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Abstract

We consider the problem of representing size information in the edges
and vertices of a planar graph. Such information can be used, for example,
to depict a network of computers and information traveling through the
network. We present an efficient linear-time algorithm which draws edges
and vertices of varying 2-dimensional areas to represent the amount of
information flowing through them. The algorithm avoids all occlusions of
nodes and edges, while still drawing the graph on a compact integer grid.
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1 Introduction

An important goal of information visualization is presenting information hidden
in the structure of a graph to a human viewer in the clearest way possible. Most
graph drawing algorithms fulfill this by making visually pleasing drawings that
minimize the number of crossings, condense the area, ensure approximately uni-
form edge lengths, and optimize for many other aesthetics [5]. Without these
techniques, the graph may appear “cluttered” and confusing, and difficult to
study for a human. Nevertheless, in addition to being aesthetically pleasing, a
graph drawing may need to convey additional information beyond connectivity
of nodes. In the world of computer science and mathematics, “graphs” are de-
velopment processes, computer networks, or many other things. In the example
of a network, it is often useful to know the amount of traffic traveling across
each edge and through each node, in order to visualize network problems like
imbalances or Denial-of-Service attacks. Commonly-used graph-drawing algo-
rithms do not handle this sort of additional information and do not have any
method for displaying it.

A simple solution that maintains the current drawing of a graph is to label
each edge (or node) with a number corresponding to the volume of information
passing through (or being generated by or received by) it. Although technically
this is a display of the information, it is nevertheless not fully using the visual
element of the display. For example, a user would need to individually examine
each edge and its label just to select the maximum. Therefore, we believe that
visualizing traffic in a network requires that we modify the representation of the
nodes and edges to best indicate levels of that traffic.

Before we describe our approach, we would like to first mention some trivial
solutions that would require little modification to existing techniques. It would
be fairly easy, for example, to simply send animated pulses along an edge with
density or rate proportional to the data flow. All we need in this case is space
for the pulses to be drawn (since, if edges were too close together, their pulses
might be indistinguishable). Nevertheless, this solution does not differentiate
volume well (as short high-volume edges might get missed), it requires a dynamic
display, and it is potentially confusing.

Another approach that requires a few algorithmic modifications is introduc-
ing a chromatic variation in the edges, similar to that used by weather forecasters
in Doppler radar images. The two possible implementations of this involve using
several distinct color levels and a corresponding key (which does not allow for
much variation), or a continuous spectrum of colors. But edges in most graph
drawings are thin, and it is not easy to compare two different edges in the con-
tinuous scale (particularly for those who are color-blind or color-deficient, which
means 8% of all men).

Instead, the approach we advocate in this paper is to differentiate between
nodes and edges of varying volume by drawing them in different sizes, possibly
augmenting such a display with labels if exact values are needed. This approach
is inspired by Minard’s classic graphic of the march of Napoleon’s army in
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Figure 1: Image taken from Tufte [17], showing the movements of Napoleon’s
army in Russia. Edge widths depict army strength, with exact values labeling
most edges. Note that this graph has four degree-three vertices and at least 32
edges. Also, two shades are used, with retreating armies shown with solid black
edges.

Russia [17, p. 41]1 (see Figure 1), which geometrically illustrates the army’s
movements while using edge widths to depict its strength. Among the benefits
of width-based drawings is the fact that they easily separate low- and high-
volume nodes and edges, and that they can be depicted on any medium. There
is a challenge when using width to represent edge and vertex weights, however,
in that increasing edge and vertex sizes introduces the possibility of occlusion of
vertices or edges. Such occlusion considerations are not present in other graph
drawing problems, which usually consider vertices and edges to be drawn as
points and curves, respectively. When we allow vertices and edges to take on
a significant two-dimensional area, especially if they are large enough to stand
out, then they may obscure each other, which is unacceptable. We therefore
need algorithms for drawing graphs with wide edges and large vertices that
avoid edge and vertex occlusions.

