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Abstract

Methods for ranking World Wide Web resources according to their
position in the link structure of the Web are receiving considerable atten-
tion, because they provide the first effective means for search engines to
cope with the explosive growth and diversification of the Web. Closely
related methods have been used in other disciplines for quite some time.

We propose a visualization method that supports the simultaneous
exploration of a link structure and a ranking of its nodes by showing the
result of the ranking algorithm in one dimension and using graph drawing
techniques in the remaining one or two dimensions to show the underlying
structure. We suggest to use a simple spectral layout algorithm, because
it does not add to the complexity of an implementation already used for
ranking, but nevertheless produces meaningful layouts. The effectiveness
of our visualizations is demonstrated with example applications, in which
they provide valuable insight into the link structure and the ranking mech-
anism alike. We consider them useful for the analysis of query results,
maintenance of search engines, and evaluation of Web graph models.
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1 Introduction

The directed graph induced by the hyperlink structure of the Web has been
recognized as a rich source of information. Understanding and exploiting this
structure has a proven potential to help dealing with the explosive growth and
diversification of the Web. Probably the most widely recognized example of this
kind is the PageRank index employed by the Google search engine [9].

PageRank is but one of many models and algorithms to rank Web resources
according to their position in a hyperlink structure (see, e.g., [36, 29, 13, 1, 8,
12]). We propose a method to complement rankings with a meaningful visual-
ization of the graph they are computed on.

While graph visualization is an active area of research as well [14, 28], its
integration with quantitative network analyses is only beginning to receive at-
tention. It is, however, rather difficult to understand the determinants of, say, a
particular ranking if its results do not influence the way in which the structure
is visualized.

A design for graph visualizations showing a vertex valuation in its structural
context is introduced in [6, 5]. In two-dimensional diagrams of social networks,
the vertical dimension of the layout area is used to represent exactly the value
assigned to each actor (a constraint), and a layout of the horizontal dimension is
determined to make the diagram readable (an objective). Since the networks in
question are relatively small (no more than a hundred vertices), an adaptation
of the Sugiyama framework for layered graph drawing [38] is used for horizontal
layout.

The guiding principle in the above design is axis separation: in one dimen-
sion the most important information is conveyed precisely, and in another the
perception of its basis is eased. To facilitate visual exploration of ranking meth-
ods on larger link structures such as Web graphs, we propose to apply the same
principle, but with a very different layout algorithm that is more appropriate
for the specific type of data.

Standard rankings are based on spectral methods and iterative computation,
but the same methods can also be used for graph layout. In the present appli-
cation they are particularly well-suited, because densely connected subgraphs
are clustered. On the Web, such subgraphs correspond to related resources and
graphical clustering is therefore highly desirable. By using the axis separation
principle and spectral layout techniques, a uniform approach to visual ranking
of link structures is achieved.

The paper is organized as follows. In Section 2, we recall some fundamental
spectral properties of graphs. Link-based ranking is surveyed in Section 3,
and formally and computationally similar layout techniques are described in
Section 4. Applications in which our visualization approach may be useful are
discussed in Section 5 and examples with generated and real-world data are
provided. We conclude in Section 6.
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2 Preliminaries

The structural features of the Web can be captured in a directed graph G =
(V,E), where the set V of vertices represents the set of resources on the Web,
and there is a directed edge (u, v) ∈ E from a resource u to a resource v, if u
contains a hyperlink to v. All graphs considered in this paper are assumed to
be connected. We do not allow parallel edges, but self-loops and a positive real
weight ωuv for every edge. Let A(G) = A = (Auv)u,v∈V be the adjacency matrix
of a graph, i.e. Auv = ωuv if (u, v) ∈ E, and Auv = 0 otherwise. The indegree
(outdegree), d+

v (d−v ), of a vertex v ∈ V is
∑

u:(u,v)∈E Auv (
∑

w:(v,w)∈E Avw).
We will make extensive use of algebraic properties of graphs. If A is a square

matrix and Ap = λp, λ is called an eigenvalue of A and p an associated eigen-
vector. Note that, if p is an eigenvector associated with λ, then cp, c ∈ R, is
also. The multiplicity of an eigenvalue is the number of distinct eigenvectors
associated with it. Counting multiplicities, an n × n matrix has n eigenval-
ues. The multiset Λ(A) = {λ1, . . . , λn} of its eigenvalues with their respective
multiplicity is called the spectrum of A.

