
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 8, no. 3, pp. 295–312 (2004)

NP-Completeness of Minimal Width Unordered
Tree Layout

Kim Marriott

School of Computer Science and Software Engineering
Monash University, Vic. 3800, Australia

marriott@mail.csse.monash.edu.au

Peter J. Stuckey

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Vic. 3010, Australia
pjs@cs.mu.oz.au

Abstract

Tree layout has received considerable attention because of its practi-
cal importance. Arguably the most common drawing convention is the
(ordered) layered tree convention for rooted trees in which the layout is
required to preserve the relative order of a node’s children. However, in
some applications preserving the ordering of children is not important,
and considerably more compact layout can be achieved if this require-
ment is dropped. Here we introduce the unordered layered tree drawing
convention for binary rooted trees and show that determining a minimal
width drawing for this convention is NP-complete.

Article Type Communicated by Submitted Revised
Regular Paper M. Kaufmann May 2003 June 2005

Research supported in part by the Australian Research Council

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)296

1 Introduction

Rooted trees are widely used to represent simple hierarchies, such as organi-
sation charts or family trees, and computer data structures. Because of their
importance, layout of rooted trees has received considerable attention and many
different algorithms have been developed for drawing rooted trees in a variety of
different drawing conventions ranging from the standard layered tree convention
to radial trees to hv-trees [2].

However, virtually all research has focused on drawing conventions in which
the relative order of the children of a node is preserved in the layout. In many
applications such as organisation charts the ordering of at least some of the
children may not be important and for such “unordered trees” more compact
tree layout may be obtained by varying the order of the children.

Here we investigate the complexity of tree layout for unordered binary trees.
We show that determining a minimal width layout of an unordered rooted bi-
nary tree is NP-complete for a variant of the standard layered tree drawing
convention. This partially answers an open problem in graph drawing (Problem
19 of [1]). Our proof of NP-hardness relies on a transformation from SAT [4].

This is in contrast to the case for ordered rooted binary trees for which a
minimal width layered tree drawing can be found in polynomial time [5]. It
is also in contrast to case for the hv-tree drawing convention where algorithms
to compute drawings with minimal width and even minimal area layout for
unordered binary trees have polynomial complexity (O(n) and O(n2) respec-
tively) [3]. But until now the complexity of unordered binary tree layout for the
most common tree drawing convention, layered, has not been addressed.

In the next section we define exactly what we mean by minimal width layout
of an unordered rooted binary tree and in Section 3 we show that the corre-
sponding decision problem is NP-complete. Section 4 concludes.

2 The Problem Statement

We generally follow the terminology of [2]. A binary tree is a rooted tree in
which each node may have up to two children. We represent binary trees by
terms in the grammar

Tree t ::= l | u(t) | b(t, t)

where l are leaf nodes, u are unary nodes, and b are binary nodes.
We are interested in the complexity of tree layout using the following un-

ordered layered tree drawing convention. This requires that the drawing Γ of a
binary tree (or a forest of binary trees):

• Is layered, that is the y-coordinate of a child is 1 less than the y-coordinate
of its parent;

• Is planar, straight-line, and strictly downward;

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)297

Figure 1: Two different unordered layered tree drawings of
b(u(b(l, l)), b(u(b(b(l, l), b(l, l))), b(l, l))).

• Any two vertices on the same layer are separated by at least 1;

• The x-coordinate of a parent is the average of the x-coordinates of its
children.

Note that the last requirement means that if a node has a single child then the
parent must be directly above the child. Also note that the layout does not need
to preserve the relative order of the children of a node. However, the planarity
condition means that for each binary node b(t1, t2), the sub-tree t1 will either
be to the left of t2 or to the right: the nodes in t1 and t2 cannot be interspersed.

Note that we do not require the x-coordinates take integral values (are placed
on a grid), in this case even the ordered binary tree layout problem is NP-
hard [5].

The width of a drawing Γ is the difference between the maximum x-coordinate
and minimum x-coordinate occuring in the drawing.

For example, in Figure 1 we give two different drawings of the same binary
tree which demonstrate that by reordering the children we can substantially
reduce the width of the drawing.

We are interested in minimising the width of the drawing. Thus the corre-
sponding decision problem is:

Unordered Layered Binary Tree Layout: Given a binary tree T and a
real number W determine if there is an unordered layered tree drawing Γ for T
which has width ≤ W .

In the next section we show that this problem is NP-complete.

