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Abstract. This paper determines which properties of 2-layer drawings characterise
bipartite graphs of bounded pathwidth.

1 Introduction
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Figure 1: A caterpillar drawn on 2-layers with no crossings, and the corresponding path-decompostion
with width 1.

A 2-layer drawing of a bipartite graph G with bipartition {A, B} positions the vertices in A at
distinct points on a horizontal line, and positions the vertices in B at distinct points on a different
horizontal line, and draws each edge as a straight line-segment. 2-layer graph drawings are of
fundamental importance in graph drawing research and have been widely studied [2, 6, 7, 10, 11, 14—
17,19, 21, 22, 24]. As illustrated in Figure 1, the following basic connection between 2-layer graph
drawings and graph pathwidth® is folklore:
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A path-decomposition of a graph G is a sequence (Bi,...,Bn) of subsets of V(G) (called bags), such that
Bi1U---UB, =V(G), and for 1 < i < j < k < n we have B; N By, C By; that is, for each vertex v the bags containing
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Observation 1 A connected bipartite graph G has a 2-layer drawing with no crossings if and only
if G is a caterpillar if and only if G has pathwidth 1.

Motivated by this connection, we consider (and answer) the following question: what properties
of 2-layer drawings characterise bipartite graphs of bounded pathwidth?

A matching in a graph G is a set of edges in G, no two of which are incident to a common
vertex. A k-matching is a matching of size k. In a 2-layer drawing of a graph G, a k-crossing is
a set of k pairwise crossing edges (which necessarily is a k-matching). Excluding a k-crossing is
not enough to guarantee bounded pathwidth. For example, as illustrated in Figure 2, if T}, is the
complete binary tree of height h, then T} has a 2-layer drawing with no 3-crossing, but it is well
known that T}, has pathwidth |h/2] 4+ 1. Even stronger, if G, is the h x h square grid graph, then
G}, has a 2-layer drawing with no 3-crossing, but Gy has treewidth and pathwidth h.

Figure 2: 2-layer drawings of a complete binary tree and a 5 x 5 grid. There is no 3-crossing since
each edge is assigned one of two colours, so that monochromatic edges do not cross.

Angelini, Da Lozzo, Férster, and Schneck [1] showed that every graph that has a 2-layer drawing
with at most k crossings on each edge has pathwidth at most k£ 4 1. However, this property does
not characterise bipartite graphs with bounded pathwidth. For example, as illustrated in Figure 3,
if .S, is the 1-subdivision of the n-leaf star, then S, is bipartite with pathwidth 2, but in every
2-layer drawing of S,,, some edge has at least (n — 1)/2 crossings.

©) ©) ©) ©) ©) ©) ©) ©)

Figure 3: Every 2-layer drawing of Sg has at least 4 crossings on some edge.

v form a non-empty sub-sequence of (Bi,..., By). The width of a path-decomposition (B1, ..., By) is max; |B;| — 1.
The pathwidth of a graph G is the minimum width of a path-decomposition of G. Pathwidth is a fundamental
parameter in graph structure theory [4, 5, 8, 23] with many connections to graph drawing [2, 3, 10, 12, 13, 18, 20, 24].
A caterpillar is a tree such that deleting the leaves gives a path. It is a straightforward exercise to show that a
connected graph has pathwidth 1 if and only if it is a caterpillar.
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These examples motivate the following definition. A set S of edges in a 2-layer drawing is
non-crossing if no two edges in S cross. In a 2-layer drawing of a graph G, an (s, t)-crossing is a
pair (S,T) where S is a non-crossing s-matching, T' is a non-crossing t-matching, and every edge in
S crosses every edge in T as illustrated in Figure 4.

©) o

Figure 4: Example of a (3,4)-crossing.

We show that excluding a k-crossing and an (s, t)-crossing guarantees bounded pathwidth.

Theorem 2 For all k,s,t € N, every bipartite graph G that has a 2-layer drawing with no (k+1)-
crossing and no (s, t)-crossing has pathwidth at most 8k*(t — 1) + 4k*(s — 1)%(s — 2) + 5k + 4.

We prove the following converse to Theorem 2.

Theorem 3 For any k € N every bipartite graph G with pathwidth at most k has a 2-layer drawing
with no (k + 2)-crossing and no (k + 1,k + 1)-crossing.