We recall some important properties of spectra. The following lemma applies
in particular to adjacency matrices of undirected graphs.

Lemma 1 Let A be a real symmetric n × n matrix.

1. All eigenvalues of A are real.

2. Any two eigenvectors of A with distinct eigenvalues are orthogonal.

3. Let Λ(A) = {λ1, . . . , λn}, then

(a) Λ(cA) = {cλ1, . . . , cλn} for all c ∈ R,
in particular Λ(−A) = {−λ1, . . . ,−λn}, and

(b) Λ(I + A) = {1 + λ1, . . . , 1 + λn}.
For directed graphs, we have the following theorem, which is a version of the

fundamental Perron-Frobenius Theorem reformulated for our purposes.

Theorem 2 If A is the adjacency matrix of a strongly connected graph G, then
there is an ordering λ1 ≥ |λ2| ≥ · · · ≥ |λn| of its eigenvalues such that λ1 is
real and simple, and −λ1 is an eigenvalue of A if and only if G is bipartite.
Moreover, the entries of a non-zero eigenvector associated with λ1 are either all
negative or all positive real numbers.

For further background on matrix computations and algebraic properties of
graphs we refer to [21] and [20].

3 Structural Ranking of Web Resources

Any real-valued vector p = (pv)v∈V defined on the vertices of a graph is called a
prominence index, where pv is the prominence of vertex v. A ranking is obtained
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from a prominence index by ordering the vertices according to non-increasing
prominence.

Many models have been proposed to capture an explicitly or implicitly de-
fined notion of a vertex’s prominence in a graph [27, 25, 16, 4, 17, 36, 29, 1, 13, 12,
and many more]. Though in general only defined for undirected graphs, we first
outline eigenvector centrality, because it nicely illustrates some important com-
monalities of the popular ranking methods that we discuss below.

Assume that the prominence of a vertex is understood to be proportional
to the combined prominence of its neighbors, λpv =

∑
u:{u,v}∈E ωuvpu, v ∈ V ,

where the constant λ is introduced so that the system of equations has a non-zero
solution. This definition yields the eigensystem of the (transposed) adjacency
matrix,

λp = AT p = Ap, (eigenvector centrality [3])

and every eigenvector of A = A(G) gives a ranking of the vertices for the above
notion of prominence, although the principal eigenvector, i.e. the one associated
with the eigenvalue of largest magnitude, is generally preferred [4, 17]. The
principal eigenvector can be obtained by power iteration, which starts with any
non-zero vector and iteratively multiplies the matrix with the current solution,
e.g. p(0) ← 1 and

p(k+1) ← A · p(k).

Since the matrices considered here originate from large and sparse graphs, mul-
tiplication is carried out by computing p

(k+1)
v ← ∑

u:{u,v}∈E ωuvp
(k)
u for every

v ∈ V . To prevent the entries of the iterates from growing out of range, each vec-
tor is normalized such that the magnitude of the largest entry equals the number
of vertices in the graph (recall that multiples of eigenvectors are eigenvectors
as well). This normalization scheme is applied in all subsequently described
iterative computations without explicit mentioning.

More elaborate indices defined on directed graphs are discussed below. In
Figure 1 they are illustrated on an acyclic grid. The grid is placed in a plane
and each grid point is then lifted according to its prominence.

3.1 Hubs and authorities

A natural notion of prominence for a Web resource is the extent to which it
is referred to by other Web pages, in particular by those pages that specialize
in listing useful resources. In turn, the property of being such a list of useful
resources is a notion of prominence in itself. In these complementary and mu-
tually reinforcing notions prominent resources are called authorities (resources
with useful information) and hubs (pages with useful links).

The hub score of a page is proportional to the combined authority of the
resources it links to, and the authority of a resource is proportional to the
combined hub score of the pages linking to it. In practice, hub and authority
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(a) authority (b) PageRank (c) Katz’s status

Figure 1: Comparison of prominence indices on a directed grid

scores are thus computed by iterating p(0) ← 1 and

p(2k+1) ← AT · p(2k)

p(2k+2) ← A · p(2k+1).

For h(k) = p(2k) and a(k) = p(2k+1), the alternating iteration can be written as

h(k+1) ← AAT · h(k) (hubs [29])

a(k+1) ← ATA · a(k). (authorities [29])

In this formulation, it is easy to see that the hub and authority indices in
a graph with adjacency matrix A correspond to eigenvector centrality in the
weighted undirected graphs with symmetric adjacency matrix AAT and ATA,
respectively.

