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2-Layer Graph Drawings with Bounded Pathwidth
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Abstract. This paper determines which properties of 2-layer drawings characterise
bipartite graphs of bounded pathwidth.

1 Introduction
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Figure 1: A caterpillar drawn on 2-layers with no crossings, and the corresponding path-decompostion
with width 1.

A 2-layer drawing of a bipartite graph G with bipartition {A,B} positions the vertices in A at
distinct points on a horizontal line, and positions the vertices in B at distinct points on a different
horizontal line, and draws each edge as a straight line-segment. 2-layer graph drawings are of
fundamental importance in graph drawing research and have been widely studied [2, 6, 7, 10, 11, 14–
17, 19, 21, 22, 24]. As illustrated in Figure 1, the following basic connection between 2-layer graph
drawings and graph pathwidth1 is folklore:
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1A path-decomposition of a graph G is a sequence (B1, . . . , Bn) of subsets of V (G) (called bags), such that

B1∪· · ·∪Bn = V (G), and for 1 ⩽ i < j < k ⩽ n we have Bi∩Bk ⊆ Bj ; that is, for each vertex v the bags containing
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Observation 1 A connected bipartite graph G has a 2-layer drawing with no crossings if and only
if G is a caterpillar if and only if G has pathwidth 1.

Motivated by this connection, we consider (and answer) the following question: what properties
of 2-layer drawings characterise bipartite graphs of bounded pathwidth?

A matching in a graph G is a set of edges in G, no two of which are incident to a common
vertex. A k-matching is a matching of size k. In a 2-layer drawing of a graph G, a k-crossing is
a set of k pairwise crossing edges (which necessarily is a k-matching). Excluding a k-crossing is
not enough to guarantee bounded pathwidth. For example, as illustrated in Figure 2, if Th is the
complete binary tree of height h, then Th has a 2-layer drawing with no 3-crossing, but it is well
known that Th has pathwidth ⌊h/2⌋+ 1. Even stronger, if Gh is the h× h square grid graph, then
Gh has a 2-layer drawing with no 3-crossing, but Gh has treewidth and pathwidth h.

Figure 2: 2-layer drawings of a complete binary tree and a 5× 5 grid. There is no 3-crossing since
each edge is assigned one of two colours, so that monochromatic edges do not cross.

Angelini, Da Lozzo, Förster, and Schneck [1] showed that every graph that has a 2-layer drawing
with at most k crossings on each edge has pathwidth at most k + 1. However, this property does
not characterise bipartite graphs with bounded pathwidth. For example, as illustrated in Figure 3,
if Sn is the 1-subdivision of the n-leaf star, then Sn is bipartite with pathwidth 2, but in every
2-layer drawing of Sn, some edge has at least (n− 1)/2 crossings.

Figure 3: Every 2-layer drawing of S9 has at least 4 crossings on some edge.

v form a non-empty sub-sequence of (B1, . . . , Bn). The width of a path-decomposition (B1, . . . , Bn) is maxi |Bi| − 1.
The pathwidth of a graph G is the minimum width of a path-decomposition of G. Pathwidth is a fundamental
parameter in graph structure theory [4, 5, 8, 23] with many connections to graph drawing [2, 3, 10, 12, 13, 18, 20, 24].
A caterpillar is a tree such that deleting the leaves gives a path. It is a straightforward exercise to show that a
connected graph has pathwidth 1 if and only if it is a caterpillar.
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These examples motivate the following definition. A set S of edges in a 2-layer drawing is
non-crossing if no two edges in S cross. In a 2-layer drawing of a graph G, an (s, t)-crossing is a
pair (S, T ) where S is a non-crossing s-matching, T is a non-crossing t-matching, and every edge in
S crosses every edge in T ; as illustrated in Figure 4.

Figure 4: Example of a (3, 4)-crossing.

We show that excluding a k-crossing and an (s, t)-crossing guarantees bounded pathwidth.