Theorems 2 and 3 together establish the following rough characterisation of bipartite graphs
with bounded pathwidth, thus answering the opening question.

Corollary 4 A class G of bipartite graphs has bounded pathwidth if and only if there exists k, s,t € N
such that every graph in G has a 2-layer drawing with no k-crossing and no (s, t)-crossing.

2 Proofs

We use the following notation throughout. Consider a 2-layer drawing of a bipartite graph with
bipartition {A, B}. Let <4 be the total order of A, where v <4 w if v is to the left of w in the
drawing. Define <p similarly. Let < be the poset on F(G), where vw < zy if v <4  and w <p .
Two edges of G are comparable under < if and only if they do not cross. Thus every chain under
=< is a set of pairwise non-crossing edges, and every antichain under < is a matching of pairwise
crossing edges.

Lemma 5 Let G be a bipartite graph with bipartition A, B, where each vertex in A has degree at
least 1 and each vertex in B has degree at most d. Assume that G has a 2-layer drawing with no
(k + 1)-crossing and no non-crossing (¢ + 1)-matching. Then |A| < kéd.

Proof: Let X be a set of edges in G with exactly one edge in X incident to each vertex in A. So
|X| = |A|. Let Ey,..., E4 be the partition of X, where for each edge vw € E;, if v € A and w € B,
then v is the i-th neighbour of w with respect to <4. So each E; is a matching. Since G has no
(k + 1)-crossing, every antichain in =< has size at most k. By Dilworth’s Theorem [9] applied to <
(restricted to E;), there is a partition E; 1,..., E; ; of E; such that edges in each E; ; are pairwise
non-crossing. By assumption, |E; ;| < £. Thus |A] = |X]| < kdd. O
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Proof of Theorem 2: Consider a bipartite graph G with bipartition {4, B} and a 2-layer
drawing of G with no (k + 1)-crossing and no (s, t)-crossing. Our goal is to show that pw(G) <
8k2(t — 1) + 4k?(s — 1)%(s — 2) + 5k + 4. (We make no effort to optimise this bound.)

Consider the partial order < defined above. By assumption, every antichain in < has size at
most k. By Dilworth’s Theorem [9], there is a partition of E(G) into k chains under <. Each chain
is a caterpillar forest, which can be oriented with outdegree at most 1 at each vertex. So each vertex
has out-degree at most k in G. For each vertex v, let Nj[v] := {w € V(G) : vt € E(G)} U {v},
which has size at most k + 1.

As illustrated in Figure 5, let X = {ey,...,e,} be a maximal non-crossing matching, where
e1 < eg < -+ < e, (Here n is not related to |V(G)|.) Let Yy be the set of vertices of G strictly to
the left of e;. For i € {1,2,...,n — 1}, let Y; be the set of vertices of G strictly between e; and
ei+1. Let Y, be the set of vertices of G strictly to the right of e,,. By the maximality of X, each
set Y; is independent. For i € {0,1,...,n}, arbitrarily enumerate Y; = {v;1,...,vi m, }. Note that
v;,; is an end-vertex of no edge in X (for all i, 7).

(< (< (& () (©) (&
Yo €1 Y, e [ Y5 €3 Y3
O O O (@) (@) O O
Figure 5: A maximal non-crossing matching {e,...,e,} and associated independent sets Yy, ..., Y.

As illustrated in Figure 6, for each i € {1,...,n}, if e; = zy then let N; = N} [z] U NZ [y]. Note
that |N;| < |NZ&[z]| + [N [y]| < 2(k +1). For each i € {1,...,n}, let V; be the set consisting
of N; along with every vertex v € V(G) such that some arc z0 € E(G) crosses e;. For each
i€{0,1,...,n}and j € {1,...,m;}, let Vi; := (V; U V1) U NG [v; j] where Vg 1= V41 := @.