As can be seen in Figure 1(a), vertices on and above the falling diagonal of the
grid have the highest authority, because they are in the midst of the undirected
graph induced by ATA. Compare this to the undirected graph induced by AAT ,
indicating why the best hubs are found on and below this diagonal.

3.2 PageRank

In another variant of eigenvector centrality the contribution of each vertex to
another vertex’s prominence is weighted by its outdegree, pv =

∑
u:(u,v)∈E

ωuvpu

d+
u

(see e.g. [35, 11]). If we require p to be a probability distribution over the set
of vertices, this notion has a nice interpretation as the stationary distribution
of the simple random walk on the graph (or random surfer on the Web, if you
will), in which each edge leaving a vertex is chosen with equal probability.

Let M = D−1A be the adjacency matrix normalized so that the rows sum
to one, where D is the diagonal matrix with the outdegrees on the diagonal.
Then, M is a stochastic matrix of transition probabilities, and a stationary
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distribution p = MT · p satisfies the above notion of prominence. However,
if a vertex has outdegree zero, the computation breaks down, and strongly
connected components may cause an overdue increase of the prominence of their
vertices. This so-called “sink problem” can be avoided by introducing an escape
mechanism. Let p̂ be an a-priori probability distribution over the vertices (e.g.,
user preferences or general popularity of a resource), then with probability ω the
random walk picks an edge of the graph whereas with the remaining probability,
it jumps to any other vertex according to p̂. The index is thus defined by

p = ωMT p + (1 − ω)p̂ (PageRank [8])

=
(
ωMT + (1 − ω)p̂ · 1T

) · p.

The second equality holds because p is a probability distribution. From the
second expression it can be seen that PageRank is the eigenvector centrality of
a weighted graph with a complete set of additional escape edges. This modified
matrix is irreducible and aperiodic so that the iteration p(0) ← 1

n 1 and

p(k+1) ← (
ωM + (1 − ω)1 · p̂T

)T · p(k)

converges to a unique prominence vector. On the grid in Figure 1(b), the random
surfer may jump to any vertex, but is most likely to walk towards the upper and
right side of the grid, from where the only continuation is towards the upper
right corner.

3.3 Katz’s status index

As a generalization of simply using indegrees to measure ‘status’ in social net-
works, the prominence of a vertex is determined by the number of directed
paths of arbitrary length ending in the vertex, where the influence of longer
paths is attenuated by a decay factor. Recall that the entries of the k-th power
of the adjacency matrix of an unweighted graph give the number of paths of
length k between every pair of vertices. Therefore, this notion of prominence is
determined by

p =

( ∞∑
k=1

(αAT )k

)
· 1, (Katz’s status [27])

where parameter α corresponds to the fraction of status that is passed along
a directed edge. For sufficiently small values of α (a convenient choice is 1

∆+1 ,
where ∆ is the minimum of the maximum in- or outdegree of any vertex in the
graph), the sum converges to (I −αAT )−1 − I. Therefore, the status vector can
be obtained by solving

(
α−1I − AT

) · p = d, where d is the vector of indegrees.
Solving this system of linear equations directly is prohibitive for large graphs.
Standard sparse matrix approaches approximate a solution iteratively. The
update step in Jacobi iteration, for instance, yields p(k+1) ← αAT · p(k) + αd.
This iteration nicely reflects the underlying notion of adding contributions from
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vertices farther and farther away. The same can be observed in Figure 1(c),
where the attenuated influence from vertices in the lower left does not suffice to
discriminate the prominence of vertices in the upper right any more.

In a sense, the above definitions of prominence are contained in the follow-
ing generic formulation of status in networks. It puts a twist on eigenvector
centrality through the addition of an a-priori prominence vector p̂,

p = AT p + p̂. (Hubbel’s status [25])

By choosing appropriate weights and a-priori prominences, we obtain eigen-
vector centrality and PageRank. Reordering, we have p = (I − AT )−1 · p̂,
provided the inverse exists. If it does, it equals

∑∞
k=0(A

T )k, and therefore
p =

(∑∞
k=0(A

T )k
) · p̂ =

(
I +

∑∞
k=1(A

T )k
) · p̂. With uniform edge weights and

p̂ = 1 we obtain a prominence index in which every component is by one larger
than Katz’s status index.

