgraph of a biconnected planar graph
G. The boundary of G′ is a simple cycle if and only if G′ and its complement
are both uniform.

The main difficulty in finding a vertex v ∈ T ∗ such that 1
3 |V | ≤ |G(v)| ≤ 2

3 |V |
is the computation of the sizes |G(v)| of graphs G(v) for all vertices v ∈ T ∗.
Once this information has been computed, a single scan of the vertex set of T ∗ is
sufficient to decide whether there is a vertex v ∈ T ∗ with 1

3 |V | ≤ |G(v)| ≤ 2
3 |V |.

As |T ∗| = O(N), this takes O(scan(N)) I/Os. Given vertex v, the vertices in
T ∗(v) can be reported in O(sort(N)) I/Os using standard tree computations [12].
Given these vertices, we can apply operation IncidentEdges to find the set
E′ of edges in G∗ with exactly one endpoint in T ∗(v). The set {e∗ : e ∈ E′} is
the boundary of G(v). All that remains is to describe how to compute the sizes
of graphs G(v) I/O-efficiently.
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Assume that every vertex v ∈ T ∗ stores the number |v∗| of vertices on the
boundary of face v∗. The basic idea in our algorithm for computing |G(v)| is to
sum |w∗| for all descendants w of v in T ∗. This can be done by processing T ∗

level-by-level, bottom-up, and computing for every vertex v, the value |G(v)| =
|v∗| +

∑k
i=1 |G(wi)|, where w1, . . . wk are the children of v. By doing this,

however, we count certain vertices several times. Below we discuss how to
modify the above idea in order to make sure that every vertex is counted only
once.

We define the lowest common ancestor LCA(e) of an edge e ∈ G to be the
lowest common ancestor of the endpoints of its dual edge e∗ in T ∗. For a vertex
v ∈ T ∗, we define E(v) to be the set of edges in G whose duals have v as their low-
est common ancestor. For a vertex v with children w1, w2, . . . wk, E(v) consists
of all edges on the boundary between v∗ and graphs G(w1), G(w2), . . . , G(wk),
as well as the edges on the boundary between graphs G(w1), G(w2), . . . , G(wk).
Every endpoint of such an edge is contained in more than one subgraph of
G(v), and thus counted more than once by the above procedure. The idea in
our modification is to define an overcount cv,u, for every endpoint u of an edge
in E(v), which is one less than the number of times vertex u is counted in the
sum S = |v∗| + ∑k

i=1 |G(wi)|. The sum of these overcounts is then subtracted
from S to obtain the correct value of |G(v)|.

Let V (v) denote the set of endpoints of edges in E(v). A vertex u ∈ V (v) is
counted once for each subgraph in {v∗, G(w1), G(w2), . . . , G(wk)} having u on
its boundary. Let l be the number of edges in E(v) incident to u. Each such
edge is part of the boundary between two of the subgraphs v∗, G(w1), . . . , G(wk).
Thus, if u is an internal vertex of G(v) (i.e., not on its boundary), there are l
such subgraphs, and u is counted l times (see vertex u1 in Figure 5). Otherwise,
if u is on the boundary of G(v), it follows from the uniformity of G(v) and
Ḡ(v) that two of the edges in G(v) incident to v are on the boundary of G(v)
(see vertex u2 in Figure 5). Hence, l + 1 of the subgraphs v∗, G(w1), . . . , G(wk)
contain u, and u is counted l + 1 times. Therefore the overcount cv,u for vertex
u ∈ V (v) is defined as follows:

cv,u =

{
l − 1 if all edges incident to u have their LCA in T ∗(v)
l otherwise

We can now compute |G(v)| using the following lemma.