1.1 Standard Approaches and Previous Related Work

One way to avoid occlusions when introducing vertex and edge width is to
ensure a sufficiently large edge separation and a bounded angular resolution
around vertices. Then, one can scale up the entire drawing and increase the

1Attributed to E.J. Marey, La Méthode Graphique (Paris, 1885), p. 73.
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width of weighted vertices and edges as a proportional fraction of this factor.
The easiest approach to performing this scaling is to define a parameter w as the
maximum width of any edge, and expand the drawing output from a bounded-
angular resolution algorithm to ensure an edge separation of at least w + 1.
Then edges can be drawn at a weighted proportion of the maximum width
w. The problem with this approach is that it produces a drawing with area
Θ(Aw2), where A is the original (unweighted) drawing area. We would prefer a
method without such a quadratic blow-up in area. Note, in addition, that the
overall width and height of a drawing made according to this method would be
a multiplicative factor of w + 1 times the width and height of the drawing with
an edge separation of 1. Thus, when such a drawing is compressed to fit on a
standard display device, the result would be the same as if we took the original
algorithm and simply drew the edges wider within the space already allotted to
them (up to a width of w/(w + 1)), since it would be compressed w + 1 times
as much in height and width. Ideally, we would like a weighted graph-drawing
algorithm that “shifts” edges and vertices around to make room for edges and
vertices of larger widths.

The aesthetics of bounded angular resolution and edge separation have been
studied by several researchers (see, e.g., [2, 8, 10, 11, 12, 13, 14, 16]). One
significant early result is by Malitz and Papakostas [16], who prove that a tradi-
tional straight-line drawing of a planar graph with bounded angular resolution
can require area exponential in the complexity of the graph. Goodrich and
Wagner [12] describe an algorithm for computing a straight-line drawing of a
planar graph on n vertices with at most two bends per edge on an integer grid
in O(n2) area with an asymptotically optimal angular resolution upper bound.
An improvement to this, by Cheng et al. [2], reduces the maximum to one bend
per edge, but the constants in the area bound increase slightly. Both algorithms
are based on a classic algorithm by de Fraysseix, Pach, and Pollack [9], which
introduces the “canonical ordering” for drawing vertices of a planar graph used
in [2, 12] and elsewhere. Their original algorithm produces a planar straight-
line drawing of the graph in an O(n) × O(n) area, but does not bound angular
resolution.

A few works dealt with compaction of graphs with vertices of prescribed
sizes; see, e.g., [4, 7, 15]. The only work on drawing graphs with “fat” edges,
of which we are aware, is that of Duncan et al. [6]. This work describes a
polynomial-time algorithm for computing, given a graph layout, the thickest
possible edges of the graph.

1.2 Our Results

1.2.1 Objective

In this paper we present an algorithm to draw a maximally-planar graph with
a given set of edge traffic volumes. The resulting graph fits in an O(n + C) ×
O(n + C) integer grid (C is the total cost of the network, defined below), with
vertices centered at grid points. The algorithm draws nodes as solid diamonds,
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but other shapes such as circles could also be used. Edges are drawn as “pipes”
of varying size with a minimum separation of one unit at the base of each edge.
There are no bends in the drawing, though edges can leave nodes at various
angles. The drawing contains no edge crossings or occlusions of nodes or edges.

1.2.2 Results

One of the main advantages of our algorithm is that it benefits from the disparity
between low and high volume levels in the weights of different edges and nodes.
Intuitively, our algorithm uses this disparity to take up less space for drawing
edges and nodes, when possible. As the upper limit for the traffic on an edge,
we use the capacity of that edge, and we upper bound the sum of the capacities
of adjacent edges as the capacity of a node. We assume that traffic information
is supplied as a normalized list of edge thicknesses in the range [0..w], for some
parameter w (an edge of width 0 would be considered to have been added
to make the graph maximally planar and would not be included in the final
drawing). For the graph layout, we consider edge weights to be integers, though
in the rendering stage edges can easily be drawn with noninteger width within
the integer space allocated to them (and in fact can be drawn with dynamic
values changing over time, as long as they are less than the capacity). Denote
the degree of a node v by d(v). Define the thickness or cost of an edge e to be
c(e), and the size or weight of a node v to be w(v) = Σc(e) for all edges adjacent
to v. We assign cost 0 to edges added to the given graph in order to augment it
to a maximally-planar graph. Let C = Σec(e) be the total cost of the network.
As mentioned above, our algorithm draws a weighted planar graph with edge-
and vertex-widths proportional to their weights in an O(n + C) × O(n + C)
integer grid. Thus, the total area is O(n2 + C2). Note that if w denotes the
maximum width of an edge in a given graph G, then the area of our drawing of
G is never more than O(n2w2), since C is O(nw) in a planar graph. Moreover,
the area of one of our drawings can be significantly below the corresponding
O(n2w2) upper bound for the naive approach. For example, if C is O(w), then
the area of our drawing is O(n2 + w2), and even if C is O(n + wn0.5), then the
area is still at most O(n2 + nw2).

