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Abstract

We present a novel way to draw planar graphs with good angular
resolution. We introduce the polar coordinate representation and describe
a family of algorithms for constructing it. The main advantage of the polar
representation is that it allows independent control over grid size and
bend positions. We first describe a standard (Cartesian) representation
algorithm, CRA, which we then modify to obtain a polar representation
algorithm, PRA. In both algorithms we are concerned with the following
drawing criteria: angular resolution, bends per edge, vertex resolution,
bend-point resolution, edge separation, and drawing area.

The CRA algorithm achieves 1 bend per edge, unit vertex and bend
resolution,

√
2/2 edge separation, 5n × 5n

2
drawing area and 1

2d(v)
angu-

lar resolution, where d(v) is the degree of vertex v. The PRA algorithm
has an improved angular resolution of π

4d(v)
, 1 bend per edge, and unit

vertex resolution. For the PRA algorithm, the bend-point resolution and
edge separation are parameters that can be modified to achieve different
types of drawings and drawing areas. In particular, for the same param-
eters as the CRA algorithm (unit bend-point resolution and

√
2/2 edge

separation), the PRA algorithm creates a drawing of size 9n × 9n
2

.
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1 Introduction

In the area of planar graph drawing there has been considerable interest in
algorithms that produce readable drawings [3]. Among the many properties
which contribute to the readability of planar graphs, edge smoothness, vertex
resolution, bend-point resolution, angular resolution, and edge separation are of
great importance. Edges are often drawn as straight-line segments connecting
two vertices. An edge can also be drawn as a sequence of straight-line segments,
in which case the smallest number of bends is desirable. An edge may also
be drawn as a smooth curve. These three types of edges generally provide
aesthetically pleasing drawings.

1.1 Definitions

A graph drawing has good vertex resolution if vertices cannot get arbitrarily
close to one another, that is, if vertices are well distributed in the drawing. As
a result, a great deal of research has been concentrated on graph drawing al-
gorithms which place vertices on the integer grid such that the drawing area is
proportional to the number of vertices n of the graph, typically O(n)×O(n). If
there are bends in the edges, then the bend-points are also placed on the integer
grid. The bend-point resolution of a graph refers to the minimum distance be-
tween two bends. The edge separation of a graph refers to the minimum distance
between two edges that are sufficiently away from their endpoints (since incident
edges can get arbitrarily close to each other near their common endpoint).

A graph drawing has good angular resolution if adjacent edges cannot form
arbitrarily small angles. This is achieved by ensuring that the edges emanating
from a given vertex “fan out” evenly around the vertex. Note, however, that
good angular resolution cannot always be achieved while simultaneously guar-
anteeing straight-line edges and small sub-exponential drawing area [10]. By
introducing bends in the edges, however, we can guarantee both good resolu-
tion and small drawing area.

1.2 Previous Work

Garg and Tamassia [6] consider the problem of drawing with good angular
resolution, and Kant [9] shows how to create drawings with angular resolution
of Θ(1/d(v)) in an O(n) × O(n) area grid, using edges with at most three
bends each. Gutwenger and Mutzel [8] describe an improved algorithm with
better constant factors which produces very aesthetically pleasing drawings in
a (2n − 5) × (3n/2 − 7/2) grid with at least 2/d(v) angular resolution using at
most three bends per edge. The algorithm of Goodrich and Wagner [7] requires
one less bend per edge and guarantees angular resolution of Θ(1/d(v)) for each
vertex v, but at the expense of larger area, (20n − 48) × (10n − 24). Cheng,
Duncan, Goodrich, and Kobourov [1] improve the above algorithm so that every
edge has at most one bend while the angular resolution is Θ(1/d(v)) for each
vertex v and maximum area is 30n × 15n.
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1.3 Our Results

We first present a new Cartesian representation algorithm (CRA) which im-
proves the bounds of previous algorithms. In particular, CRA guarantees 1
bend per edge, unit vertex resolution, unit bend-point resolution,

√
2/2 edge

separation, 5n × 5n
2 drawing area, and 1

2d(v) angular resolution, where d(v) is
the degree of vertex v.

We then present a novel polar representation algorithm (PRA). The PRA
algorithm also guarantees π

4d(v) angular resolution, 1 bend per edge, and unit
vertex resolution. The bend-point resolution and edge separation are parameters
that can be modified to achieve different types of drawings and drawing areas.
In particular, for the same parameters as the CRA algorithm (unit bend-point
resolution and

√
2/2 edge separation), the PRA algorithm creates a drawing of

size 9n× 9n
2 . Note that in some situations the vertex resolution is more important

than the bend-point resolution or the edge separation. In such situations, all
of the previous algorithms perform poorly since they are designed to maintain
constant resolution particularly between vertices and bend-points. Using the
PRA algorithm, we can relax the bend-point resolution constraints and get
significant improvements.

The PRA algorithm relies on a novel approach for representing bends and
vertices. Traditionally, vertices and bend-points are restricted to lie on integer
grid coordinates. One reason for this is that the points are defined by a pair
of integers. In this way, all operations on the points (for example, shifting) are
performed with integer arithmetic. At the drawing stage, the integer coordinates
are mapped to pixels on the screen.

Another reason for placing vertices and bend-points on integer grid coordi-
nates is that this approach guarantees good vertex resolution, good bend-point
resolution, and good edge separation [1, 7, 8, 9]. Rather than insisting that
bend-points lie on integer grid coordinates, we propose an alternative approach
which allows bend-points to be located on a grid represented by polar coordi-
nates. We call this a polar representation approach because both the vertices
and the bend-points are represented using polar coordinates.

At the exact moment of drawing the graph onto the screen, an algorithm
using polar representation requires a rounding calculation to determine the exact
pixel location for the bend-points. Note, however, that the traditional approach
also uses a rounding calculation for scaling from the integer grid space to the
pixel space.