Lemma 3 For every vertex v ∈ T ∗,

|G(v)| =

⎧⎪⎨
⎪⎩
|v∗| + ∑k

i=1 |G(wi)| −
∑

u∈V (v) cv,u if v is an internal vertex
with children w1, . . . , wk.

|v∗| if v is a leaf

Proof: The lemma obviously holds for the leaves of T ∗. In order to prove the
lemma for an internal vertex v of T ∗, we have to show that we count every
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v∗

G(w1)

G(w2)

G(w3)

u2

u1

Figure 5: The boundary of graph G(v) is shown in bold. The LCAs of these
edges are ancestors of v in T ∗. Thin solid edges are those on the boundary
between graphs v∗, G(w1), G(w2), and G(w3). The LCA of these edges in T ∗

is v. The LCAs of dashed edges are descendants of v∗. Vertex u1 is counted
three times in the sum S = |v∗| + |G(w1)| + |G(w2)| + |G(w3)| because it is in
v∗, G(w2), and G(w3). It has three incident edges with LCA v, and all edges
incident to u1 have their LCA in T ∗(v). Hence, its overcount cv,u1 is 2, so that
by subtracting cv,u1 from S, vertex u1 is counted only once. Vertex u2 is counted
twice in S, because it is in v∗ and G(w3). It has one incident edge with LCA v,
but not all of its incident edges have their LCA in T ∗(v) (it is on the boundary
of G(v)). Hence, its overcount cv,u2 is one, so that by subtracting cv,u2 from S,
vertex u2 is counted only once.

vertex in G(v) exactly once in the sum |v∗| +
∑k

i=1 |G(wi)| −
∑

u∈V (v) cv,u.
A vertex in G(v) \ V (v) is counted once, since it is contained in only one of
the graphs v∗, G(w1), . . . , G(wk). A vertex u ∈ V (v) is included in the sum
|v∗| + ∑k

i=1 |G(wi)| once for every graph v∗ or G(wi) containing it. If all edges
incident to u have their LCA in T ∗(v), then all faces around u are in G(v).
That is, G(v) is an internal vertex of G(v). As argued above, u is counted l
times in this case, where l is the number of edges in E(v) incident to u. Thus,
it is overcounted l − 1 times, and we obtain the exact count by subtracting
cv,u = l−1. Otherwise, u is on the boundary of G(v) and, as argued above, it is
counted l + 1 times. Thus, we obtain the correct count by subtracting cv,u = l.

�

We are now ready to show how to compute |G(v)|, for all v ∈ T ∗, I/O-
efficiently. Assuming that every vertex v ∈ T ∗ stores |v∗| and cv =

∑
u∈V (v) cv,u,

the graph sizes |G(v)|, v ∈ T ∗, can be computed in O(sort(N)) I/Os basically
as described earlier: For the leaves of T ∗, we initialize |G(v)| = |v∗|. Then we
process T ∗ level by level, from the leaves towards the root, and compute for every
internal vertex v with children w1, . . . , wk, |G(v)| = |v∗|+∑k

i=1 |G(wi)| − cv. It
remains to show how to compute cv, v ∈ T ∗.
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v∗

G(w2)

G(w1)

G(w3)

Figure 6: The boundary of v∗ ∪ G(w3) is not a simple cycle.

By the definition of overcounts cv,u, cv = 2|E(v)| − |V ′(v)|, where V ′(v) is
the set of vertices u ∈ V (v) so that all edges in G incident to u have their LCAs
in T ∗(v). To compute sets E(v), for all v ∈ T ∗, we compute the LCAs of all
edges in G. As discussed in Section 2, we can do this in O(sort(N)) I/Os [12]
because there are O(N) edges in G and O(N) vertices in T ∗. By sorting the
edges of G by their LCAs, we obtain the concatenation of lists E(v), v ∈ T ∗,
which we scan to determine |E(v)|, for all v ∈ T ∗. To compute sets V ′(v), for
all v ∈ T ∗, we apply operation SumEdgeLabels to find for every vertex u ∈ G,
the edge incident to u whose LCA is closest to the root. We call the LCA of this
edge the MAX-LCA of u. By sorting the vertices in G by their MAX-LCAs,
we obtain the concatenation of lists V ′(v), v ∈ T ∗, which we scan to determine
|V ′(v)|, for all v ∈ T ∗.