4 Spectral Graph Layout

In the previous section we emphasized formal similarities in the definition of
popular prominence indices. In practice, all of them are computed by some
variant of sparse matrix power iteration, i.e. by iterating over all vertices, and,
for each vertex, combining the current scores of its neighbors. Implementation
of these algorithms is thus trivial.

In this section, we introduce a layout algorithm that produces meaningful
layouts using the same principles as the ranking methods. It is therefore a
simple matter to complement an existing system for ranking vertices to compute
a layout of the graph on the fly, since both parts of the system can operate
synchronously on the same data

4.1 Layout with eigenvectors

For layout, we consider the unweighted, undirected, simple graph obtained by
omitting weights, directions, self-loops, and multiple edges. Note that edge
directions are sufficiently represented in the prominence dimension.

Let A be the adjacency matrix of a simple undirected graph G and D = D(G)
its diagonal degree matrix. We consider the Laplacian matrix L = D−A, which
has interesting applications in many areas (see, e.g., [33]). Its usefulness for
drawing graphs was first described in [22] and is based on the observation that
minimizing the associated quadratic form

xT Lx =
∑

{u,v}∈E

(xu − xv)2, (1)

corresponds to minimizing the squared distance between pairs of adjacent ver-
tices if x is interpreted as a vector of vertex positions. This objective functions
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is closely related to standard graph drawing methods, since it can be interpreted
as the energy of a physical system consisting of rings (the vertices) that are tied
together by springs (the edges) of natural length zero. In other words, we have
a spring-embedder with zero-length springs and no repelling forces.

The energy-minimum state of the above system is obtained by assigning the
same position to all vertices (recall that we assume connectedness of the graph).
These undesirable single-point solutions can be avoided by fixing some selected
vertices at distinct positions. Minimization subject to these boundary conditions
yields the well-known barycentric layout model of Tutte [39]. However, the final
layout is contingent on the fixed vertices and their position. While placing a
face of a triconnected planar graph on a convex polygon yields a planar layout
of the graph, there are no general rules on which vertices to place where in more
general graphs.

Other alternatives include the addition of repulsive forces between nodes [15,
18] and the use of springs with non-zero length [26]. Although these methods
have been extended to be applicable on graphs with thousands of vertices [19,
23, 40], there implementation is far from trivial.

Spectral methods take a different approach and yield a trivial, parameter-
free algorithm working toward a globally optimal solution with respect to the
above quadratic objective function. Note that the undesired minima x = c1 are
the eigenvectors associated with eigenvalue zero, i.e. Lx = 0. More generally, if
(λ, x) is any eigenpair of L, then λ = xT Lx

xT x
. We therefore want to minimize

xT Lx

xT x
subject to 0 �= x ⊥ 1,

since the eigenvectors of a symmetric matrix are orthogonal. Hence, the desired
solution is an eigenvector associated with the second-smallest eigenvalue of L.
This vector is called the Fiedler vector and, because of its distance minimization
property, frequently used in graph partitioning (see, e.g., [37]). For the same
reason, it yields a useful one-dimensional layout of a graph, because edges are
short and hence dense subgraphs are clustered. Another argument in favor
of using the Fiedler vector for horizontal layout is its successful application in
drawing bipartite graphs in two-layers with few crossing edges [34].

If rankings ought to be visualized in three dimensions (cf. Figure 1), a rea-
sonable choice for the second free dimension is the normalized eigenvector min-
imizing the objective function subject to being orthogonal to 1 and the first
solution.

An example of two-dimensional layouts obtained from barycentric layout, a
typical spring embedder, and two orthogonal eigenvectors of L is provided in
Figure 2. While the spring embedder produces more uniform edge lengths, the
eigenvectors emphasize structural clustering of vertices.

4.2 Computing the layout

Eigenvectors associated with the smallest eigenvalues of large sparse matrices
are usually computed using Lanczos’ method. However, all popular prominence
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(a) barycentric (b) spring embedder (c) spectral

Figure 2: Two-dimensional layouts of a random planar triconnected graph

indices are computed using a variant of the much simpler power iteration, which
only gives an eigenvector associated with the eigenvalue of largest magnitude.
To be able to apply the same simple algorithm and thus synchronize layout and
prominence computation, we reverse the eigenvalues of the Laplacian.