The main advantage of using a polar representation is that it allows us to
independently control grid size and bend positions. Polar coordinates allow us to
specify different vertex resolution, bend-point resolution, and edge separation.
We achieve this added flexibility at the expense of slightly increased storage
for the graph representation. A Cartesian representation requires exactly two
integers for each point while the polar representation requires up to five integers
per point.

Both of our algorithms assume that the graph is a fully triangulated, undi-
rected, planar graph. If the graph were not fully triangulated, one can still
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solve the problem by fully triangulating the graph, embedding this new graph,
and then removing the inserted edges. Approached properly, this scheme in-
curs at most a constant factor decrease in angular resolution as the modified
degree of a vertex can triple in size, e.g. fully-triangulating a path. As a result,
for the remainder of this paper when we say “graph” we mean a fully triangu-
lated, undirected, planar graph. We leave it as an open exercise to modify the
algorithm to work more effectively for general undirected planar graphs.

In Section 2 and Section 3 we present the Cartesian Representation Algo-
rithm (CRA) and argue its correctness. CRA is an improved version of the
algorithm from Cheng et al [1] for drawing with good angular resolution. In
Section 4 we introduce the concept of embedding graphs using a polar coordi-
nate system and then present the Polar Representation Algorithm (PRA) which
is a modification of the CRA.

2 The CRA Algorithm

The Cartesian Representation Algorithm is a natural extension of some previous
algorithms that guarantee good angular resolution [9, 8, 7, 1]. In our algorithm
the vertices of the graph are inserted sequentially by their canonical ordering,
generating subgraphs G1, G2, . . . , Gn. The canonical ordering [5] for a planar
graph G orders the vertices of G so that they can be inserted one at a time
without creating any crossings. We define Gk at step i to be the graph induced
by vertices 1, 2, . . . , k. From our ordering, we shall see that G1, G2, and G3

are basic graphs, a vertex, a line, and a triangle respectively. Graph Gk+1 is
created from Gk by inserting the next vertex vk+1 in the canonical order. Before
we show the details of our algorithm we need several definitions. Following the
notation of [5], let w1 = v1, w2, . . . , wm = v2 be the vertices of the exterior face
Ck of graph Gk in order. For a particular subgraph Gk with k > 2 and vertex
vk+1, we refer to wl and wr as the leftmost and rightmost neighbors of vk+1 on
Ck, see Fig. 1. We also say that vk+1 dominates wi for l < i < r. That is these
vertices on Ck are no longer on Ck+1.

When referring to vertices and points, we often need to use the (current)
coordinates of the vertices and points on the grid. Let v(x) and v(y) represent
the x and y coordinates of some vertex v.

2.1 Vertex Regions

In the immediate vicinity of every vertex there are two types of regions: free
regions and port regions. The free and port regions alternate around the vertex,
see Fig. 2(a). For each free region there is at most one edge passing through it
to v. Each port region is bounded by a line segment with a number of ports and
every edge inside the port region passes through a unique port. The number of
ports in a port region is as small as possible. We define the six regions around v
based on rays extending at certain angles or slopes from v. For convenience, we
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Figure 1: Graph Gk+1 after inserting vk+1. The shaded part is Gk. Vertices
wl and wr are the leftmost and rightmost neighbors of vk+1. The horizontal
line segment below vk+1 is the middle port region through which all the edges
(vk+1, wi), l < i < r, are routed.

assume that 0◦ is pointing in the vertical direction. As illustrated in Figure 2(a),
the six regions around v are defined as follows:

• Free region Mf : between −45◦ and 45◦

• Free region Rf : between 90◦ and 135◦

• Free region Lf : between −135◦ and −90◦

• Port region Mp: between Lf and Rf

• Port region Lp: between Lf and Mf

• Port region Rp: between Rf and Mf

The algorithm draws each edge in E, except the initial edge (v1, v2), by
“routing” it through a port of one of the two vertices in a fashion similar to
Cheng et al [1]. Each edge consists of two connected edge segments. One edge
segment, the port edge segment, connects a vertex with one of its ports. The
other segment, the free edge segment, connects a vertex to one of its neighbor’s
ports. For example, for an edge e = (u, v), if we route e through the leftmost port
in u’s middle port region Mp, we would draw two line segments, see Fig. 2(b):
the port edge segment would pass from u to the port, and the free edge segment
would pass from the port to v. This method of construction guarantees that
the free edge segments always pass through free regions and that each port
transmits at most one port edge segment.

We perform our construction in incremental stages, where each stage corre-
sponds to the insertion of a new vertex. Observe that at each stage, for every
vertex v except those on the external face, w1 = v1, w2, . . . , wm = v2, there
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Figure 2: Vertex regions and edge routing: the number of ports along each port
region is determined by the number of edges that need to be routed through
that port region. (a) The area around a vertex v is divided into 6 regions. The
free regions are shaded and at most one free edge segment goes through each one
of them. All the port segments use ports in the port regions of v. (b) Routing
an edge e = (u, v), where the port edge segment connects u to one of its ports
and the free edge segment connects the port to v, going through one of v’s free
regions.

are exactly three free edge segments. The remaining edges are connected to v
via port segments. These remaining edges can be grouped into three classes
based on which port region they are routed through, Lp, Rp, or Mp. Count the
number of edges in each of these groups and let dl(v) be the number of port
edge segments using port region Lp. Similarly, define dr(v) and dm(v) to be the
number of port segments using port regions Rp and Mp. Observe that in the
final stage, there are exactly three vertices on the exterior face, v1, v2, vn, and
then

∑
v∈V (dl(v) + dr(v) + dm(v)) = |E| − 1. That is, for every edge, there is

a corresponding port and free edge segment, except for the edge (v1, v2). This
initial edge is only a single free (horizontal) edge segment. We could also, of
course, remove the port edge segments for the final external face as well and
thus the summation would be |E| − 3.