Theorem 2 For all k, s, t ∈ N, every bipartite graph G that has a 2-layer drawing with no (k + 1)-
crossing and no (s, t)-crossing has pathwidth at most 8k2(t− 1) + 4k2(s− 1)2(s− 2) + 5k + 4.

We prove the following converse to Theorem 2.

Theorem 3 For any k ∈ N every bipartite graph G with pathwidth at most k has a 2-layer drawing
with no (k + 2)-crossing and no (k + 1, k + 1)-crossing.

Theorems 2 and 3 together establish the following rough characterisation of bipartite graphs
with bounded pathwidth, thus answering the opening question.

Corollary 4 A class G of bipartite graphs has bounded pathwidth if and only if there exists k, s, t ∈ N
such that every graph in G has a 2-layer drawing with no k-crossing and no (s, t)-crossing.

2 Proofs

We use the following notation throughout. Consider a 2-layer drawing of a bipartite graph with
bipartition {A,B}. Let ⪯A be the total order of A, where v ≺A w if v is to the left of w in the
drawing. Define ⪯B similarly. Let ⪯ be the poset on E(G), where vw ⪯ xy if v ⪯A x and w ⪯B y.
Two edges of G are comparable under ⪯ if and only if they do not cross. Thus every chain under
⪯ is a set of pairwise non-crossing edges, and every antichain under ⪯ is a matching of pairwise
crossing edges.

Lemma 5 Let G be a bipartite graph with bipartition A,B, where each vertex in A has degree at
least 1 and each vertex in B has degree at most d. Assume that G has a 2-layer drawing with no
(k + 1)-crossing and no non-crossing (ℓ+ 1)-matching. Then |A| ⩽ kℓd.

Proof: Let X be a set of edges in G with exactly one edge in X incident to each vertex in A. So
|X| = |A|. Let E1, . . . , Ed be the partition of X, where for each edge vw ∈ Ei, if v ∈ A and w ∈ B,
then v is the i-th neighbour of w with respect to ⪯A. So each Ei is a matching. Since G has no
(k + 1)-crossing, every antichain in ⪯ has size at most k. By Dilworth’s Theorem [9] applied to ⪯
(restricted to Ei), there is a partition Ei,1, . . . , Ei,k of Ei such that edges in each Ei,j are pairwise
non-crossing. By assumption, |Ei,j | ⩽ ℓ. Thus |A| = |X| ⩽ kℓd. □
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Proof of Theorem 2: Consider a bipartite graph G with bipartition {A,B} and a 2-layer
drawing of G with no (k + 1)-crossing and no (s, t)-crossing. Our goal is to show that pw(G) ⩽
8k2(t− 1) + 4k2(s− 1)2(s− 2) + 5k + 4. (We make no effort to optimise this bound.)

Consider the partial order ⪯ defined above. By assumption, every antichain in ⪯ has size at
most k. By Dilworth’s Theorem [9], there is a partition of E(G) into k chains under ⪯. Each chain
is a caterpillar forest, which can be oriented with outdegree at most 1 at each vertex. So each vertex
has out-degree at most k in G. For each vertex v, let N+

G [v] := {w ∈ V (G) : −→vw ∈ E(G)} ∪ {v},
which has size at most k + 1.

As illustrated in Figure 5, let X = {e1, . . . , en} be a maximal non-crossing matching, where
e1 ≺ e2 ≺ · · · ≺ en. (Here n is not related to |V (G)|.) Let Y0 be the set of vertices of G strictly to
the left of e1. For i ∈ {1, 2, . . . , n − 1}, let Yi be the set of vertices of G strictly between ei and
ei+1. Let Yn be the set of vertices of G strictly to the right of en. By the maximality of X, each
set Yi is independent. For i ∈ {0, 1, . . . , n}, arbitrarily enumerate Yi = {vi,1, . . . , vi,mi

}. Note that
vi,j is an end-vertex of no edge in X (for all i, j).