1.2.3 Extensions

Our algorithm supports only planar graphs, which prevents us from directly
applying it to many graphs derived from real-world processes. It is not possible
to achieve our strict goals with nonplanar graphs, as some edges must cross (and
thus one must be occluded). We can extend our model to support occlusions for
the purposes of edge crossings and then can consider extensions of our algorithm
that allow these but prevent all other node and edge occlusions. Since the
canonical ordering that underlies our algorithm requires a maximally-planar
graph, we cannot use these techniques without first using planarization. One
obvious planarization technique is continually removing edges until the graph
is planar and then reinserting the edges after the completion of the algorithm.
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However, this is insufficient since it is not possible, in general, to ensure that the
reinsertion of the additional edges will not cause unnecessary occlusions. Adding
dummy vertices to the graph to represent edge intersections would avoid this
issue, though this would create bends in the edges (since the dummy vertices
would not be drawn).

It is likely that the extension of the canonical ordering of de Fraysseix et al. [9]
presented by Kant [13] (which assumes that the input graph is triconnected
rather than maximally planar) could be used with our algorithm. For sparse
graphs, this could allow some improvement in the visual appeal of the final
drawing, since fewer edges would need to be added. Too many such edges can
cause large gaps in the final drawing when they are removed.

2 The Algorithm

Suppose we are given a maximally-planar graph G with n vertices and integer
weights in the range [0, w] assigned to its edges. Our algorithm for drawing
G is as follows. Order the vertices of a maximally-planar graph v1, v2, . . . , vn

according to their canonical ordering [9]. The following are then satisfied, for
all k ≥ 3:

1. For the graph Gk restricted to the first k vertices in the canonical order-
ing, Gk is biconnected (internally triconnected), and the cycle Ck of the
external vertices of Gk contains (v1, v2).

2. The vertex vk+1 is in the exterior face of Gk+1 and has at least two neigh-
bors in Gk, all of which are consecutive on (Ck − (v1, v2)). These are the
only neighbors of vk+1 in Gk.

Such an ordering exists for every maximally-planar graph and can be con-
structed in linear time (see, e.g., [3, 9]). Figure 2 shows a sample graph with
the canonical ordering of its vertices.

Let us define a structure called a hub around each vertex (see Figure 3). This
is a diamond-shaped area with corners w(v) + d(v) unit spaces above, below,
left, and right of the vertex, similar to the join box of [12]. The diagonal of each
unit square along the perimeter of the hub (see Figure 4) is called a slot, and a
collection of sequential slots used by a single edge is called a port. At insertion
time each edge is allocated a port containing one slot per unit cost (if zero-cost
edges are allowed, then the edge is drawn at the boundary between two slots),
leaving a free slot between edges.

In order to show that an edge separation of at least 1 is guaranteed, we
maintain the following invariants (adapted from the invariants in [12]) that
must be met for all Gk:

1. The vertices and slot boundaries of Gk are located at lattice points (have
integer coordinates).

2. Let c1 = v1, c2, c3, . . . , cm = v2 (for some m = m(k)) be the vertices along
the exterior cycle Ck of Gk. Then the cj ’s are strictly increasing in x.
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Figure 2: A sample canonical ordering.

Figure 3: A sample hub with a pair of edges.

3. All edges between slots of c1, c2, . . . , cm have slope +1 or −1, with the
exception of the edge between v1 and v2, which has slope 0.

4. For each v �∈ {v1, v2} in Gk, the slots with the left and right corners as
their top boundaries have been used. Also, any slots used in the upper
half of the hub are consecutive above either the left or right corner (with
a space left in between), except for the slot used by the final edge when a
node is dominated (see Section 2.2.3).