For a vertex v we define the maximal right port Rp
max as follows. Let v have

coordinates (vx, vy). Then the Rp
max of v has coordinates (vx + dr(v) + 1, vy +

dr(v)) if dr(v) > 0 and (vx, vy) otherwise. We define the maximal left port Lp
max

of v in a similar fashion, see Fig. 2(a).

2.2 Invariants of the CRA Algorithm

By design, our algorithm is incremental with n stages, where each stage cor-
responds to the insertion of the next vertex in the canonical order. Thus it is
natural to define several key invariants to be maintained at every stage. The
four invariants below are similar in flavor to those of Cheng et al [1] except that
here we do not need to maintain any joint boxes.
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1. All vertices and ports have integer coordinates.

2. Let w1 = v1, w2, . . . , wm = v2 be the vertices of the exterior face Ck of Gk

in order. Then w1(x) < w2(x) < . . . < wm(x).

3. The free edge segment of edge e = (wi, wi+1), 0 < i < m, has slope ±1
and e’s port edge segment goes through a maximal port.

4. For every vertex v there is at most one (free) edge segment crossing each
of its free regions. All other edge segments are port edge segments.

2.3 Vertex Shifting

In the algorithms that maintain good angular resolution with the aid of vertex
joint boxes [1, 7], every time a new vertex is inserted, already placed vertices
need to be shifted a great deal so that the joint box can fit amongst them.
The amount of shifting required is typically of the order of the degree of the
vertex. Invariably this leads to large constants behind the O(n) × O(n) area,
e.g. (20n−48)×(10n−24) in [7] and 30n×15n in [1]. In our algorithm we never
need to shift any vertex by more than five grid units allowing us to draw G in a
5n× 5n

2 grid. When a new vertex v is inserted, we must create enough space so
that the leftmost wl and rightmost wr neighbors of v can “see” v through their
respective maximal port regions. Note that the previous Rp

max port of wl and
Lp

max of wr were used at an earlier stage. Thus, we must create an additional
port along the Rp region of wl. Similarly, additional space is necessary along
the Lp region of wr.

In order to create more space we need to move wl and wr. We also have to
ensure that the four invariants and the planarity of the graph are maintained.
This is achieved by shifting the “shifting set” of the vertex as well as the vertex
itself. Using the definition of de Fraysseix et al [5], define the shifting set Mk(wi)
for a vertex wi on the external face of Gk to be a subset of the vertices of G
such that:

1. wj ∈ Mk(wi) iff j ≥ i

2. Mk(w1) ⊃ Mk(w2) ⊃ . . . ⊃ Mk(wm)

3. Let δ1, δ2, . . . , δm > 0; if we sequentially translate all vertices in Mk(wi)
by distance δi to the right (i = 1, 2, . . . ,m), then the embedding of Gk

remains planar.

These shifting sets can be defined recursively. Let wl and wr be the leftmost
and rightmost neighbors of v on Ck. Then construct Mk+1(wi) recursively as
follows:

Mk+1(wi) = Mk(wi) ∪ vk+1, for i ≤ l,

Mk+1(vk+1) = Mk(wl+1) ∪ vk+1,

Mk+1(wj) = Mk(wj), for j ≥ r.
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For convenience, define a right-shift of m units for a vertex wi as shifting
Mk(wi) by m units to the right so that all ports for every vertex in Mk(wi)
also shift except the ports in the Lp region of wi. Define a left-shift of m units
for vertex wi as shifting Mk(wi+1) by m units to the right so that all ports for
every vertex in Mk(wi+1) also shift including the ports in the Rp region of wi.

2.4 CRA Overview

The CRA algorithm constructs the graph one vertex at a time, by creating
the graphs G1, G2, . . . , Gn. Constructing Gi, 1 ≤ i ≤ 3 is straightforward (see
Figure 4(a)), so assume that Gk, for k ≥ 3, has been constructed with exterior
face Ck = (v1 = w1, w2, . . . , wm = v2). Suppose we have embedded Gk with
exterior face Ck. To construct Gk+1, let vk+1 be the next vertex in the canonical
ordering and recall that wl and wr are, respectively, the leftmost and rightmost
neighbors of vk+1 on the exterior face Ck.

Recall that dr(wl) is the current number of port edge segments using Rp of
wl, and that dl(wr) is the current number of port edge segments using Lp of
wr. There are two cases to consider:

• case (a) dr(wl) = 0, see Fig. 3(a).

• case (b) dr(wl) > 0, see Fig. 3(b).

In case (a) perform a left-shift of 2 units on wl in order to free space for a
port in the Rp region of wl. In case (b) perform a left-shift of 1 unit on wl.
Similarly, if dl(wr) = 0 then perform a right-shift of 2 units on wr. Otherwise
perform a right-shift of 1 unit on wr.

Insert vk+1 at the intersection of lines l and r, where l is the line with slope
+1 through wl’s maximal right port and r is the line with slope −1 through wr’s
maximal left port, see Fig. 1. In the case where lines l and r do not intersect
in a grid point it suffices to shift all the elements in Mk(wr) one additional unit
to the right.

The edges from vk+1 to wl and wr are routed through wl’s maximal right
port and wr’s maximal left port, respectively. The remaining edges go from
vk+1 to vertices wi, l < i < r.

Before placing the Mp region of vk+1 it is necessary to ensure that there are
enough ports on it that can be used to connect vk+1 to wl+1, wl+2, . . . , wr−1.
The Mp region is a horizontal line segment with 1, 3, . . . , 2m − 1 ports when
the line segment is respectively 1, 2, . . . , m grid units below vk+1. To allocate
enough space then we simply locate the horizontal line segment �(r− l)/2� units
below vk+1.