Y0 Y1 Y2 Y3 Y4e1 e2 e3 e4

Figure 5: A maximal non-crossing matching {e1, . . . , en} and associated independent sets Y0, . . . , Yn.

As illustrated in Figure 6, for each i ∈ {1, . . . , n}, if ei = xy then let Ni = N+
G [x]∪N+

G [y]. Note
that |Ni| ⩽ |N+

G [x]| + |N+
G [y]| ⩽ 2(k + 1). For each i ∈ {1, . . . , n}, let Vi be the set consisting

of Ni along with every vertex v ∈ V (G) such that some arc −→zv ∈ E(G) crosses ei. For each
i ∈ {0, 1, . . . , n} and j ∈ {1, . . . ,mi}, let Vi,j := (Vi ∪ Vi+1) ∪N+

G [vi,j ] where V0 := Vn+1 := ∅.

x

y

ei

Figure 6: The set of vertices Vi where ei = xy are shown in red and yellow.

We now prove that

(V0,1, . . . , V0,m0
;V1;V1,1, . . . , V1,m1

; . . . ;Vn;Vn,1, . . . , Vn,mn
) (1)

is a path-decomposition of G. We first show that each vertex v is in some bag. If v is an end-vertex
of some edge ei, then v ∈ Vi. Otherwise v = vi,j for some i, j, implying that v ∈ Vi,j , as desired.
We now show that each vertex v is in a sequence of consecutive bags. Suppose that v ∈ Vi ∩ Vp and
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i < j < p. Thus ei ≺ ej ≺ ep. Our goal is to show that v ∈ Vj . If v is an end-vertex of ej , then
v ∈ Vj . So we may assume that v is not an end-vertex of ej . By symmetry, we may assume that v
is to the left of the end-vertex of ej that is in the same layer as v. Thus, v is not an end-vertex
of ep. Since v ∈ Vp, there is an arc −→yv that crosses ep or such that y is an end-vertex of ep. Since
ej ≺ ep, this arc

−→yv crosses ej . Thus v ∈ Vj , as desired. This shows that v is in a (possibly empty)
sequence of consecutive bags Vi, Vi+1, . . . , Vj . If v ∈ Vi then v ∈ Vi,j for all j ∈ {1, . . . ,mi}, and
v ∈ Vi−1,j for all j ∈ {1, . . . ,mi−1}. It remains to consider the case in which v is in no set Vi. Since
the end-vertices of ei are in Vi, we have that v = vi,j for some i, j. Since Yi is an independent set,
v is adjacent to no other vertex in Yi. Moreover, if there is an arc −→zv in G, then either z is an
end-vertex of ei or ei−1, or

−→zv crosses ei−1 or ei, implying v is in Vi−1 ∪ Vi, which is not the case.
Hence v has indegree 0, implying Vi,j is the only bag containing v. This completes the proof that
v is in a sequence of consecutive bags in (1). Finally, we show that the end-vertices of each edge
are in some bag. Consider an arc −→vw in G. If v = vi,j for some i, j, then v, w ∈ Vi,j , as desired.
Otherwise, v is an end-vertex of some ei, implying v, w ∈ Vi, as desired. Hence the sequence in (1)
defines a path-decomposition of G.

We now bound the width of this path-decomposition. The goal is to identify certain subgraphs
of G to which Lemma 5 is applicable.