3 NP-completeness of Unordered Layered Bi-
nary Tree Layout

The unordered layered tree drawing convention is a variant of the usual layered
tree drawing convention for binary trees except that it does not require the order
of children to be preserved in the layout. More precisely, we define the ordered

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)298

layered tree drawing convention to have the same requirements as the unordered
layered tree drawing convention as well the requirement that the left-to-right
ordering of the children is preserved in the layout.

Supowit and Reingold [5] have shown that the problem of finding the draw-
ing of minimum width for a variant of the layered tree drawing convention for
ordered trees can be done in polynomial time using linear programming.

A configuration for a binary tree T is an ordered binary tree O that corre-
sponds to some fixed ordering of the children in the binary nodes in T . We will
define configurations in terms of an equivalence relation =u between ordered
binary trees, defined as follows

• l =u l

• u(O1) =u u(O2) iff O1 =u O2

• b(O1, O2) =u b(O3, O4) iff (O1 =u O3 and O2 =u O4) or (O1 =u O4 and
O2 =u O3).

A configuration O for a binary tree T is any ordered binary tree for which
O =u T .

The configurations shown in Figure 1 are b(u(b(l, l)), b(u(b(b(l, l), b(l, l))), b(l, l)))
and b(b(u(b(b(l, l), b(l, l))), b(l, l)), u(b(l, l))) respectively.

Lemma 1 Binary tree T has an unordered layered tree drawing of width W iff
there is a configuration O for T which has an ordered layered tree drawing of
width W .

Proof: By definition any layout Γ of a binary tree T defines a configuration O
for T , hence Γ is a layout for the ordered tree O. �

Theorem 1 Unordered Layered Binary Tree Layout is in NP.

Proof: From Lemma 1 we simply guess a configuration O for T , and use lin-
ear programming to find the minimal width W ′ using the ordered layered tree
drawing convention, then check that W ′ ≤ W . �

We now prove that the problem is NP-hard. We do this by giving a reduction
from SAT [4]. We assume a set of Boolean variables x1, . . . , xN . A literal is one
of xi or ¬xi. A clause D is is a disjunction l1 ∨ · · · ∨ ln of literals. A problem P
is a set of clauses {D1, . . . , DM}. The SAT problem for P is to find a valuation
θ to variables x1, . . . , xN that satisfies each clause in P .

Our encoding makes use of “connector trees” to glue the various parts of the
encoding together.

A connector tree Cn is defined as follows:

• C1 is l,

• Cn is constructed from the complete binary tree of height �log n� − 1 by
replacing each leaf node in this tree by either a binary node b(l, l) or a
unary node u(l) such that the total number of leaf nodes is n.

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)299

C2k+1

k−12 k−12k−12 k−121 1

(a)

1 1

T1

C3

T2T1T2

C3

(2k+1

(b)

−1)/2

Figure 2: Two possible configurations of a tree with a “separator” sub-tree.

For example, C3 is b(b(l, l), u(l)).
It follows from the construction that

• Cn has n leaf nodes all at the bottom of the tree

• Cn has height �log n�
• C2k is the complete binary tree of height k.

Constructor trees allow us to glue other trees together without increasing
the width of the layout:

Lemma 2 Let the binary tree forest T1, . . . , Tn have an (ordered) layered tree
drawing of width W in which all root nodes are on the same level. Then the tree
T [T1, . . . , Tn] obtained from Cn by replacing the ith leaf node by the unary node
u(Ti) also has a (ordered) layered tree drawing of width W .

Our encoding of SAT relies crucially on two special types of trees: full binary
trees C2k and vertical bars of the form u(u(u(. . .))). For each of these trees each
configuration is isomorphic, allowing us to reason about all possible configura-
tions of trees made up of these simpler elements reasonably straightforwardly.
In particular, our encoding relies upon using the following construction to en-
sure that certain subtrees are forced to be next to each other in a layout of less
than a fixed width.

Observation 2 Let T be the binary tree shown in Figure 2 in two possible con-
figurations. The subtrees T1 and T2 are required to each have 2k nodes at some
level L. In any unordered tree layout drawing of T with width less than 3·2k−1/2
the C2k+1 subtree will separate T1 and T2. I.e. T must have configuration (a)
or its mirror image.

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)300

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

C

C16

encoding of D

C16

encoding of D

C16

match tree

re−alignment

2

C16

C16

C16

MTi

i

MTi

re−alignment

T

T

C2

MT1

2

M

true

false

encoding of D

2

1

M

Figure 3: Tree Txi
corresponding to variable xi in the encoding of SAT.