As shown in the next section the Mp region can be placed correctly, that
is, placed so that it does not lie below any of the vertices wi, l < i < r. We
now need to route the edges from vk+1 to wi. In the case where r− l is an even
amount there are exactly enough ports for each of the vertices, so the routing
is simple, the first (leftmost) port goes to wl+1 and the last (rightmost) port
to wr−1. If it is odd, there is one extra port. Ideally, we would simply skip
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Figure 3: Adding the current vertex vk+1. Here wl is the leftmost neighbor of
vk+1 on the exterior face of Gk. (a) If dr(wl) = 0, then we need to shift wl two
grid units to the left. (b) If dr(wl) > 0, then it suffices to shift wl only one unit
to the left. Note that the shifting set Mk(wl) also shifts with wl.

the rightmost (or leftmost) port. However, it is possible that this would force
the last edge (among others) to have the free edge segment be outside the valid
region. Therefore, we proceed as follows, assign leftmost port to wl+1, then
wl+2, and so on until either all are assigned or one vertex, wa, has a free edge
segment that is outside of the free region. We then assign ports from rightmost
port to wr−1, then wr−2, until wa is assigned. Note this is identical to simply
skipping one port and continuing left. In the next section, we shall show that
this correctly routes the edges. That is, all edges go through ports and the free
edge segments lie in free regions.

It is important to point out that in the interest of saving space, being as
compact as possible, we allow free edge segments to initially have length zero.
That is a vertex wi can actually lie on a port of another vertex v. This is not
a problem so long as the port is used only to route an edge between v and wi.
During shifting, the vertex and the port are treated separately. That is, they
are not necessarily confined to be in the same location. See Figure 4.

3 Correctness of the Algorithm

The algorithm works correctly if all four invariants are maintained. We show
that free edge segments always remain in free edge regions and that there is
at most one free edge segment per free region. We then need to bound the
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v2 v2v1

v3

v4

(a) (b) (c)

Figure 4: After initial settings of v1, v2, and v3, inserting v4 to share edges with
v2 and v3. (a) Initial configuration. Notice that v3 lies on both Rp

max of v1 and
Lp

max of v2. (b) Shifting vertex v2 one unit to the right. The shaded region
indicates the Lp region of v2. Notice that v2’s port did not move but a new port
was inserted above it, the new Lp

max of v2. (c) Shifting vertex v3 two units to
the left. The shaded region indicates the Rp region of v3. Notice that v2’s port
did not move and so now v3 does not overlap that port though it still overlaps
v1’s port. The new vertex v4 is placed at the intersection of the diagonals from
v3’s Rp

max port and v2’s Lp
max port. In this case, they are the same point and

once again v4 overlaps both maximal ports.

drawing area required by the algorithm and show that good angular resolution
is maintained. Finally, we have to bound the number of bends created and
analyze the running time.

Lemma 1 If a free edge segment lies in a free region in Gk, then it remains in
the free region in Gk+1.

Proof: The initial edge (v1, v2) is treated as a special edge. It is a free edge
segment that is not connected to any ports. As the vertices shift this edge
remains horizontal and thus remains inside its free regions. It can also be seen
that the lemma holds from G2 to G3.

For k ≥ 3, we must consider how a free edge segment could “move”. When
inserting vertex vk+1, the graph Gk changes by performing shifts (right or left
shifts). These shifts move vertices and ports and possibly cause edge segments
to change slope. Let e be a free edge segment in Gk which connects two vertices
w and v via one of w’s port regions. The slope of e determines whether e lies
inside a free region of v or not. Therefore, we need to prove that upon shifting
either the slope of e does not change or that the change does not allow e to
leave the free region.

There are a few important points to remember about shifting before we
proceed with the proof. First, shifting is only done with the shifting sets of
vertices on Ck and for any such operation, all vertices and ports which move
are shifted the same amount. In addition, all ports are shifted along with their
respective vertices except for certain ports belonging to vertices on Ck. Second,
if a vertex w ∈ Gk is not in Ck then it must have been previously dominated
by another vertex vk′ , k′ ≤ k. At that time, w is added to the shifting set of
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Mk′(vk′). From the recursive construction of the shifting sets, for all k ≥ k′ and
any vertex wi ∈ Ck, vk′ ∈ Mk(wi) if and only if w ∈ Mk(wi). That is, vk′ shifts
if and only if w shifts.

Recall that there are three types of free regions: Mf , Lf , Rf . Let us first
assume that e lies in the Mf region of v. Edge segments in the Mf regions are
created by a vertex w dominating another vertex v. But from the arguments
above, v must then belong to the shifting set of w and so both v and w are
always shifted together. Since e connects to w’s Mp region, the port always
shifts with v and w. Therefore, the slope of e cannot change and it must remain
in Mf .

As the two remaining cases are symmetric to each other, without loss of
generality, let us now assume that e lies in the Lf region of v. This implies that
the slope of e is between 0 and +1. Edges lying in the Lf region are created
by neighboring vertices on some prior external face. That is, at some previous
stage k′ ≤ k, we connected vk′ = v and w = wl ∈ Ck′ . In this situation, e
is routed from a port in Rp of wl to vk′ . If we define vk′ , wl, wr in the usual
manner, for all k ≥ k′ and all w ∈ Ck, if wl ∈ Mk(w) then vk′ ∈ Mk(w). That
is, if wl shifts then so must vk′ . Note that vk′ can shift without wl shifting. As
for wl’s Rp region, it is possible that the port region shifts without wl but only
on a left shift of wl. In this case, vk′ again still shifts with the Rp region of
wl. Therefore, shifting affects the slope of e only if vk′ shifts and wl’s Rp region
does not. Since vk′ moves farther away from wl’s port region, the slope of e
becomes more horizontal (approaches 0). Consequently, e still remains within
the Lf region of v.