3.2.3 Splitting a Heavy Subtree

If the previous two steps did not produce a simple cycle 2
3 -separator of G, we

have to deal with the case where no vertex v ∈ T ∗ satisfies 1
3 |V | ≤ |G(v)| ≤ 2

3 |V |.
In this case, there must be a vertex v ∈ T ∗ with children w1, . . . , wk such that
|G(v)| > 2

3 |V | and |G(wi)| < 1
3 |V |, for 1 ≤ i ≤ k. Our goal is to compute a

subgraph of G(v), consisting of the boundary of v∗ and a subset of the graphs
G(wi), whose size is between 1

3 |V | and 2
3 |V | and whose boundary is a simple

cycle C.
In [17] it is claimed that the boundary of the graph defined by v∗ and any

subset of graphs G(wi) is a simple cycle. Unfortunately, as illustrated in Fig-
ure 6, this is not true in general. However, as we show below, we can com-
pute a permutation σ : [1, k] → [1, k] such that the boundary of each of the
graphs obtained by incrementally “gluing” graphs G(wσ(1)), . . . , G(wσ(k)) onto
face v∗ is a simple cycle. More formally, we define graphs Hσ(1), . . . , Hσ(k)
as Hσ(i) = v∗ ∪ ⋃i

j=1 G(wσ(j)). Then we show that Hσ(i) and Hσ(i) are
both uniform, for all 1 ≤ i ≤ k. This implies that the boundary of Hσ(i)
is a simple cycle, by Lemma 2. Given the size |v∗| of face v∗ and the sizes
|G(w1)|, . . . , |G(wk)| of graphs G(w1), . . . , G(wk), the sizes |Hσ(1)|, . . . , |Hσ(k)|
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Figure 7: The graph G(v) is shaded. Let σ(i) = i. Different shades represent
the different subgraphs G(w1), G(w2) and G(w3) of G(v). The vertices on the
boundary of v∗ are numbered clockwise around v∗, starting at the endpoint of
an edge shared by v∗ and p(v)∗. The faces in G(v) incident to the boundary of
v∗ are labeled with small letters.

of graphs Hσ(1), . . . , Hσ(k) can be computed in O(sort(N)) I/Os using a pro-
cedure similar to the one applied in the previous section for computing the sizes
|G(v)| of graphs G(v), v ∈ T ∗. Since |G(v)| > 2

3 |V | and |G(wi)| < 1
3 |V | for all

1 ≤ i ≤ k, there must exist a graph Hσ(i) such that 1
3 |V | ≤ |Hσ(i)| ≤ 2

3 |V |. It
remains to show how to compute the permutation σ I/O-efficiently.

To construct σ, we extract G(v) from G, label every face in G(wi) with i,
and all other faces of G(v) with 0. This labeling can be computed in O(sort(N))
I/Os by processing T ∗(v) from the root towards the leaves. Next we label every
edge in G(v) with the labels of the two faces on each side of it. Given the above
labeling of the faces in G(v) (or vertices in T ∗(v)), this labeling of the edges
in G(v) can be computed in O(sort(N)) I/Os by applying operation Copy-
VertexLabels to the dual graph G∗(v) of G(v). Now consider the vertices
v1, . . . , vt on the boundary of v∗ in their order of appearance clockwise around
v∗, starting at an endpoint of an edge shared by v∗ and the face corresponding
to v’s parent p(v) in T ∗ (see Figure 7). As in Section 3.1, we can compute this
order in O(sort(N)) I/Os using the Euler tour technique and list ranking [12].
For every vertex vi, we construct a list Li of edges around vi in clockwise order,
starting with edge {vi−1, vi} and ending with edge {vi, vi+1}. These lists can be
extracted from the embedding of G in O(sort(N)) I/Os. Let L be the concate-
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p(v)∗

G(w1)

G(w2)
G(w3)

v∗

f∗
0e0

Figure 8: The dashed path is the path from vertex f∗
0 to a vertex in the dual of

G(v) constructed in the proof of Lemma 4, assuming that j = 2.

nation of lists L1, L2, . . . , Lt. For an edge e in L incident to a vertex vi, let f1

and f2 be the two faces on each side of e, where f1 precedes f2 in clockwise order
around vi. We construct a list F of face labels from L by considering the edges
in L in their order of appearance and appending the non-zero labels of faces f1

and f2 in this order to F . (Recall that faces in G(wi) are labeled with number
i.) This takes O(scan(N)) I/Os. List F consists of integers between 1 and k.
Some integers may appear more than once, and the occurrences of integer i are
not necessarily consecutive. (This happens if the union of v∗ with a subgraph
G(wi) encloses another subgraph G(wj).) For the graph G(v) in Figure 7,

F = 〈 3, 3︸︷︷︸
v. 3

, 3, 3, 3, 3, 1, 1︸ ︷︷ ︸
vertex 4

, 1, 1, 1, 1, 3, 3, 3, 3, 2, 2︸ ︷︷ ︸
vertex 5

, 2, 2, 2, 2, 2, 2︸ ︷︷ ︸
vertex 6

, 2, 2, 3, 3, 3, 3, 3, 3︸ ︷︷ ︸
vertex 7

,

3, 3, 3, 3, 3, 3︸ ︷︷ ︸
vertex 8

, 3, 3, 3, 3︸ ︷︷ ︸
vertex 9

〉.