By Lemma 1, all eigenvalues of L are real, and since L is positive-semidefinite
they are non-negative. By Gershgorin’s Theorem, the largest eigenvalue is no
more than twice the maximum vertex degree ∆ of the graph, so that again by
Lemma 1 the matrix L′ = 2∆ · I − L has the same eigenvectors as L, but the
order of the corresponding eigenvalues is reversed.

Straightforward application of power iteration on L′ returns the principal
eigenvector of L′, which is the trivial eigenvector 1 associated with the smallest
eigenvalue of L. Power iteration on a vector that is orthogonal to the principal
eigenvector yields an eigenvector of the second-largest eigenvalue of L′, and
hence the desired layout for the first dimension. If needed, iterating on a vector
that is orthogonal to both the trivial eigenvector and the approximate solution
for the first dimension yields the second dimension.

A vector y is orthogonalized with respect to another vector x by setting
y ← y − xT ·y

xT ·x x. Orthogonalization with respect to the trivial eigenvector 1
is even easier, since it corresponds to subtracting, from each entry of y, the
mean of all its entries. To obtain vectors x and y for a two-dimensional layout
we thus carry out the following augmented power iteration on random starting
vectors x(0), y(0) that are repeatedly orthogonalized with respect to 1 and to
one another

x(k+1) ← L′ · x(k); x(k+1) ← x(k+1) − 1
n

∑
v∈V

x(k+1)
v

y(k+1) ← L′ · y(k); y(k+1) ← y(k+1) − 1
n

∑
v∈V

y(k+1)
v

y(k+1) ← y(k+1) − x(k+1)T · y(k+1)

x(k+1)T · x(k+1)
x(k+1)
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(a) random
initialization

(b) 10 steps (c) 30 steps (d) 50 steps

(e) 100 steps (f) 200 steps (g) 500 steps (h) 1000 steps

Figure 3: Typical convergence behavior of the power iteration for layout. Note
that x-coordinates do not change significantly after 30 iterations

Intuitively, the layout is centered, rectified, and (due to the normalization)
zoomed after each multiplication with L′. The last two lines are omitted if only
one dimension needs to be determined for the layout.

Note that in our setting the potentially slow convergence of power iteration is
of minor importance since all we are looking for is a vector that approximately
minimizes the quadratic objective function (1). Though overall convergence
depends on the ratio of the largest eigenvalues, the iterate quickly moves toward
a subspace spanned by eigenvectors associated with large eigenvalues. Only
then, when the largest eigenvalues need to be separated, does the slow-down
take effect. Figure 3 gives a typical, qualitative example.

As a quantitative measure of convergence we use the residual r(x) = ‖L′x−
xT L′x
xT x

x‖2, that is the squared distance of x from being an eigenvector associated
with the current eigenvalue estimate xT L′x

xT x
. Recall that we normalize after each

iteration such that the magnitude of the largest entry (the largest coordinate)
equals the number of vertices. We consider a layout to be of sufficient quality,
if the residual is of the same order, i.e. if on the average each vertex is one unit
off its optimal position. The entire one-dimensional layout algorithm is given
in Algorithm 1. Note that it requires no external parameters, and is trivial to
implement along with a ranking algorithm.

We compared the number of iterations needed for layout to that needed
for ranking. Since ranking is the important information to be conveyed, it is
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Algorithm 1: One-dimensional spectral layout
Input: simple, connected, undirected graph G = (V,E), n = |V |
Output: one-dimensional layout x = (xv)v∈V

r = ∞;
x ← n · 1;
while r

n > 1 do
x′ ← L′x;
x′ ← x′ −

∑
v∈V x′

v

n · 1;
r ← ‖x′ − xT x′

xT x
x‖2;

x ← n
max
v∈V

x′
v
· x′;

required to be precise. Convergence of ranking iterations is assumed when the
corresponding residual is below 1 (rather than the number of vertices). Our
experience suggests that the number of iterations needed for the layout is larger
than that for ranking, but not by much. In Figure 4, convergence of ranking
and layout is compared on example graphs.

For larger graphs with tens of thousands of nodes, the simple algorithm nev-
ertheless becomes to slow, especially when compared with the fastest-converging
ranking algorithms. A much more sophisticated multiscale algorithm [30] to ob-
tain the Fiedler vector is available, though.