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)301

C8

falsetrue neither present

C8C8

Figure 4: Subtrees corresponding to (a) xi occurs in the clause, (b) ¬xi occurs
in the clause, and (c) neither xi nor ¬xi occur in the clause.

Proof: If T1 and T2 are adjacent, for instance as shown in configuration (b),
then the width must be at least (2k+1 − 1)/2 + 2k + 2k = 3 · 2k − 1/2. �

We assume that the SAT problem instance P being encoded has clauses
D1, . . . , DM over variables x1, . . . , xN . For simplicity we assume that N is 2K

for some K (we can always add up to N additional dummy variables to make
this so.)

Corresponding to each xi we construct the tree Txi
shown in Figure 3. This

has 3 main subtrees, in this configuration we have, from left to right, the “clause
match” subtree, the subtree Ttrue corresponding to the assignment true and the
subtree Tfalse corresponding to the assignment false for this variable.

These trees have a repeated structure for each clause, so the tree Txi
has

M layers, one for each clause. In each level only the structure of the clause
matching subtree changes. The three possible subtrees in the clause match
subtree are shown in Figure 4. Between each layer there is a “re-alignment”
level of C2 subtrees. This allows the different layers to move relative to each
other.

Now consider any configuration for Txi
. From the construction of the tree

either Tfalse or Ttrue must be adjacent to the clause matching subtree. This
corresponds, respectively, to assigning xi the value false or true.

Now consider the minimum width of each clause level in the tree for each
of these configurations. The different cases for the configuration in which Ttrue

is adjacent to the clause matching subtree are illustrated in Figure 5. Figure 5
(a) shows the case in which there is a match, i.e. the clause matching subtree
encodes that xi occurs in the clause. It is obvious from the figure that the
minimum width of the tree at that level is 35.5. Figure 5 (b) and (c) respectively
show the cases in which the clause matching subtree encodes that ¬xi occurs in
the clause or that neither xi nor ¬xi occur in the tree. Again it should be clear

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)302

15

C16

C8

C16

3.5 1 15 1

(a) xi occurs in the clause Dj

15

C8

C16

C16

1 15 17

(b) ¬xi occurs in Dj

15

C16

C16

1 15 17

C8

(c) neither ¬xi nor xi occur in Dj

Figure 5: Minimum width of Txi
at level j for the case corresponding to assigning

true to xi.

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)303

15

C16

C16C8

3 1 15 1

(a) ¬xi occurs in the clause Dj

15

C16

C16

C8

1 15 17

(b) xi occurs in Dj

15

C16

C16

1 15 17

C8

(c) neither ¬xi nor xi occur in Dj

Figure 6: Minimum width of Txi
at level j for the case corresponding to assigning

false to xi.

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)304

that for both cases the minimum width of the tree at that level is 39.
The different cases for the configuration in which Tfalse is adjacent to the

clause matching subtree are illustrated in Figure 6. Figure 6 (a) shows the case
in which there is a match, i.e. the clause matching subtree encodes that ¬xi

occurs in the clause. In this case the minimum width of the tree at that level
is 35. The remaining two cases are shown in Figures 6 (b) and 6 (c). For both
cases the minimum width of the tree at that level is 39.

Note that if the order of children of the topmost tree C2 in tree Txi
is

reversed, the match tree is to the right of Ttrue and Tfalse and the minimal
width configurations for each level are simply mirror images of those shown in
Figure 5 and Figure 6.

Thus, we have:

Observation 3 If a drawing of Txi
has width less than 39 at the level encoding

clause Dj, the assignment to xi satisfies Dj.

The final step in the encoding is to combine the subtrees Tx1 , . . . , TxN
for

each variable into a single tree. The trick is to ensure that the assignments to
different variables cannot interfere with each other in a layout of minimal width.
We use a separator subtree to ensure this.

We define the tree Tk(y1, . . . , y2k) for encoding the variables y1, . . . , y2k re-
cursively as follows. The tree T0(y1) is simply Txi

where y1 is xi. The tree
Tk+1(y1, . . . , y2k+1) is constructed from Tk(y1, . . . , y2k) and Tk(y2k+1, . . . , y2k+1)
by placing a separator subtree between them as shown in Figure 7.

Notice how Tk+1(y1, . . . , y2k+1) has C3 trees at each re-alignment level to
allow the layers to move relative to each other.