We construct a final list S by removing all but the last occurrence of each
integer from F . (Intuitively, this ensures that if the union of v∗ and G(wi)
encloses another subgraph G(wj), then j appears before i in S; for the graph in
Figure 7, S = 〈1, 2, 3〉.) List S can be computed from list F in O(sort(N)) I/Os
using operation DuplicateRemoval. List S contains each of the integers 1
through k exactly once and thus defines a permutation σ : [1, k] → [1, k], where
σ(i) equals the i-th element in S. It remains to show the following lemma.
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Lemma 4 For all 1 ≤ i ≤ k, graphs Hσ(i) and Hσ(i) are both uniform.

Proof: First note that every graph Hσ(i) is uniform because every subgraph
G(wj) is uniform and there is an edge between v and wj in G∗, for 1 ≤ j ≤ k.
To show that every graph Hσ(i) is uniform, i.e., that its dual is connected., we
first observe that G(v) is uniform and every subgraph G(wj), 1 ≤ j ≤ k, is
uniform. Graph Hσ(i) is the union of a subset of these graphs. Hence, if its
dual is disconnected, there has to be a subgraph G(wj) ⊆ Hσ(i) so that its dual
and the dual of G(v) are in different connected components of the dual of Hσ(i).
Since G(wj) ⊆ Hσ(i), j = σ(h), for some h > i.

Now recall the computation of permutation σ (see Figure 8). Let L be the
list of edges clockwise around face v∗, as in our construction, let e0 be the last
edge of G(wj) in L, and let f0 be the face of G(wj) that precedes edge e0 in
the clockwise order around v∗. Then for every subgraph G(wj′) that contains
an edge that succeeds e0 in L, j′ = σ(h′), for some h′ > h. Hence, the following
path in G∗ from f∗

0 to a vertex in the dual of G(v) is completely contained in
the dual of Hσ(i): We start at vertex f∗

0 and follow the edge e∗0 dual to e0. For
every subsequent vertex f∗ that has been reached through an edge e∗, where
e ∈ L, either f is a face of G(v), and we are done, or we follow the dual of the
edge e′ that succeeds e in L. This traversal of G∗ finds a vertex in the dual of
G(v) because if it does not encounter a vertex in the dual of G(v) before, it will
ultimately reach vertex p(v), which is in the dual of G(v).

This shows that the duals of G(v) and G(wj) are in the same connected
component of the dual of Hσ(i), for every graph G(wj) ⊆ Hσ(i), so that the
dual of Hσ(i) is connected and Hσ(i) is uniform. �

4 Reducing Depth-First Search to Breadth-First
Search

In this section, we give an I/O-efficient reduction from DFS in an embedded
planar graph G to BFS in its “vertex-on-face graph”, using ideas from [15]. The
idea is to use BFS to partition the faces of G into levels around a source face
that has the source s of the DFS on its boundary, and then “grow” the DFS-tree
level by level around that face.

In order to obtain a partition of the faces of G into levels around the source
face, we define a graph which we call the vertex-on-face graph G† of G. As
before, let G∗ = (V ∗, E∗) denote the dual of graph G; recall that each vertex
f∗ in V ∗ corresponds to a face f in G. The vertex set of the vertex-on-face
graph G† is V ∪ V ∗; the edge set contains an edge (v, f∗) if vertex v is on the
boundary of face f (see Figure 10a). We will show how a BFS-tree of G† can be
used to obtain a partition of the faces in G such that the source face is at level
0, all faces sharing a vertex with the source face are at level 1, all faces sharing
a vertex with a level-1 face—but not with the source face—are at level 2, and
so on (Figure 9a). Let Gi be the subgraph of G defined as the union of the
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(a) (b)