5 Application Examples

We demonstrate our visualization approach on three different kinds of data:
random Web graphs generated from popular models, a search engine exam-
ple constructed from an AltaVista query, and a bibliographic data set. Our
C++-implementations use LEDA, the Library of Efficient Data Types and Al-
gorithms [32].

5.1 Web graph models

In the linear growth model [31], a graph grows one vertex at a time. At each time
step, a prototype is chosen among already existing vertices, and a new vertex is
generated. This new vertex is then assigned a fixed number of outgoing edges.
With some fixed probability, the ith of these edges points to a randomly selected
vertex among those already existing (creation case), and with the remaining
probability it points to the same vertex as the ith outgoing edge of the prototype
vertex (copying case). Our generator does not introduce multiple edges, and if
a prototype happens to not have enough outgoing edges, no edge is introduced
in the copying case. Clearly, all graphs evolving like this are acyclic.

In the exponential growth model [31], a graph grows by a fixed fraction of
its current size at each time step. New vertices receive a fixed number of loops,
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(c) “java” query
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Figure 4: Convergence of ranking and layout compared (logarithmic scale). The
three graphs are the triconnected planar graph of Figure 2, the random small
world of Figure 5(c) (Section 5.1), and the Web graph of Figure 6 (Section 5.2)

and for each already existing edge, its target receives a new incoming edge for
which, with some fixed probability, the source is chosen uniformly at random
from the new vertices, and otherwise from the existing vertices with probability
proportional to their current outdegree. We used a simpler model in which
existing vertices are chosen uniformly at random as well.

For the small-world model [41], we initially generate a cyclic sequence of
vertices and let a vertex link to a fixed number of predecessors and successors.
Then, each edge is rewired with some small probability by choosing a new
destination uniformly at random.

Figure 5 shows spectral layouts of graphs generated according to these mod-
els and rankings replacing the vertical dimension with PageRank as an example
of a prominence index. The linear model graph has about 750 vertices and was
generated with desired outdegree 7 and copying probability 0.3, where some of
the vertices created last where trimmed because of poor connectivity. The expo-



U. Brandes and S. Cornelsen, Visual Ranking , JGAA, 7(2) 181–201 (2003) 193

0

1

2

345 68

(a) Linear growth evolving copying model [31]

0

1

4

5
6

(b) Exponential growth evolving copying model [31]

(c) Small-world model [41]

Figure 5: Web models (2D spectral layout and 1D spectral layout vs. PageRank)
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Figure 6: Authority and PageRank visualization of “java” query result

nential model graph was generated with 10% growth rate, desired outdegree 7,
7 initial loops, and probability 0.5 for choosing the origin among new vertices.
It originally had about 1000 vertices, but again roughly a quarter of the vertices
last created were removed to achieve more robust structure. The 750 vertices in
the small-world graph originally linked to their six nearest cyclic neighbors and
edges were rewired with probability 0.05. In all rankings, edge directions are
indicated by color (gray edges point upwards, black edges point downwards).

There is no visible clustering in the evolving copying models. Moreover, the
prominence of resources appears to be correlated with their age (also with the
other indices outlined in Section 3). The figures thus graphically support the
conclusion of [31] that death processes, i.e. the occasional deletion of vertices and
edges, might be necessary for the evolving copying models to be realistic. In
the small-world model, the spectral layout reveals a cycle crumpled by chords,
and the ranking shows that the model yields a rather egalitarian structure.

Our generators are slightly simplified versions of the original ones and our
samples are not representative. Their sole purpose is to demonstrate the poten-
tial utility of ranked visualizations in the exploration and comparison of different
models and parameterizations.
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Figure 7: Detecting a data preparation flaw by visual inspection

5.2 Search engine query results

The data for this example was compiled in a way similar to the HITS algo-
rithm [29]. We asked the AltaVista search engine for pages containing the word
“java” and used the first 200 URLs it returned as the root set. It was then
expanded by asking AltaVista for pages containing links to resources in the
root set (backward extension), and adding resources linked to by pages in the
root set (forward extension). The graph was completed by adding edges for
all links between pages in the resulting set of vertices. The computations were
carried out on the only large component of this graph from which some poorly
connected vertices were removed to prevent extreme clustering. The graph has
more than 5000 vertices and 15000 edges.

In Figure 6, this graph is shown twice, with vertices positioned vertically
according to the Fiedler vector, and horizontally according to one of two promi-
nence indices. Again, links from more to less prominent resources are colored
black.