The tree TK(x1, . . . , xN) where N = 2K is the complete encoding of our
instance of SAT. For example, Figure 8 shows the encoding of (A ∨ B) ∧ (¬B).

We say that a configuration or drawing for Tk(y1, . . . , y2k) is valid if there
is a separator tree between each Tyi

in the tree.

Lemma 3 Any tree TK(x1, . . . , xN) has an unordered layered tree drawing of
width 41 · (N − 1) + 39 or less.

Proof: This follows from the construction. Choose any valid configuration O for
TK(x1, . . . , xN). Consider each clause Dj . In each Txi

, the layer corresponding
to Dj can be drawn in width 39. If we consider this layer in isolation to the rest
of the tree, taking into account the vertical bar of the separator subtree between
adjacent Txi

’s, the level can be drawn in width 39·N+2·(N−1) = 41·(N−1)+39.
Now by construction the C2 and C3 trees in the re-alignment level between each
level can be used to exactly align the layers. The bottom parts of the tree
(corresponding to the bottoms of the separation subtrees) can be drawn in
width less than this, and from Lemma 2 the connectors at the top of the tree
do not increase the width of the tree. �

The role of the realignment level is to allow us to shift layers relative to
each other. This allows us to draw trees corresponding to satisfiable problems

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)305

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

layer M

layer 2

layer 1

C

C

(y

re−alignment

re−alignment

re−alignment

2k+6

3

Tk(y2 + 1k ,..., y2k+1)Tk 1,..., y2k)

Figure 7: The tree Tk+1(y1, . . . , y2k+1)

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)306

C2 C2

C3

C3

C2 C2

C16

C16

C16

8

C8

C16

C64

C16

C8

16

C8

C16

C16C

C

Figure 8: The tree encoding the SAT problem (A ∨ B) ∧ (¬B).

C2 C2 C2
C2

C3

C16

C8
C16

C64

C8

C16

C16

C8

C8

C16

C16

C16

C16

Figure 9: Block view of the configuration shown in Figure 8, illustrating width
79 construction.

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)307

C8 C8

Figure 10: Realigning the tree levels one to the left, or one to the right, for the
case when a separator subtree is adjacent to a clause matching subtree.

in narrower width trees. For example, Figure 9 shows a drawing of the minimal
width configuration for the tree in Figure 8. This configuration is valid and
corresponds to the assignment A = true and B = false which is a solution
of the original problem. The four dashed outlines illustrate the four blocks
of interest. The top leftmost block has width 38, indicating that A = true
satisfies the clause A ∨ B at the first literal. The bottom rightmost block has
width 38 indicating B = false satisfies the clause ¬B in this literal. The other
blocks have width 39 indicating the clauses are not satisfied at this point. To
accommodate a overall minimal width of 79 = 38+2+39 there is a shift right of
one in the trees Ttrue and Tfalse on the left, at the C3 tree in the re-alignment
level and in the TB tree.

Lemma 4 If TK(x1, . . . , xN) encodes a SAT problem which is satisfiable then
it has an unordered tree layout drawing of width 41 · (N − 1) + 38 or less.

Proof: Let θ be a solution of the SAT problem. Choose a valid configuration
O for TK(x1, . . . , xN) that corresponds to θ in the sense that the configuration
for each Txi

corresponds to assignment in θ for xi.
We slightly modify the construction given in the proof of Lemma 3. Consider

each clause Dj . Since θ is a solution, for some xi either xi occurs in Dj and
θ(xi) = true or ¬xi occurs in Dj and θ(xi) = false. It follows that Txi

at the
level corresponding to Dj can be drawn in width 38. In all other Txi′ , i′ �= i,
the layer for Dj can be drawn in width 39. Thus if we consider this layer in
isolation to the rest of the tree, taking into account the enforced separation
between adjacent Txi

’s, the level can be drawn in width 41 · (N − 1) + 38.
Now because of the re-alignment level between each layer, the different layers

are free to move by 1 relative to each other. To see that this is possible consider

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)308

Figure 9. The re-alignment level consists of C2 and C3 trees. In most cases their
roots are separated by at least 8, allowing them to expand without interference.
The only point where they may be closer is when a separator subtree is adjacent
to a clause matching subtree in which case we have a C3 tree whose root is only
4 apart from that of a C2 tree. Figure 10 shows the layout for this case and
that we can still shift by 1 to the left or to the right.