Figure 6: The set of vertices V; where e; = xy are shown in red and yellow.
We now prove that
(V071, ey Vb,mo; Vi, Vl,la ey VLml; ey Vn, le, ey anmn) (].)

is a path-decomposition of G. We first show that each vertex v is in some bag. If v is an end-vertex
of some edge ¢e;, then v € V;. Otherwise v = v; ; for some 14, j, implying that v € V; ;, as desired.
We now show that each vertex v is in a sequence of consecutive bags. Suppose that v € V; NV, and
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1 < j <p. Thus e; < e; < e,. Our goal is to show that v € Vj. If v is an end-vertex of e;, then
v € V;. So we may assume that v is not an end-vertex of e;. By symmetry, we may assume that v
is to the left of the end-vertex of e; that is in the same layer as v. Thus, v is not an end-vertex
of e,. Since v € V,, there is an arc gﬁ that crosses e, or such that y is an end-vertex of e,. Since
e; < ep, this arc gﬁ crosses ej. Thus v € V;, as desired. This shows that v is in a (possibly empty)
sequence of consecutive bags V;,Viy1,...,V;. If v € V; then v € V ; for all j € {1,...,m,}, and
ve Vi, forall je{l,...,m;_1}. It remains to consider the case in which v is in no set V;. Since
the end-vertices of e; are in V;, we have that v = v; ; for some ¢, 7. Since Y; is an independent set,
v is adjacent to no other vertex in Y;. Moreover, if there is an arc Z0 in G, then either z is an
end-vertex of e; or e;_1, or 20 crosses e;_1 or e;, implying v is in V;_1 UV}, which is not the case.
Hence v has indegree 0, implying V; ; is the only bag containing v. This completes the proof that
v is in a sequence of consecutive bags in (1). Finally, we show that the end-vertices of each edge
are in some bag. Consider an arc b in G. If v = v; ; for some 1, j, then v,w € V; ;, as desired.
Otherwise, v is an end-vertex of some ¢;, implying v,w € V;, as desired. Hence the sequence in (1)
defines a path-decomposition of G.

We now bound the width of this path-decomposition. The goal is to identify certain subgraphs
of G to which Lemma 5 is applicable.

As illustrated in Figure 7, for i, j € {0,1,...,n}, let Y; ; be the set of vertices v € Y; such that
there is an arc z0 in G with z € Y;. Suppose that |Y; ;| > 2k?|j —i| + 1 for some 4,5 € {0,1,...,n}.
Since Y; is an independent set, ¢ # j. Without loss of generality, ¢ < j and there exists Z CY; ;N A
with |Z] > k?(j —i) + 1. Let H; be the subgraph of G consisting of all arcs 20 in G with
z€Y;NBand v € Z (and their end-vertices). If H; has a non-crossing (j — ¢ + 1)-matching M,
then (X \ {€;41,...,€;}) UM is a non-crossing matching in G larger than X, thus contradicting
the choice of X. Hence H; has no non-crossing (j — i + 1)-matching. By construction, H; has
no (k + 1)-crossing, every vertex in V(H;) N A has degree at least 1 in Hy, and every vertex in
V(H1) N B has degree at most k in H;. By Lemma 5 applied to Hy with ¢ = j — i and d = k,
we have |Z| = |[V(Hy) N A| < k*(j — i), which is a contradiction. Hence |Y; ;| < 2k?|j — i| for all
i,7€{0,1,...,n}.

Figure 7: If many vertices in Y; are the head of an arc starting in Y}, then there is a large non-
crossing matching amongst these edges, which can replace e;11,...,e; in M, contradicting the
maximality of M.

This bound on |Y; ;| is useful if |i — j| is ‘small’, but not useful if |¢ — j| is ‘big’. We now deal
with this case.

As illustrated in Figure 8, for i € {1,...,n}, let P; be the set of vertices v in G for which there
is an arc z0 in G that crosses €i—st1yCist2y .-+ C; OF CTOSSES €4, €i41,...,Ei1s—1. Suppose that
P; > 4k*(t — 1) + 1. Without loss of generality, there exists @ C P; N A with |Q| > k*(t — 1) + 1
such that for each vertex v € Q there is an arc Z0 in G that crosses €3y €itly. -y €ips—1. Let Ho
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be the subgraph of G consisting of all such arcs and their end-vertices. So V(Hs)NA = Q. If
Hj has a non-crossing t-matching M, then ({e;,€;41,...,€i1s-1}, M) is an (s, ¢)-crossing. Thus
Hs has no non-crossing t-matching. By construction, Hy has no (k + 1)-crossing, every vertex in
V(Hz) N A has degree at least 1 in Hs, and every vertex in V(Hz) N B has degree at most k in
Hs. By Lemma 5 applied to Hy with £ =t — 1 and d = k, we have |Q| = |V (Hz2) N A| < k%(t — 1),
which is a contradiction. Hence |P;| < 4k*(t — 1) for all i € {1,...,n}.