As illustrated in Figure 7, for i, j ∈ {0, 1, . . . , n}, let Yi,j be the set of vertices v ∈ Yi such that
there is an arc −→zv in G with z ∈ Yj . Suppose that |Yi,j | ⩾ 2k2|j − i|+1 for some i, j ∈ {0, 1, . . . , n}.
Since Yi is an independent set, i ̸= j. Without loss of generality, i < j and there exists Z ⊆ Yi,j ∩A
with |Z| ⩾ k2(j − i) + 1. Let H1 be the subgraph of G consisting of all arcs −→zv in G with
z ∈ Yj ∩B and v ∈ Z (and their end-vertices). If H1 has a non-crossing (j − i+ 1)-matching M ,
then (X \ {ei+1, . . . , ej}) ∪M is a non-crossing matching in G larger than X, thus contradicting
the choice of X. Hence H1 has no non-crossing (j − i + 1)-matching. By construction, H1 has
no (k + 1)-crossing, every vertex in V (H1) ∩ A has degree at least 1 in H1, and every vertex in
V (H1) ∩ B has degree at most k in H1. By Lemma 5 applied to H1 with ℓ = j − i and d = k,
we have |Z| = |V (H1) ∩ A| ⩽ k2(j − i), which is a contradiction. Hence |Yi,j | ⩽ 2k2|j − i| for all
i, j ∈ {0, 1, . . . , n}.

Yi Yjei+1 ej

b b b

Figure 7: If many vertices in Yi are the head of an arc starting in Yj , then there is a large non-
crossing matching amongst these edges, which can replace ei+1, . . . , ej in M , contradicting the
maximality of M .

This bound on |Yi,j | is useful if |i− j| is ‘small’, but not useful if |i− j| is ‘big’. We now deal
with this case.

As illustrated in Figure 8, for i ∈ {1, . . . , n}, let Pi be the set of vertices v in G for which there
is an arc −→zv in G that crosses ei−s+1, ei−s+2, . . . , ei or crosses ei, ei+1, . . . , ei+s−1. Suppose that
Pi ⩾ 4k2(t− 1) + 1. Without loss of generality, there exists Q ⊆ Pi ∩ A with |Q| ⩾ k2(t− 1) + 1
such that for each vertex v ∈ Q there is an arc −→zv in G that crosses ei, ei+1, . . . , ei+s−1. Let H2
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be the subgraph of G consisting of all such arcs and their end-vertices. So V (H2) ∩ A = Q. If
H2 has a non-crossing t-matching M , then ({ei, ei+1, . . . , ei+s−1},M) is an (s, t)-crossing. Thus
H2 has no non-crossing t-matching. By construction, H2 has no (k + 1)-crossing, every vertex in
V (H2) ∩ A has degree at least 1 in H2, and every vertex in V (H2) ∩ B has degree at most k in
H2. By Lemma 5 applied to H2 with ℓ = t− 1 and d = k, we have |Q| = |V (H2) ∩A| ⩽ k2(t− 1),
which is a contradiction. Hence |Pi| ⩽ 4k2(t− 1) for all i ∈ {1, . . . , n}.

ei ei+s−1

b b b

Figure 8: If many vertices are the head of an arc crossing ei, ei+1, . . . , ei+s−1, then amongst
these edges there is a non-crossing t-matching, implying that G has an (s, t)-crossing, which is a
contradiction.

Consider a bag Vi, which consists of Ni along with every vertex v ∈ V (G) such that some arc−→zv ∈ E(G) crosses ei. Thus

|Vi| = |Ni|+ |Pi|+
∑

a,b∈{0,1,...,s−2}
|Yi−a,i+b|

⩽ 2(k + 1) + 4k2(t− 1) +
∑

a,b∈{0,1,...,s−2}
2k2|(i+ b)− (i− a)|

= 2(k + 1) + 4k2(t− 1) + 2k2
∑

a,b∈{0,1,...,s−2}
(a+ b)

= 2(k + 1) + 4k2(t− 1) + 2k2

(s− 1)

 ∑
a∈{0,1,...,s−2}

a

+ (s− 1)

 ∑
b∈{0,1,...,s−2}

b


= 2(k + 1) + 4k2(t− 1) + 2k2(s− 1)2(s− 2).