This means that we can draw each layer in width 41 · (N − 1) + 38 or less.
As before the bottom parts of the tree can be drawn in width less than this and
the connectors at the top of the tree do not increase the width of the tree. �

We now prove the converse of this lemma: that if TK(x1, . . . , xN) encodes
a SAT problem which is unsatisfiable then it does not have a drawing of width
41 · (N −1)+38 or less. In order to do so we actually show that it does not have
a drawing of width 41 · (N − 1) + 38 or less using a drawing convention which
relaxes the unordered tree layout drawing convention so as to allow the layers in
the tree to be treated independently. This allows us to reason recursively about
minimal width layouts.

More precisely, we define the layer independent drawing convention for a
tree Tk(y1, . . . , yn) to be the same as the ordered layered tree convention except
that the solid black nodes shown in the re-alignment levels in Figure 3 and
Figure 7 are not constrained to have their x-coordinate at the average of the
x-coordinate of their children. This means that in a layer independent drawing
of Tk(y1, . . . , yn) we can move the layers relative to each other and so we can
minimise the width of each layer independently of the other layers.

Let ΓO be a layer independent drawing for some configuration O of Tk(y1, . . . , yn)
encoding clauses D1, . . . , DM . We let widthj(ΓO) denote the width of the draw-
ing of the jth layer. As shown in Figure 7 the jth layer consists of those parts
of the tree encoding clause Dj and, in the case of layer 1 it also includes the
connectors at the top of O and in the case of layer M the base of O. Since the
width of each layer is independent it is possible to find a minimal ordered tree
layout for a particular configuration which minimises all of these widths. We
call such a drawing layer minimal.

Let O1 and O2 be configurations for some Tk(y1, . . . , yn) and let ΓO1 and
ΓO2 be layer independent drawings for O1 and O2 respectively which are layer
minimal. We say that O1 better minimises layer width than O2 if
(a) for all 1 ≤ j ≤ M , widthj(ΓO1) ≤ widthj(ΓO2), and
(b) for some 1 ≤ j′ ≤ M , widthj′(ΓO1) < widthj′(ΓO2).
The configuration O for some Tk(y1, . . . , yn) has minimal layer width if there is
no other configuration for Tk(y1, . . . , yn) that better minimises layer width.

It follows immediately from the proof of Lemma 3 that

Lemma 5 If O is a valid configuration of some Tk(y1, . . . , yn) and ΓO is a layer
minimal drawing for O then for all 1 ≤ j ≤ M , widthj(ΓO) ≤ 41 · (n− 1) + 39.

Lemma 6 If O is a minimal layer width configuration for Tk(y1, . . . , yn) then
O is a valid configuration.

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)309

Proof: The proof is by induction on k. If k = 0 then it is trivially true since
any configuration for tree T0(y1) is valid.

Now consider any minimal layer width configuration O for Tk+1(y1, . . . , yn)
(where n = 2k+1). From Lemma 5, we know that widthM (ΓO) ≤ 41 ·(n−1)+39
where ΓO is a layer minimal drawing for O. It follows from the definition that
Tk+1 has the tree C2k+6 at its base and that each of the Tk sub-trees effectively
has the tree C2k+5 at its base. Thus, from Observation 2, if the M th layer in O
has a drawing with width less than 3 · 2k+5 − 1/2, the “separator” subtree in
Tk+1 must separate the two Tk subtrees. Now

41 · (2k+1 − 1) + 39 = 82 · 2k − 2 < 96 · 2k − 1/2 = 3 · 2k+5 − 1/2

for all k ≥ 0 so in any minimal layer width configuration, and thus for O, the
separator tree must separate the two Tk subtrees.

But this means that for each layer 1 ≤ j ≤ M , the vertical separator “bar”
must separate the two Tk subtrees. Thus the minimal width of O on each layer
is simply 2 plus the minimal width of the Tk subtrees on that layer. Hence, since
O is a minimal layer width configuration for Tk+1 it must also be a minimal
layer width configuration for the two Tk subtrees. By induction, therefore O is a
valid configuration for the two Tk subtrees. Therefore O is a valid configuration
since from above, the separator tree in O must separate the two Tk subtrees. �

Lemma 7 Let TK(x1, . . . , xN) encode a SAT problem which is unsatisfiable.
The minimal width of any layer independent drawing of some configuration of
TK(x1, . . . , xN) is 41 · (N − 1) + 39.

Proof: Consider some minimal width layer independent drawing ΓO for TK(x1,
. . . , xN) where O is the corresponding configuration.