Figure 8: If many vertices are the head of an arc crossing e;,€;41,...,€,45—1, then amongst
these edges there is a non-crossing t-matching, implying that G has an (s, t)-crossing, which is a
contradiction.

Consider a bag V;, which consists of N; along with every vertex v € V(@) such that some arc
Z0 € E(G) crosses e;. Thus

Vil = [Ns| + | P3| + > Yicairsl
a,be{0,1,...,s—2}
<2k+1)+4R2E -1+ > 2k%|(i+b) — (i —a)
a,be{0,1,...,s—2}

= 2(k + 1) + 4k>(t — 1) + 2k> > (a+Db)
a,be{0,1,..., s—2}

=2k+1)+4k*(t—1)+2k* | (s — 1) Y al+(s—1) doob
a€{0,1,...,s—2} be{0,1,...,s—2}

=2(k+ 1) +4k*(t — 1) + 2k*(s — 1)%(s — 2).
Hence

4(k+ 1)+ 8K*(t — 1) +4k*(s — 1)* (s — 2) + (K + 1)

Vi, <
<8k (t — 1) 4+ 4k*(s — 1)*(s — 2) + 5(k + 1).

< Wil + [Viga| + (B +1)

Therefore the path-decomposition of G defined in (1) has width at most 8k%(t —1) +4k?*(s —1)%(s —
9) + 5k + 4. O

Proof of Theorem 3: Let G be a bipartite graph with pathwidth at most k. Our goal is to
construct a 2-layer drawing of G with no (k + 2)-crossing and no (k + 1,k + 1)-crossing. Let
(X1,...,X,) be a path-decomposition of G with width k. Let £(v) := min{i : v € X} and
r(v) := max{i : v € X;} for each v € V(G). We may assume that ¢(v) # ¢(w) for all distinct
v,w € V(G). Let {A, B} be a bipartition of G. Consider the 2-layer drawing of G, in which each
veE Ais at (£(v),0), each v € B is at (¢(v), 1), and each edge is straight.
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As illustrated in Figure 9, suppose that {viws,..., vp42wgio} is a (k + 2)-crossing in this
drawing, where v; € A and w; € B.

U1 U2 cee Uk41 Uk+2

Wr+2 Wgt1 e w2 w1

Figure 9: A (k + 2)-crossing.

Without loss of generality,
L(vy) < l(vg) < -+ < L(vgsa) and L(wrr2) < U wpsr) < -+ < l(wy). (2)

For each ¢ € {1,...,k + 2}, if l(v;) < €(w;) then let I; := {l(v;),...,¢(w;)}; otherwise let
I == {l(w;),...,0(v;)}. By (2), I; N I; # & for distinct ¢, j € {1,...,k+ 2}. By the Helly property
for intervals, there exists p € Iy N --- N Ixyo. Thus v; or w; is in X, for each ¢ € {1,...,k + 2}.
Hence |X,| > k + 2, which is a contradiction. Therefore there is no (k + 2)-crossing.

As illustrated in Figure 10, consider an (s, s)-crossing ({viwi,...,vsws}, {z1y1,...,Tsys}) in
this drawing, where v;, z; € A and w;,y; € B.

m Vs X1 Ts

yl PPN ys w1 e Wg

Figure 10: An (s, s)-crossing.

Without loss of generality,

Lvy) < -+ < Ll(vs) < l(x1) <--- < L(xs) and
Ly1) < - < Lys) < l(wy) < -+ < L(ws).

We claim that s < k. If £(vs) < £(wy) then £(v1) < -+ < L(vg) < L(wy) < -+ < (ws), implying
U1y Vs, W1 € Xy, and s +1 < [ Xy, )| < k41, as desired. If £(ys) < £(x1) then £(y;) < --- <
Uys) < l(wy) < -+ < l(xs), implying y1,...,ys, 1 € Xy(z,), and s+1 < | Xy, )| < k+1, as desired.
Now assume that £(w1) < £(vs) and £(z1) < £(ys). Thus (w1) < £(vs) < €(z1) < L(ys), which is a
contradiction since £(y;) < £(w;). Hence s < k and the drawing of G has no (k4 1,k + 1)-crossing,.

0
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