Figure 9: (a) A graph G with its faces colored according to their levels; The
level-0 face is white, level-1 faces are light gray, level-2 faces are dark gray.
(b) Graphs H0 (solid), H1 (dotted), and H2 (dashed).

boundaries of faces at level at most i, and let Hi = Gi \ Gi−1, for i > 0. (The
difference Gi \ Gi−1 of graphs Gi and Gi−1 is the subgraph of Gi with vertex
set V (Gi) \V (Gi−1) and whose edge set contains all edges of Gi that have both
endpoints in V (Gi) \ V (Gi−1); see Figure 9b.) For i = 0, we define H0 = G0.
We call the vertices and edges of Hi level-i vertices and edges. An edge {v, w}
connecting two vertices v ∈ Hi and w ∈ Gi−1 is called an attachment edge of
Hi. The edges of Gi−1 and Hi together with the attachment edges of Hi form
a partition of the edges of Gi. The basic idea in our algorithm is to grow the
DFS-tree by walking clockwise1 from s around the level-0 face G0 until we reach
the counterclockwise neighbor of s. The resulting path is a DFS tree T0 for G0.
Next we build a DFS-tree for H1 and attach it to T0 through an attachment
edge of H1 in a way that does not introduce cross-edges. Hence, the result
is a DFS-tree T1 for G1. We repeat this process until we have processed all
levels H0, . . . ,Hr obtaining a DFS-tree T for G (see Figure 11). The key to
the efficiency of the algorithm lies in the simple structure of graphs H0, . . . ,Hr.
Below we give the details of our algorithm and prove the following theorem.

Theorem 3 Let G be an undirected embedded planar graph, G† its vertex-on-
face graph, and fs a face of G containing the source vertex s. Given a BFS-tree
of G† rooted at f∗

s , a DFS tree of G rooted at s can be computed in O(sort(N))
I/Os and linear space.

First consider the computation of graphs G1, . . . , Gr and H1, . . . , Hr. We
start by computing graph G† in O(sort(N)) I/Os as follows: First we compute
a representation of G consisting of a list of vertices clockwise around each face
of G. Such a representation can be computed in O(sort(N)) I/Os [16]. Then
we add a face vertex f∗, for every face f of G, and connect f∗ to all vertices

1A clockwise walk on the boundary of a face means walking so that the face is to our right.
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Figure 10: (a) G† shown in bold; numbers represent BFS-depths in G†. (b) T1,
H2 and attachment edges {ui, vi}.Vertices in T1 are labeled with their DFS-
depths.

in the vertex list representing f . This requires a single scan of the vertex lists
representing the faces of G. The levels of the faces of G can now be obtained
from a BFS-tree of the vertex-on-face graph G†, rooted at the dual vertex f∗

s of
a face fs that contains s: Every vertex of G is at an odd level in the BFS-tree;
every dual vertex corresponding to a face of G is at an even level (Figure 10a).
The level of a face is the level of the corresponding vertex in the BFS-tree
divided by two. The vertex set V (Hi) of graph Hi contains all vertices of G at
distance 2i + 1 from f∗

s in G†. Hence, we can obtain a partition of V (G) into
vertex sets V (H1), . . . , V (Hr) by sorting the vertices in V (G) by their distances
from f∗

s in G†. The vertex set V (Gi) of graph Gi is V (Gi) =
⋃i

j=0 V (Hi). An
edge e ∈ G is in Hi if both its endpoints are at distance 2i + 1 from f∗

s in
G†. For an attachment edge {v, w} of Hi, v is at distance 2i + 1, and w is at
distance 2i − 1 from f∗

s in G†. Thus, we can obtain a partition of E(G) into
sets E(H0), . . . , H(Hr) and the sets of attachment edges of graphs H1, . . . , Hr

by sorting the edges in E(G) in inverted lexicographical order defined by the
distances of their endpoints from f∗

s in G†.
Next we discuss a few simple properties of graphs Gi and Hi, which we use