The most prominent resources under the PageRank measure match our ex-
pectations, but there are some surprising recommendations as well. It is clearly
visible that some of these serve distinct user groups, like the Japanese directory
in the upper right. Note that, without zooming into the image, we may not con-
clude that vertically close vertices are closely connected. However, it is safe to
assume that vertically separated vertices are relatively distant in the structure.
This feature can serve to distinguish query results which contain a keyword that
is used in different contexts (see the “jaguar”-query example in [29]).

Figure 6 also shows that the top authorities are surprisingly distinguished
from the rest of the graph, and quite different from our expectations. Most
of them are located at Stars.com, a large repository for developers (“Web
Developer’s Virtual Library”). Since they are well connected among each other,
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it is by virtue of our layout approach that their vertical position is similar, and
thus this phenomenon could be detected by visual exploration. In Figure 7,
resources at this site are colored lighter. Not surprisingly, vertices with high
hub scores are from this site as well. This simple example graphically explains
why the original HITS algorithm does not consider links within a site.

5.3 Bibliographic networks

Web graphs may be viewed as citation networks, and there exist many other
bibliographic relations between publications and authors of written works. A
discussion of techniques to analyze bibliographic networks is beyond the scope of
this paper, but there is evidence that carefully applied network analytic meth-
ods can provide insight into the structure of a research area by identifying,
e.g., prominent works or thematic clusters. We refer the reader to [42] for an
introduction to bibliographic analysis and to [10] for an example of a system
constructing and visualizing graphs from various bibliographic relations.

The application of our visual ranking approach to bibliographic networks is
illustrated by citation data made available for the 2001 Graph Drawing Con-
test [2], held in conjunction with the 9th International Symposium on Graph
Drawing. Since bibliographic networks typically contain loosely connected sub-
graphs which are difficult for spectral approaches to draw properly, it is proposed
in [7] to weaken the diagonal of the Laplacian matrix. This modification serves
to spread vertices more uniformly.

Each vertex in Figure 8 represents a paper that appears in one of the pro-
ceedings of the symposia from 1994 and 2000. While the color indicates the year
of the symposium, height and width represent the number of citations received
and made, respectively. As noted in Section 3, Kleinberg’s hub and author-
ity scores correspond to eigenvector centrality scores in the undirected graphs
AAT and AT A. In bibliometrics, these are known as the bibliographic coupling
and co-citation graphs. A hub is thus a potential survey, while an authority
is an influential paper. Note, however, that the specific data at hand is cer-
tainly not sufficient to draw valid conclusions about the role and importance of
a publication.

We have chosen this data set because the emerging patterns even for this
small data set happen to resemble at least some of our intuition about the
field. In particular, the horizontal clustering produced by the spectral layout
algorithm does indeed correspond to a thematic clustering. The small cluster in
the far right, for instance, are the Graph Drawing Contest Reports, connected
only to the mainstream papers that form the adjacent dense cluster. Moving
to the left, topics change via orthogonal drawing and 3D to the less intensely
studied visibility representations and proximity drawings.
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6 Conclusions

We have proposed a method for Web graph visualization that provides unam-
biguous identification of prominent resources while showing the entire graph
and its clustering. In the simplest approach, the layout for our visualizations
can be computed synchronously with common link-based rankings.

We expect the proposed visualization design to be particularly useful for
visual exploration of ranked structures, for teaching and experimenting with
ranking procedures, and for evaluation and illustration of stochastic models of
the Web graph.

For graphs with tens of thousands of vertices, power iteration becomes costly
because of its slow convergence. While speed-up techniques that reorganize
storage to reduce external memory access [24] carry over to the layout algorithm,
more sophisticated layout algorithms are available. Several recently introduced
methods [19, 40, 23] produce layouts similar to the spectral approach. With a
new multiscale technique for eigenvector layout computation [30], however, our
approach extends directly.

The main advantage of spectral graph layout, its correspondence with dis-
tance minimization and hence with clustering, becomes a drawback in cases
where the underlying undirected graph is poorly connected, since denser sub-
graphs will be clustered in a very small interval. Experiments with modifications
of the Laplacian matrix [7] suggest that this problem can be addressed without
changing the iteration significantly.

Acknowledgments. We thank Marco Gaertler for collecting the “java”-query
data used in Section 5.2.
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