5. Each edge is monotone in both x and y.

These invariants are also reminiscent of the original canonical-order invariants.

2.1 Geometry

There are a few geometric issues regarding drawing thick edges out from a
diamond-shaped box. Here we are focusing on the drawing of the edges outside
the hub, since we intend to draw the entire hub solid as a node in the final
graph. The perimeter length allocated to an edge of thickness t ∈ Z is actually
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Figure 4: An edge of width 1 using minimum and maximum perimeter space.
Note that if the entry angle were shallower than the right image, the edge would
no longer be monotone, since once inside the hub it needs to go up to reach the
center.

t
√

2 since it is the diagonal of a square of side length t. This may be necessary,
though, as the perimeter space needed by an edge can vary based on the angle
it makes with the side of the hub. Thanks to the monotonicity of edge segments
(condition 5), the allocated length is sufficient to draw the edge, since the angle
made between the incoming edge segment and the side of the hub is at least
π/4, meaning the intersection segment in the unit square is of length at most
1/ cos(π/4) =

√
2 (see Figure 4). Because of this, we also do not need to concern

ourselves with bends in the edges, as we can simply not draw the interior portion.
We only need to draw the segment between hubs, making sure that it is at the
correct angle when it leaves the node. If an edge does not need the full space,
simply use the center of the allocated port.

The definition of monotonicity in traditional graph representations is easily
extended to monotonicity in graphs with two-dimensional representations of
nodes and edges. Consider extending edges by redirecting the edge from its
port to the center of the node and narrowing it to a point; then ensure that the
one-dimensional lines bounding each edge are monotone. If and only if this is
true, we will say that the thick edge is monotone.

It is also possible to draw the nodes as circular in shape, by using any circle
centered within the diamond. This is a simple implementation detail: bend the
edges at the segment of the hub, and narrow them as they approach the node.
This can be accomplished by bending the sides of the edge differently, pointing
each towards the center of the node (Figure 5).

The above proves the following lemma:

Lemma 1 If the five conditions listed above are maintained, then a port con-
taining one slot per integer thickness of an edge is sufficient to draw the edge at
its thickness, regardless of its incoming angle, without occluding other adjacent
edges.

2.2 The Construction

We now describe the incremental construction of the graph.
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Figure 5: The hub of Figure 3 drawn with a circular vertex.

2.2.1 First two vertices

Refer to Figure 6. Build the canonical ordering and place the center of node
v1 at the origin of a 2-dimensional x, y graph. Center v2 at (x, 0) where x =
w(v1) + d(v1) + 1 + w(v2) + d(v2). Our nodes are drawn solid as the entire
hub, so this placement of v2 creates the minimum acceptable separation of one
unit between the right corner of v1 and the left corner of v2. This graph, G2,
clearly maintains the five conditions (conditions 3 and 4 are trivial with only
two nodes).

v1: degree = 3, edges of width 1, 2, 0

→ size = 4
v2: degree = 3, edges of width 1, 0, 0

→ size = 6

Figure 6: Sample graph G2.

2.2.2 Inserting v3

Refer to Figure 7. By the properties of the canonical ordering, v3 must have
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2, 0, and the other three sum
up to 5 → size = 12

1, 0, 0 → size = 4
1, 2, 0 → size = 6

v2: degree = 3, edges of width
v1: degree = 3, edges of width

v3: degree = 5, edges of width

Figure 7: Sample graph G3.

edges to v1 and v2. Use the lowest slots available on the appropriate segments
of v1 and v2 (upper-right for v1, upper-left for v2) and the slots in v3 whose top
points are the left and right corners. Shift v2 horizontally to the right to allow
the edges to be drawn at the correct slopes and to allow v3 to be drawn without
occluding edge (v1, v2). Set v3 at height h = 2 ∗ (w(v3) + d(v3)). The top of
the edge (v1, v2) is at y = 0, so the top of v3 must be at y = h + 1 to clear
it. The top of v3 is also the intersection of the lines of slope +1 and −1 drawn
from the tops of the ports allocated to the edges (v1, v3) and (v2, v3) on v1 and
v2, respectively. Since we are dealing with lines of slope ±1, starting from even
integer grid points (as assured for v2, see below), their intersection is an integer
grid point.