to prove the correctness of our algorithm. For every edge in Gi−2, as well as for
every attachment edge of Hi−1, the two faces on both sides of the edge are at
level at most i − 1. Thus, they cannot be boundary edges for Gi−1. It follows
that the boundary edges of Gi−1 are in E(Hi−1). Consequently, all boundary
vertices of Gi−1 are in V (Hi−1). As Gi−1 is a union of faces, its boundary
consists of a set of cycles, called the boundary cycles of Gi−1. Graph Hi lies
entirely “outside” the boundary of Gi−1, i.e., in Gi−1. Hence, all attachment
edges of Hi are connected only to boundary vertices of Gi−1, i.e., vertices of
Hi−1. Finally, note that graph Gi is uniform. This can be shown as follows:
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Graph Gi corresponds to the first 2i levels of the BFS-tree of G†. For a level-
(i − 1) face f1 and a level-i face f2 that share a vertex v, graph Gi contains all
faces incident to v. Hence, there is a path from f∗

1 to f∗
2 in G∗

i . Applying this
argument inductively, we obtain that there is a path in G∗

i from f∗
s to every

vertex of G∗
i , which shows that Gi is uniform. On the other hand, graph Gi−1,

and thus Hi, is not necessarily uniform.
We are now ready to describe the details of our algorithm for constructing

a DFS-tree for G by repeatedly growing a DFS-tree Ti for Gi from a DFS-tree
Ti−1 for Gi−1, starting with the DFS-tree T0 for G0. During the algorithm we
maintain the following two invariants (see Figure 10b):

(i) Every boundary cycle C of Gi−1 contains exactly one edge e not in Ti−1.
One of the two endpoints of that edge is an ancestor in Ti−1 of all other
vertices in C.

(ii) The depth of each vertex in Gi−1, defined as the distance from s in Ti−1,
is known.

Assume we have computed a DFS-tree Ti−1 for Gi−1. Our goal is to com-
pute a DFS-forest for Hi and link it to Ti−1 through attachment edges of Hi

without introducing cross-edges, in order to obtain a DFS-tree Ti for Gi. If
we can compute a DFS-forest of Hi in O(sort(|Hi|)) I/Os and link it to Ti−1

in O(sort(|Hi−1| + |Hi|)) I/Os, the overall computation of a DFS-tree T for G

uses O (sort(|H0|) +
∑r

i=1 sort(|Hi−1| + |Hi|)) = O
(∑r

i=0
2|Hi|

B logM/B
N
B

)
=

O(sort(N)) I/Os. Next we show how to perform both computations in the
desired number of I/Os.

Let H ′
1, . . . , H

′
k be the connected components of Hi. They can be computed

in O(sort(|Hi|)) I/Os [12]. For every component H ′
j , we find the deepest vertex

vj on the boundary of Gi−1 such that there is an attachment edge {uj , vj} of Hi

with uj ∈ H ′
j . Then we compute a DFS-tree T ′

j of H ′
j rooted at uj and attach

T ′
j to Ti−1 using edge {uj , vj}. Let Ti be the resulting tree.

Lemma 5 Tree Ti is a DFS-tree of Gi.

Proof: Tree Ti is a spanning tree of Gi, since Ti−1 is a DFS-tree for Gi−1, trees
T ′

1, . . . , T
′
k are DFS-trees of the connected components of Hi, and each tree T ′

j

is connected to Ti−1 by a single edge. Now let {v, w} be a non-tree edge of
Gi. As there are no edges between different connected components of Hi in Gi,
either v, w ∈ H ′

j , for some 1 ≤ j ≤ k, v, w ∈ Gi−1, or w.l.o.g. v ∈ H ′
j , for some

1 ≤ j ≤ k, and w ∈ Gi−1. In the first two cases, edge {v, w} is a back edge, since
trees Ti−1 and T ′

j are DFS-trees for Gi−1 and H ′
j , respectively. In the latter

case, {v, w} is a back-edge because v is a descendant of uj , and, by Invariant (i),
w must be an ancestor of vj on the boundary cycle of Gi−1 enclosing H ′

j . �

We can compute tree Ti from tree Ti−1 in O(sort(|Hi−1| + |Hi|)) I/Os:
First we find the attachment edges {u1, v1}, . . . , {uk, vk} connecting graphs
H ′

1, . . . , H
′
k to Gi−1. This can be done using a procedure similar to the one used
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s

Figure 11: The DFS-tree of G (Figure 9 and Figure 10)

in Section 3.1. As the attachment edges of Hi are the edges of a planar graph
with vertex set V (Hi−1) ∪ V (Hi), this procedure takes O(sort(|Hi−1| + |Hi|))
I/Os. All that remains is to show how to compute a DFS-tree T ′

j rooted at uj ,
for each connected component H ′

j of Hi. The key to doing this I/O-efficiently
is the following lemma, which shows that Hi has a simple structure.