In order to prove our next main lemma (Lemma 3) we need to present a few
smaller issues describing the relationship between the vertices and the lines of
slope ±1. Each of these lemmas relies on the fact that Gk maintains the key
invariants as described in Section 2.2.

Definition 1 Let v be a vertex in Gk. Define v+ (respectively) v−) to be the
line of slope +1 (resp. -1) passing through v.

Property 1 Suppose we are given a graph Gk maintaining the key invariants.
For any wi ∈ Ck, the region above wi and between w+ and w− is empty of any
vertices in Gk.

Note, this property comes directly from the fact that the external face has
free edge segments of slope ±1 and that x(w1) < x(w2) < . . . < x(wm). See
Figure 1.

Lemma 2 Suppose we are given a graph Gk maintaining the key invariants.
For any wi, wj ∈ Ck and i ≤ j, let pi and pj be any two points on w+

i and w+
j

such that pi(y) = pj(y). Then pj(x) − pi(x) ≥ j − i. By symmetry, if we use
w−

i and w−
j , then we still have pj(x) − pi(x) ≥ j − i.

Proof: See Figure 5 for a simple example. We shall prove this lemma induc-
tively. It is certainly true for the case when i = j. So, let us assume the lemma
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v2 = w4v1 = w1

(b)

p1 p3

v4 = w3

v3 = w2

v2 = w4v1 = w1

(a)

p1 p3

v3 = w2

v4 = w3

Figure 5: A simple example between two vertices on Ck, w1 and w3. (a) Points
p1 and p3 are on w+

1 and w+
3 respectively. Notice that p3(x)−p1(x) = 2 = 3−1.

(b) Same scenario except now points are on w−
1 and w−

3 .

wi

(a)

wi+1

wi+1

wi

(b)

Figure 6: Notice the relationship between wi, wi+1, and their respective lines
of slope +1 when wi+1 is (a) increasing and (b) decreasing.

holds for all j′ < j. There are two possibilities for wj , either wj(y) > wj−1(y),
increasing along the external face, or wj(y) < wj−1(y), decreasing along the
external face. In the first case, recall that the port edge segment connecting
wj to wj−1 must go through the Rp

max of wj−1. Therefore, w+
j is shifted over

one unit and hence pj(x) − pj−1(x) = 1. In the second case, the connection is
through the Lp

max of wj and therefore pj(x) − pj−1(x) ≥ 3. See Figure 6. From
our assumption then, we have

pj(x) − pi(x) = (pj(x) − pj−1(x)) + (pj−1(x) − pi(x)) ≥ 1 + (j − 1 − i) = j − i.

To see the symmetric argument, notice that if we flip the graph about the y-axis,
we have the same problem.

Corollary 1 Suppose we are given a graph Gk maintaining the key invariants.
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p

pj

wj

wa

wi

pi

Figure 7: The intersection, p, of w+
i and w−

j and its relationship with some wa

between wi and wj . Notice the distances between pi(x), pj(x), and wa(x).

For any wi, wj ∈ Ck and i ≤ j, let p be the intersection of w+
i and w−

j . Then
p(y) ≥ maxi≤a≤j(wa(y)) + (j − i)/2.

Proof: Let wa be any vertex with i ≤ a ≤ j. Let pi and pj be any two points
on w+

i and w−
j such that pi(y) = pj(y) = wa(y). That is, we are looking at

points on the horizontal line passing through wa. For notation, let pa = wa

which by definition is on both w+
a and w−

a .
Since pi and pj satisfy the assumptions of Lemma 2, we can see that pj(x)−

pi(x) ≥ j−i. Let us now look at p, the intersection of w+
i and w−

j . See Figure 7.
From the above inequality and the fact that pi(y) = pj(y) = wa(y) we have

p(y) = pi(y) + (pj(x) − pi(x))/2 ≥ wa(y) + (j − i)/2.

Therefore, the corollary holds for the maximum of all wa(y).

Lemma 3 Every free edge segment passes through a free region which contains
no other edges.

Proof: From Lemma 1, we know that once a free edge segment lies within a
free region it remains inside. Therefore, we only need to be concerned about
ensuring that free edge segments are initially routed through a free region. This,
of course, happens only with edges extending from a new vertex v = vk+1.

For k ≥ 2, when v is inserted there are two types of new edges added: the
outside edges between v and the outside neighbors, wl and wr, and the inside
edges between v and the inside neighbors wi where l < i < r. In both cases the
new edge is routed through a port creating one free edge segment and one port
edge segment. A free edge segment of an outside edge has slope either +1 or
−1 by construction; therefore it lies inside the free regions Lf and Rf of vertex
v. Since v is a new vertex, there are no other segments inside these two free
regions.