We need the intersection of the lines from these two ports to be at height
h + 1. This requires that their x-coordinates (if extended to the line y = 0)
be 2h + 2 units apart. The actual necessary distance between v1 and v2 is
(2h + 2) − (2 ∗ (c((v1, v3)) + 1)) − (2 ∗ (c((v2, v3)) + 1)), where c((u, v)) is the
cost of edge (u, v). Shift v2 right one unit less than this (since it is currently
one unit to the right).

The case of inserting v3 should be handled separately because it is the only
situation where the top boundary of the initial graph contains edges not of slope
±1. We will generalize to handle the remaining cases.

2.2.3 Induction

Refer to Figure 8. Assume as an inductive hypothesis that the graph Gk main-
tains the five conditions and has an edge separation of 1 between all edges. We
now need to insert vertex vk+1 and its incident edges to Gk. Let cl, cl+1, ...cr

be the neighbors of vk+1 in Gk+1. By the properties of the canonical ordering
these neighbors are sequential along the outer face of Gk. Before inserting vk+1,
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cl cr

vk+1

(a) Gk and vk+1

cr

vk+1

cl

(b) Gk+1, after inserting vk+1 and shifting

Figure 8: Induction on the number of nodes in the graph.

we need to make room for it and its edges to be drawn, and to ensure that the
five conditions are still maintained for Gk+1. In order to do this, we shift the
vertices along the exterior cycle Ck to the right. We also need to shift vertices in
the interior portion of the graph to preserve planarity and to prevent occlusions.
The remainder of this section discusses these shifts.

A node u is dominated when it is one of the neighbors of vk+1 in Gk other
than cl or cr. A dominated node u has used its last edge (since it is an interior
node in Gk+1 and therefore additional edges would make Gk+1 nonplanar), and
is included in the shifting set of vk+1 (see below), so any slots remaining on u
can be used to connect to vk+1 without creating edge crossings or occlusions
in the shifting process. This enables edge (u, vk+1) to select a port on u to
maintain monotonicity.

2.2.4 Shifting sets

The paper by de Fraysseix et al. [9] outlines the concept of shifting sets for each
vertex on the outer cycle Ck of Gk, which designate how to move the interior
vertices of the graph. We will use the same concept in our algorithm. The
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shifting set Mk(ci) for all ci (1 ≤ i ≤ m) on Ck contains the set of nodes to be
moved along with ci to avoid edge crossings and occlusions. Define the Mk’s
recursively, starting with M3(c1 = v1) = {v1, v2, v3}, M3(c2 = v3) = {v2, v3},
M3(c3 = v2) = {v2}. Then, for the shifting sets used in Gk+1, let:

• Mk+1(ci) = Mk(ci) ∪ {vk+1} for i ≤ l;

• Mk+1(vk+1) = Mk(cl+1) ∪ {vk+1};
• Mk+1(cj) = Mk(cj) for j ≥ r.

The sets obey the following properties for all k:

1. cj ∈ Mk(ci) if and only if j ≥ i;

2. Mk(c1) ⊃ Mk(c2) ⊃ Mk(c3) ⊃ . . . ⊃ Mk(cm);

3. For any nonnegative numbers αi (1 ≤ i ≤ m), sequentially shifting Mk(ci)
right by αi maintains planarity,2 and does not introduce any edge or node
occlusions.

The proofs of the first two properties are found in [9]. For the third, it is
clearly true for the base case k = 3. Consider the graph Gk+1, vk+1, and the
vertices c1, c2, . . . , cm along the cycle Ck of the exterior face of Gk. Let us fix
shift amounts α(c1), α(c2), . . . , α(cl), α(vk+1), α(cr), . . . , α(cm) corresponding to
the vertices along the cycle Ck+1. The graph under the cycle Ck satisfies the
condition by induction:

1. Set α(cl+1) = 1 + 2 ∗ (w(vk+1) + d(vk+1)) + α(vk+1) (the sum of the first
two terms is the amount cl+1 will be shifted when vk+1 is inserted, and
the last term is how much cl+1 and nodes in its shifting set will be shifted
because of the shifting of vk+1);

2. Set all other interior α’s (α(cl+2) through α(cr−1)) to 0; and

3. Set the exterior α’s (α(c1), . . . , α(cl) and α(cr), . . . , α(cm)) to their above
values.

The portion of the graph above Ck, with the exception of the edges (cl, vk+1)
and (cr, vk+1), is shifted in a single block with vk+1. The edge (cl, vk+1) cannot
be forced to occlude or intersect the next edge, (cl+1, vk+1), since the latter edge
can only be pushed farther away, moving along with the former when it shifts.
Similarly, (cr−1, vk+1) cannot occlude or intersect (cr, vk+1) (see Figure 8(b)).