Lemma 6 The non-trivial bicomps of Hi are the boundary cycles of Gi.

Proof: Consider a cycle C in Hi. All faces incident to C are at level i or
greater. Thus, since Gi−1 is uniform, all its faces are either inside or outside C.
Assume w.l.o.g. that Gi−1 is inside C. Then none of the faces outside C shares
a vertex with a level-(i − 1) face. That is, all faces outside C must be at level
at least i + 1, which means that C is a boundary cycle of Gi.

Every bicomp that is not a cycle contains at least three internally vertex-
disjoint paths P1, P2, and P3 with the same endpoints v and w. As we have
just shown, the graph C1 = P1 ∪ P3 is a boundary cycle of Gi, as is the graph
C2 = P1 ∪ P2. Let {v, x} be the first edge of P2, and {y, w} be the last edge
of P2. Since C1 is a boundary cycle of Gi, Gi is either completely inside or
completely outside C1. Since C1 is a subgraph of Hi, all faces incident to C1

that are on the same side of C1 as Gi are at level i because all faces on the
other side of C1 are at level at least i + 1. Hence, if P2 is on the same side
of C1 as Gi, the four faces incident to edges {v, x} and {y, w} are at level i,
which contradicts the fact that C2 is a boundary cycle of Gi. If P2 is on the
other side of C1, the four faces incident to edges {v, x} and {y, w} are at level
at least i + 1, which contradicts the fact that edges {v, x} and {y, w} are at
level i. Thus, every bicomp of Hi consists of a single boundary cycle. �

In order to compute a DFS-tree of H ′
j rooted at uj , we first partition H ′

j

into its bicomps. This takes O(sort(|H ′
j |)) I/Os [12]. Then, as in Section 3,

we construct the bicomp-cutpoint-tree of H ′
j , rooted at the bicomp containing

uj . For each bicomp K, we determine the parent cutpoint x. If K is a trivial
bicomp (i.e., consists of a single edge), the DFS-tree TK of K consists of the
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single edge in K. Otherwise, by Lemma 6, K is a cycle. Let y be a neighbor
of x in K. This neighbor can be computed in a single scan of the edge set of
K. To obtain a DFS-tree TK of K rooted at x, we remove edge {x, y} from
K. The DFS-tree T ′

j of H ′
j is the union of DFS-trees TK of all bicomps K of

H ′
j . Note that TK is a path from x to y, and all vertices along this path are

descendants of x. Since the non-trivial bicomps of Hi are the boundary cycles
of Gi, Invariant (i) is hence maintained after attaching the resulting DFS-trees
T ′

1, . . . , T
′
k to Ti−1.

Finally, to maintain Invariant (ii), we have to determine the depth of each
vertex in Ti. The depth of vertices in Ti−1 ⊆ Ti do not change by adding
trees T ′

j , . . . , T
′
k to Ti−1. The depths of the vertices in Hi can be computed

as follows: Every vertex uj has depth one more than the depth of vj ∈ Ti−1.
The depths of all other vertices in T ′

j can be computed from the depth of uj in
O(sort(|T ′

j |)) I/Os by performing a DFS-traversal of T ′
j . Hence, this computa-

tion takes O(sort(|Hi|)) I/Os, for all trees in the DFS-forest of Hi.
This concludes the description of our reduction from planar DFS to planar

BFS, and thus the proof of Theorem 3. The following corollary is an immediate
consequence of Theorem 3 and recent results of [6, 22].

Corollary 1 A DFS-tree of an embedded planar graph can be computed in
O(sort(N)) I/O operations and linear space.

5 Conclusions

In this paper, we have developed the first o(N) I/O and linear space algorithm
for DFS in embedded planar graphs. We have also designed an O(sort(N)) I/O
reduction from planar DFS to planar BFS, proving that external memory planar
DFS is not harder than planar BFS. Together with recent results of [6, 22], this
leads to an algorithm that computes a DFS-tree of an embedded planar graph
in O(sort(N)) I/Os.
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