Dealing with the inside edges is more complex. We first need to show that
there is sufficient space between the vertices on the exterior face of Gk and the
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new vertex v. Second, we need to show that v has enough ports in its middle
port region Mp for each of the vertices on Gk that it is connected to. Third, we
need to show that the free edge segments of the inside edges initially lie inside
their respective free regions. We shall show that for every inside neighbor wi,
l < i < r,

• vertex wi lies on or below Mp, the middle port region for v, and

• we can assign a unique port along the Mp port region of v, such that the
edge segment connecting wi to that port fits inside wi’s middle free region
Mf

The first part is fairly easy, we chose the middle port region Mp to be
�(r − l)/2� units below v. That is, the y-coordinate of Mp is v(y)− �(r − l)/2�.
Recall that when inserting v, it is placed at the intersection p of w+

l and w−
r ,

unless such an intersection is not on a grid point, in which case wl is shifted left
one unit to place p on a grid point. Note that in actuality, wl and wr are also
shifted one or two units to make the connection fall on a port but the end result
is that v is located at the intersection of w+

l and w−
r prior to shifting. From

Corollary 1, then we know that v(y) = p(y) ≥ maxl≤a≤r(wa(y)) + (r− l)/2 and
it follows that all inside neighbors wi, l < i < r, lie completely below (or on)
the Mp port region. Note that it is only possible for one inside neighbor wa

(the maximum vertex) to actually lie directly on the port region.
We now show that our assignment strategy from Section 2.4 properly routes

edges through free regions. First note that if r− l is even, then there are exactly
r − l − 1 ports on Mp and if it is odd there are exactly r − l ports. As there
are two cases, let us look at the odd case, which has one “extra” port and is a
bit trickier to prove. The other case follows a nearly identical (though simpler)
argument. The assignment is done in two phases, a left to right assignment,
wl+1, wl+2, . . . , wa−1, for some vertex wa followed by a right to left assignment,
wr−1, wr−2, . . . wa. The vertex wa is defined to be the first time in the left to
right assignment where the free edge segment in the routing would lie outside
the free region. We call this the skip vertex because it essentially skips one port.
Since there are exactly r − l ports for r − l − 1 vertices, there can only be one
possible “skip”.

Let wi be one of the vertices routed. If i < a, the edge e connecting wi to
v is routed through the (i − l)th port, pi. Otherwise, e is routed through the
(i− l+1)th port. Let pl be the intersection of w+

l with the port region. And, let
pr be the intersection of w−

r with the port region. Then we know that if i < a,

pi(x) − pl(x) = i − l (1)
pr(x) − pi(x) = r − i + 1

where the +1 term comes because r − l is odd. If i ≥ a,

pi(x) − pl(x) = i − l + 1 (2)
pr(x) − pi(x) = r − i.
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The free edge segment of e lies in a free region only if its slope is between −1
and +1. If we let p+

i and p−i be the intersection of w+
i and w−

i with the port
region, then e’s free edge segment is in a free region if and only if pi(x) lies on
or between p+

i (x) and p−i (x). Applying Lemma 2, we know

p+
i (x) − pl(x) ≥ i − l, and (3)

pr(x) − p−i (x) ≥ r − i. (4)

Because wi lies on or below the port region, we know that

p+
i (x) ≥ p−i (x) (5)

Given that wa is the first vertex which lies outside of the free region in the
first phase, we know that, if i < a, wi’s edge segment must lie in a free region.
Let us then look at the case where i = a. Combining Equations (2), (3), and
( 4), we see that

p+
a (x) − pl(x) ≥ a − l

= pa(x) − pl(x) − 1 ⇒
p+

a (x) + 1 ≥ pa(x)
pr(x) − p−a (x) ≥ r − a

= pr(x) − pa(x) ⇒
pa(x) ≥ p−a (x).
p−a (x) ≤ pa(x) ≤ p+

a (x) + 1 (6)

Notice that pa(x) is (on or) between p−a (x) and p+
a (x) except for the case when

p+
a (x) + 1 = pa(x), i.e. pa lies one unit to the left of p+

a .
So, let us assume that pa does not lie (on or) between the two slopes. There-

fore, p+
a (x)+1 = pa(x). Now, since wa is the skip vertex we know that the port

q lying just to the left of pa is free. Since pa(x) = q(x) + 1, we substitute in to
Equation (6) yielding

p−a (x) − 1 ≤ q(x) ≤ p+
a (x). (7)

But, q was not a valid port so it must not lie (on or) between w− and w+.
The only possibility is that q(x) = p−a (x) − 1 which implies that p+

a (x) + 1 =
pa(x) = q(x)+1 = p−a (x). This in turn immediately implies that p+

a (x) < p−a (x)
which contradicts Equation (5). Hence, pa must lie between w−

a and w+
a , more

precisely,
p−a (x) ≤ pa(x) ≤ p+

a (x). (8)

Let us now look at the case where i > a. Observe that since the ports are as-
signed consecutively pi(x)−pa(x) = i−a. Applying Lemma 2 and Equation (8),
for wa and wi, we see that

p+
i (x) − p+

a (x) ≥ i − a

= pi(x) − pa(x)
≥ pi(x) − p+

a (x) ⇒
p+

i (x) ≥ pi(x). (9)
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Applying Equations (2) and (4), we see that

pr(x) − p−i (x) ≥ r − i

= pr(x) − pi(x) ⇒
pi(x) ≥ p−i (x).

Therefore pi lies between w−
i and w+

i and the edge to wi is properly routed.
The argument for the case when r − l is even is identical except one does

not have to deal with the issue of a skip vertex. Therefore, we know that all
free edge segments are properly routed through free regions.

Lemma 4 If Gk maintains invariants one through four, then Gk+1 maintains
invariants one through four.

Proof: By definition of the shifting set, invariants one and two hold, see [7]. By
construction of the algorithm, invariant three holds as well. Also by construction
every edge, except (v1, v2), inserted has a port edge segment and a free edge
segment. By lemmas 1 and 3 invariant four also holds.

Lemma 5 The angular resolution for vertex v ∈ G as produced by the algorithm
is 1/2d(v), where d(v) is the degree of vertex v.