This proves the following lemma:

Lemma 2 For all Gk, sequentially shifting the nodes in the shifting sets of each
node in the exterior cycle of Gk by any nonnegative amount cannot create edge
crossings or node or edge occlusions.

2This property of the shifting sets is stronger than what we need. Our algorithm performs
only two shifts per iteration.
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2.2.5 Shifting and placement

Similar to [2], we will shift twice. First, shift Mk(cl+1) by the width of node
vk+1 plus 1, which is 2∗ (w(vk+1)+d(vk+1))+1. Also shift Mk(cr) by the same
amount. (To ensure that cr and cl are separated by an even amount of units,
shift Mk(cr) by one more unit if necessary.) The intuition behind this is simple.
We cannot allow node vk+1 to occlude any portion of Gk. Since the graph could
rise as high in y as half the distance between cl and cr in x, placing vk+1 at the
intersection of the edges of slope ±1 from these nodes could place it on top of
another vertex. Separating cl and cr by (2 or 3)+4∗ (w(vk+1)+d(vk+1)) moves
vk+1 half that much higher, allowing it to clear the graph.

Now that we have sufficiently shifted all nodes in Gk, we can place vk+1.
Define l1 (resp., l2) as the line of slope +1 (resp., −1) from the top of the port of
cl (resp., cr) allocated to the edge (cl, vk+1) (resp., (cr, vk+1)). Select the ports
of cl and cr that maintain condition 4’s requirement of minimum separation
between edges. If the top corner of vk+1 is placed at the intersection of l1 and
l2, all the edges between vk+1 and nodes in Ck can be drawn monotonically
in x and y without creating occlusions. Note also that this placement of vk+1

assigns the edge (cl, vk+1) to the port whose top is the left corner of vk+1, and
likewise (cr, vk+1) is assigned to the port at the right corner of vk+1. These
edges are clearly monotone. Monotonicity for the new interior edges is ensured
by selecting a port from the side of the vk+1 facing the target node, and a port
from the target node facing vk+1. Since each of the four sides of every node is of
size d(v)+w(v), ports can be chosen on arbitrary sides (maintaining condition 4,
of course), and sufficient space for the edge is guaranteed. Also, since the edges
are at least a distance of 1 apart on vk+1, and their destination ports are all on
different nodes, each of which are at least a unit apart in x, no occlusions or
intersections can be created.

By the third property of the shifting sets, this movement cannot cause edge
occlusions or intersections. However, it remains to show that the graph main-
tains the five conditions listed above. The first is trivially true since everything
is shifted by integer values. Likewise the second is true, since vk+1 is inserted
between cl and cr, and each node is shifted at least as much to the right as
the node before it, so their ordering remains intact. Since the edges before cl

and after cr have not been changed (both endpoints of each have been moved
by the same amounts), and the edges (cl, vk+1) and (cr, vk+1) were inserted at
slopes of ±1, condition 3 is still true. Monotonicity is maintained regardless
of any horizontal shifting, so the edges of Gk remain monotone. The outside
edges (cl, vk+1) and (cr, vk+1) are clearly monotone, and the interior edges were
assigned ports on each node to make them monotone.

When vk+1 is inserted, its left- and rightmost neighbors on Ck are assigned
the slots whose tops are at the left and right corner, thus maintaining the first
portion of condition 4. The rest is maintained by selecting the correct ports of
cl, cr, and the interior nodes. Such ports must be available at every node, since
each side of a node is large enough to support every edge adjacent to it. Thus,
graph Gk+1 meets all conditions and has a minimum edge separation of 1.
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2.3 Analysis

After inserting all vertices, the graph G still maintains the five conditions, and
thus is planar, without crossings or occlusions, and has an edge separation of
at least 1. The question of angular resolution is not necessarily relevant, since
most or all of the hub area is drawn as a solid node for significance. But if one
extended the edges to a point node at the center of the hub, then the boundary
lines of the edges have a minimum angular resolution of O(1/(w(n) + d(n)) for
all nodes (see Figure 9).