Hence

|Vi,j | ⩽ |Vi|+ |Vi+1|+ (k + 1) ⩽ 4(k + 1) + 8k2(t− 1) + 4k2(s− 1)2(s− 2) + (k + 1)

⩽ 8k2(t− 1) + 4k2(s− 1)2(s− 2) + 5(k + 1).

Therefore the path-decomposition of G defined in (1) has width at most 8k2(t−1)+4k2(s−1)2(s−
2) + 5k + 4. □

Proof of Theorem 3: Let G be a bipartite graph with pathwidth at most k. Our goal is to
construct a 2-layer drawing of G with no (k + 2)-crossing and no (k + 1, k + 1)-crossing. Let
(X1, . . . , Xn) be a path-decomposition of G with width k. Let ℓ(v) := min{i : v ∈ Xi} and
r(v) := max{i : v ∈ Xi} for each v ∈ V (G). We may assume that ℓ(v) ̸= ℓ(w) for all distinct
v, w ∈ V (G). Let {A,B} be a bipartition of G. Consider the 2-layer drawing of G, in which each
v ∈ A is at (ℓ(v), 0), each v ∈ B is at (ℓ(v), 1), and each edge is straight.
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As illustrated in Figure 9, suppose that {v1w1, . . . , vk+2wk+2} is a (k + 2)-crossing in this
drawing, where vi ∈ A and wi ∈ B.

v1 v2 · · · vk+1 vk+2

w1w2· · ·wk+1wk+2

Figure 9: A (k + 2)-crossing.

Without loss of generality,

ℓ(v1) < ℓ(v2) < · · · < ℓ(vk+2) and ℓ(wk+2) < ℓ(wk+1) < · · · < ℓ(w1). (2)

For each i ∈ {1, . . . , k + 2}, if ℓ(vi) < ℓ(wi) then let Ii := {ℓ(vi), . . . , ℓ(wi)}; otherwise let
Ii := {ℓ(wi), . . . , ℓ(vi)}. By (2), Ii ∩ Ij ̸= ∅ for distinct i, j ∈ {1, . . . , k + 2}. By the Helly property
for intervals, there exists p ∈ I1 ∩ · · · ∩ Ik+2. Thus vi or wi is in Xp for each i ∈ {1, . . . , k + 2}.
Hence |Xp| ⩾ k + 2, which is a contradiction. Therefore there is no (k + 2)-crossing.

As illustrated in Figure 10, consider an (s, s)-crossing ({v1w1, . . . , vsws}, {x1y1, . . . , xsys}) in
this drawing, where vi, xi ∈ A and wi, yi ∈ B.

v1 · · · vs

y1 · · · ys

x1 · · · xs

w1 · · · ws

Figure 10: An (s, s)-crossing.

Without loss of generality,

ℓ(v1) < · · · < ℓ(vs) < ℓ(x1) < · · · < ℓ(xs) and

ℓ(y1) < · · · < ℓ(ys) < ℓ(w1) < · · · < ℓ(ws).

We claim that s ⩽ k. If ℓ(vs) < ℓ(w1) then ℓ(v1) < · · · < ℓ(vs) < ℓ(w1) < · · · < ℓ(ws), implying
v1, . . . , vs, w1 ∈ Xℓ(w1), and s+1 ⩽ |Xℓ(w1)| ⩽ k+1, as desired. If ℓ(ys) < ℓ(x1) then ℓ(y1) < · · · <
ℓ(ys) < ℓ(x1) < · · · < ℓ(xs), implying y1, . . . , ys, x1 ∈ Xℓ(x1), and s+1 ⩽ |Xℓ(x1)| ⩽ k+1, as desired.
Now assume that ℓ(w1) < ℓ(vs) and ℓ(x1) < ℓ(ys). Thus ℓ(w1) < ℓ(vs) < ℓ(x1) < ℓ(ys), which is a
contradiction since ℓ(ys) < ℓ(w1). Hence s ⩽ k and the drawing of G has no (k + 1, k + 1)-crossing.

□
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