Proof: The worst angle is achieved between a free edge segment for some edge
f and a port edge segment for some edge e, where f is located at the boundary
of its free region and e is the neighboring port edge segment. There are six
possible cases but the argument is the same for all of them, so without loss of
generality consider the case in Fig. 8. Let v be the vertex and d(v) = d be its
degree. Also let s and t be the lengths as shown in Fig. 8. Let θ be the angle
between f and e, and x the number of ports as shown in the figure. Note that
all vertices have at least one edge connected to them via free edge segments.1

So, the number of ports, x, in any port region is at most d−1. From the figure,
observe that tan(θ) = t/(s − t) and hence arctan(t/(s − t)) = θ. But

t

s − t
=

√
2/2√

2(x + 1) −√
2/2

=
1

2x + 1

Using the Maclaurin expansion for arctan(y), where y < 1 we have

arctan(y) = y−y3/3+y5/5−... > y−y3/3 > y−y2/(y+1) = y/(y+1) = 1/(1+1/y)

Here, the last inequality comes from the fact that for 0 < y < 1, y3/3 <
y3/(y +1) < y2/(y +1). Since 0 < x ≤ d− 1 and 0 < 1/(2x+1) < 1, this yields

θ = arctan(1/(2x + 1)) > 1/(1 + 2x + 1) = 1/(2x + 2) ≥ 1/2d.

Therefore, the angular resolution is strictly greater than 1/2d.

1In fact, all but the three external vertices have three free edge segments connected to
them and it is a simple matter to make the external vertices have two free edge segments
connected to them.
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x

et

v

x + 1

s
θ

f

Figure 8: The minimum angle between two edges adjacent to vertex v is pro-
portional to the degree d of the vertex. Using our algorithm the angle cannot
be smaller than 1/2d.

Theorem 1 For a given planar graph G, the algorithm produces in O(n) time a
planar embedding with grid size 5n×5n/2, using at most one bend. The angular
resolution for every vertex v of G is 1/2d(v).

Proof: Since every edge has only two segments, there can be at most one bend
per edge. Chrobak and Payne [2] show how to implement the algorithm of De
Fraysseix, et al. [5] in linear time. Their approach can be easily extended to our
algorithm. By invariants three and four and by lemma 5 the angular resolution
is at most 1/2d(v).

It remains to show that the drawings produced by the algorithm fit on the
5n × 5n/2 grid. Every time we insert a vertex vk, we increase the grid size by
at most 5 units, which implies that the width of the drawing is at most 5n. The
final drawing fits inside an isosceles triangle with sides of slope 0,+1,−1. The
width of the base is 5n and so the height is less than 5n/2.

4 The PRA Algorithm

In this section, we introduce a novel approach to represent bends and vertices.
Rather than insisting that bends lie on integer grid coordinates, we propose an
alternative approach which allows bends to be located on a grid represented
by polar coordinates. Using a polar representation allows us to independently
control the grid size and edge bend positions. We begin by considering the polar
representation in general and then present the PRA algorithm that uses the new
approach.

A point p in the polar grid system is represented by a set of integers. For the
vertices we only need two integers (px, py). For the bend-points we may need
up to five integers. We shall see in the PRA algorithm that these five integers
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(b)(a)

αwl

h
r

wl

α
2

x

45◦

Figure 9: Vertex wl is the left-most neighbor of the next vertex vk+1 along the
exterior face of Gk. The dr(wl) ports of wl are evenly spaced on the arc of a
circle of radius 2dr(wl) bounded by the middle free region Mf and the right
free region Rf . (a) An example of the layout for the Rp region with dr(wl) = 3.
(b) The distance x between two adjacent ports or a port and an adjacent free
region can be computed given the radius of the circle and the angle between the
edges connecting the ports to wl: x = 2r sin α

2 .

need not be explicitly stored for every bend-point. In general, a bend-point is
given by:

• (px, py), the origin of the polar system

• pr, the radius of the circle around the origin (px, py)

• pd and pn, the angle (pθ) of the circle where the point is located, i.e.,
pθ = 2πpn/pd. For convenience, we consider pθ = 0 to be the vertical
direction.

The PRA algorithm places vertices at integer grid coordinates, thus guar-
anteeing unit vertex resolution. As it is based on the CRA algorithm it also
uses only 1 bend per edge. The main difference in the two algorithms is in
the placement of the bend-points. In the PRA algorithm, bend-points will be
placed on a circle around the vertex (rather than on a straight-line segment).
Therefore, the origin, (px, py) for each bend-point need not be explicitly stored
– it suffices to store the origin of the vertex that the bend-point is associated
with. Similarly, groups of bend-points around a given vertex will have the same
radius and hence each of the bend-points need not explicitly store pr. Since the
points will be evenly spaced in a port region, the values for pθ need also not be
explicitly stored for each bend-point.

Consider the leftmost neighbor, wl, of the next vertex in the canonical order,
vk+1. The ports are evenly spaced in the Rp region for wl, Fig. 9(a). The
length of the straight-line segment separating two bend-points or a bend-point
and an adjacent free region can be computed as follows. Consider the example
in Fig. 9(b). We would like to compute the length x in terms of the radius of
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the circle and the angle between the two line segments connecting consecutive
ports to wl. From basic trigonometry, the angle between h and x is α/2. We
can express h in terms of r and α: h/r = sin α and we can express x in terms
of h and α: h/x = cos α/2. Combining the two expressions we obtain

x =
h

cos α
2

=
r sin α

cos α
2

=
2r sin α

2 cos α
2

cos α
2

= 2r sin
α

2
.