Figure 9: The upper-right quadrant of a node.

We also would like a well-bounded area for the complete drawing of G.

Theorem 1 The area of the grid necessary to draw the graph is O(n + C) ×
O(n + C), where C is the total cost of the network, defined as C = Σec(e) for a
given input set of edge costs c(e).

Proof: Since G is drawn within the convex hull of v1, v2, and vn, the width
is equal to the distance between the left corner of v1 and the right corner of
v2. This initial distance at G2 is 1 plus the widths of v1 and v2. Shifting
all vi for i ≥ 4 moves v2 to the right (and increases the width of G) by at
most 3 + 4 ∗ (w(vi) + d(vi)), and the insertions of v1 through v3 can be upper
bounded by this. Therefore, the width of the drawing is bounded above by∑n

i=1(3 + 4 ∗ w(vi) + 4 ∗ d(vi)) = 3n + 8C + 8|E|, where E is the set of edges
in the graph. Since in any planar graph |E| ≤ 3n − 6, the width is bounded
above by 27n+8C. The resulting drawing is approximately an isosceles triangle
with slope ±1 (approximately since the edges begin below the peak of v1 and
v2, thus slightly lowering the top of the triangle). The height, therefore, would
be bounded by 14n + 4C, except that the nodes v1 and v2 extend below the
graph by half their height, and this height is not previously accounted for as
it is outside the triangle. Therefore, the bound on the height of the drawing
is 14n + 4C + max(w(v1) + d(v1), w(v2) + d(v2)). The max() term is bounded
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above by n + 2C. The final upper bound is thus 15n + 6C, and the theorem
holds. �

For running time analysis, we refer the reader to the O(n) time implementa-
tion of the algorithm of de Fraysseix et al. [9] by Chrobak and Payne [3]. This
solution can be extended so as to implement our algorithm without changing
the asymptotic running-time complexity.

See Figure 10 for a sample drawing of a weighted version of Figure 2.
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Figure 10: A sample graph drawn by our method.

The edge weights used are the following:

Edge v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

v1 - 1 0 5 - - 1 - - - - -
v2 1 - 4 - 0 2 - - - 1 - -
v3 0 4 - 3 0 - - - - - - -
v4 5 - 3 - 4 - 0 1 - - 0 -
v5 - 0 0 4 - 4 - 1 1 - - 3
v6 - 2 - - 4 - - - 0 4 - -
v7 1 - - 0 - - - - - - 1 -
v8 - - - 1 1 - - - - - 3 2
v9 - - - - 1 0 - - - - - 2
v10 - 1 - - - 4 - - - - - -
v11 - - - 0 - - 1 3 - - - -
v12 - - - - 3 - - 2 2 - - -

The induced vertex sizes are then:

Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Size 11 13 11 19 20 14 5 11 6 7 7 10
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3 Future Work

There are many possibilities for future related work:

• Combine awareness of edge thicknesses with force-directed graph drawing
techniques by modifying the forces of nodes and edges according to their
individual weights in order to ’make room’ for them to be drawn larger.

• Establish an asymptotic lower bound on the area necessary to draw a
graph with edge thickness as used in our paper. Node size can be reduced
as long as the perimeter is of sufficient length to support all edges with
a bounded separation. It is possible such a drawing could be done in
o((n + C)2) area.

• Allow general graphs and edge crossings when necessary, but still use thick
edges and large nodes and prevent occlusions, except in edge crossings.

• Combine the algorithms above with graph clustering techniques to repre-
sent potentially very large networks. One could add the sizes of nodes and
edges clustered together. It could also be useful to represent the amount
of information flowing within a cluster node in addition to between the
nodes.

• Extend to three dimensions. The algorithm used here would not extend
well, but drawings of graphs in three dimensions with thick edges and
large nodes could be useful. Projections of such a graph to two dimensions
would not be aesthetic.

• Study common network traffic patterns to optimize the algorithm based
on real world data.
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