Assume we have inserted v1, v2, . . . , vk and have a drawing of Gk with ex-
terior face Ck. Consider inserting the next vertex vk+1 in the canonical order.
Let wl and wr be the leftmost and rightmost neighbors of vk+1 on the exterior
face Ck. Define fb and fe to be the bend-point resolution and edge separation
respectively. Observe that in the standard Cartesian representation algorithms
fb = 1 and fe =

√
2/2. Let dr(wl), respectively dl(wr), be the number of port

edge segments using Rp of wl, respectively Lp of wr. When inserting vk+1,
the degrees for wl and wr affect the amount of shifting necessary to ensure
proper resolution. As the cases for dr(wl) and dl(wr) are symmetrical, we shall
concentrate on dr(wl). There are two cases to consider:

• case (a) dr(wl) = 0 prior to insertion

• case (b) dr(wl) ≥ 1 prior to insertion

In case (a) we insert the first edge in the port region Rp between the two
free regions Rf and Mf of wl. We place the port in the middle of the arc of
a circle connecting Rf and Mf . Since there are no other bends yet in Rp we
are only concerned with maintaining the edge separation. We need to place the
port sufficiently away from the vertex wl. Consider the relationship between
the radius of the circle and the edge separation, see Fig. 9.

The edge separation fe = x = 2r sin α
2 . But since there is only one port and

it is in the middle of the arc, α = π/8. We are interested in the radius necessary
to achieve the edge separation fe which is given by

r =
fe

2 sin α
2

=
fe

2 sin π
16

<
4fe√

2
= 2

√
2fe.

Since we maintain that the vertices are at integer coordinates and the radii
are also integers, then the minimum radius required in case (a) is

r < �2
√

2fe�.

In case (b) we insert an additional port in the port region Rp which already
has at least one port. In this case, we must ensure that both the edge separation
fe and bend-point resolution fb are preserved. In this case the radius required
is given by:

max {� fe

2 sin π
8(dr(wl)+1)

�, � fb

2 sin π
8(dr(wl)+1)

�}.
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Algorithm fv fb fe drawing area resolution
CRA 1 1

√
2/2 5n × 5n/2 1/2d(v)

PRA1 1 1
√

2/2 9n × 9n/2 π/4d(v)
PRA2 1 1/2 1/2 7n × 7n/2 π/4d(v)

Table 1: Fixing specific values for the vertex resolution fv, bend-point resolution
fb, and edge separation fe allows us to compare the PRA and CRA algorithms.

Typically, fb ≥ fe, so we can assume that the bend-point resolution deter-
mines the radius in case (b). Using this together with the fact that sinα > 0.97α
for α < π/8, the minimum radius required is

r < � fb

2 sin π
8(dr(wl)+1)

� < �
√

2fb(dr(wl) + 1)�

Summing over all vertices in the graph, the sum of the radii used for the
right port regions, R, yields:

R =
∑

vi∈V :dr(vi)=1

�2
√

2fe� +
∑

vi∈V :dr(vi)>1

�
√

2fb(dr(vi) + 1)�. (10)

With R we bounded the number of shifts required because of “right” neigh-
bors. Similarly, we can define L, the shifts necessary due to “left” neighbors:

L =
∑

vi∈V :dl(vi)=1

�2
√

2fe� +
∑

vi∈V :dl(vi)>1

�
√

2fb(dl(vi) + 1)�. (11)

L and R bound the number of shifts required due to left and right neighbor
visibility. Note, however, that if we shift by the minimum amount required by
the fe and fb parameters, the location of the next vertex vk+1 may not be at
integer coordinates. We can guarantee that vk+1 is placed on the integer grid
by performing some additional shifts. By shifting at most 3 more units, we are
guaranteed to find an integer location for vk+1. Then the total shifting required
is at most L+R+3n. Since the final drawing fits inside an isosceles right-angle
triangle, the total area required for the drawing is (L + R + 3n) × (L+R+3n

2 ).
In order to compare the PRA algorithm to the CRA algorithm, we evaluate

equations 11 and 10 using two sets of parameters, Table 1. In all three cases the
algorithms guarantee at most one bend per edge. The PRA algorithms place all
the vertices on grid points and each bend-point is determined by at most five
integer polar coordinates.

5 Conclusion and Open Problems

In this paper we present two algorithms for drawing planar graphs with good
angular resolution while maintaining small drawing area. Other drawing cri-
teria optimized by the algorithms include number of bends, vertex resolution,
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(a) (b) (c)

Figure 10: A graph with 11 vertices drawn using (a) the canonical ordering
on the 10 × 19 grid; (b) the CRA algorithm on the 14 × 29 grid; (c) the PRA
algorithm on the 23 × 45 grid.

bend-point resolution, and edge separation. The first algorithm, CRA, is a
traditional algorithm in which vertices and bend-points are represented using
Cartesian coordinates. It improves on the best known simultaneous bounds for
the six drawing criteria. In the PRA algorithm vertices and bend-points are
represented using polar coordinates. It is based on the CRA algorithm but
allows for independent control over the grid size and bend positions.

Using a polar coordinate representation yields slightly worse area bounds
compared to the CRA algorithm, see Fig 10 and Fig. 11. We believe, however,
that the PRA approach is more promising. The angular resolution of the PRA
algorithm is better and it provides greater control over the drawing process.

The PRA bounds presented in this paper can be further improved. Using
two integers to represent the radius (similar to the way the angles are currently
represented) will most likely result in smaller drawing area. Our current esti-
mates indicate that certain (small) values of edge separation and bend-point
resolution yield grids of size 4n× 2n. It is likely that when using only one bend
per edge, the best angular resolution will be achieved for vertex regions in which
each of the port and free regions have angles π/3 rather than a combination of
π/4 and π/2. The biggest challenge, however, to the success of the PRA algo-
rithm deals with the three potential shifts needed to align a new vertex onto an
integer grid. If we can reduce this bottleneck, we feel that the PRA algorithm
can significantly surpass the bounds of the CRA algorithm.

(a) (b) (c)

Figure 11: A graph with 17 vertices drawn using (a) the canonical ordering
on the 16 × 31 grid; (b) the CRA algorithm on the 21 × 41 grid; (c) the PRA
algorithm on the 43 × 85 grid.
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