W.l.o.g. we can assume that O is a minimal layer width configuration. Thus
from Lemma 6, O is a valid configuration. From Lemma 5, for all 1 ≤ j ≤ M ,
widthj(ΓO) ≤ 41 · (N − 1) + 39. Now consider θ the valuation corresponding
to the truth assignment in O. Since the SAT problem is unsatisfiable, θ is
not a solution for some clause Dj′ . From the definition of O it follows that
widthj′(ΓO) = 41 · (N − 1) + 39. Thus the width of ΓO is 41 · (N − 1) + 39. �

Corollary 4 Let TK(x1, . . . , xN) encode a SAT problem which is unsatisfiable.
The minimal width of an unordered layered tree drawing of TK(x1, . . . , xN) is
greater than or equal to 41 · (N − 1) + 39.

Proof: Since the layer independent drawing convention is less restrictive than
the ordered layered tree drawing convention, it follows from Lemma 7 that the
minimal width of any ordered layered tree drawing of some configuration of
TK(x1, . . . , xN) is greater than or equal to 41 · (N − 1) + 39. The result follows
from Lemma 1. �

Putting Lemma 4 and Corollary 4 together we have

Proposition 5 Let TK(x1, . . . , xN) encode an instance P of SAT. TK(x1, . . . , xN)
has a drawing of width less than 41 · (N − 1) + 39 iff P is satisfiable.

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)310

Now consider the size of the tree TK(x1, . . . , xN) encoding an instance P of
SAT with N variables and and M clauses. TK(x1, . . . , xN) has O(N) nodes on
each level and the height of the middle part of the tree encoding the clauses is
O(M), the height of the top of the tree is O(log N) and the height of bottom
of the tree is O((log N)2) since the height of the complete tree at the bottom of
each separator node is O(log N) and there are O(log N) tiers of these complete
trees. Thus, the total height is O(M + (log N)2) and so the encoding has
polynomial size and can clearly be generated in polynomial time. Hence, from
Proposition 5, we have the following.

Theorem 6 Unordered Layered Binary Tree Layout is NP-hard.

Therefore from Theorem 1:

Corollary 7 Unordered Layered Binary Tree Layout is NP-complete.

4 Conclusion

Despite the practical importance of layered tree layout and unordered trees,
the complexity of layered tree layout for unordered trees was not known. Here
we have shown that for the case of binary trees it is NP-complete. While it
is clear that naive algorithms for minimal width unordered layered binary tree
layout have exponential complexity, since the obvious approach is to try different
possible configurations of the tree, proving NP-completeness was surprisingly
difficult. Basically the difficulty arises because most unordered trees have many
different configurations and so are difficult to reason about. Our construction
therefore relies on using two types of binary tress for which all configurations are
isomorphic: complete binary trees and vertical “bars” made from unary trees.

Our result naturally generalises to n-ary trees and to trees in which there is
a partial ordering on children in a node, i.e. only the relative ordering between
some children needs to be preserved in the layout.

However the proof depends crucially on the drawing convention that a node’s
x coordinate is the average of its children’s x coordinates. Indeed, if this re-
quirement is removed from the drawing convention then it is easy to determine
the minimum width drawing in linear time: it is simply the maximum number of
nodes occurring on any layer in the tree. One obvious question is what happens
if we change the drawing convention so that for nodes with a single child there
is no need for the node to be directly above the child. We believe the problem
is still NP-complete, but it is not obvious how to modify the construction given
here to prove this since we can no longer argue that unary trees form a vertical
bar.

Acknowledgements

We thank Franz Brandenburg who identified the complexity of layered tree lay-
out for unordered trees as an open problem in graph drawing in his lectures on

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)311

graph drawing while visiting Monash University in October 2002, and encour-
aged us to address this problem. NICTA (National ICT Australia) is funded
by the Australian Government’s Backing Australia’s Ability initiative, in part
through the Australian Research Council.

Marriott & Stuckey, NP-Compl. of Tree Layout , JGAA, 8(3) 295–312 (2004)312

References

[1] F. Brandenburg, D. Eppstein, M. Goodrich, S. Kobourov, G. Liotta, and
P. Mutzel. Selected open problems in graph drawing. In G. Liotta, editor,
Proceedings of the 11th International Symposium on Graph Drawing, volume
2912 of LNCS, pages 515–539. Springer, 2003.

[2] G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Graph Drawing: Algo-
rithms for the visualization of graphs. Prentice Hall, 1999.

[3] P. Eades, T. Lin, and X. Lin. Two tree drawing conventions. International
Journal of Computational Geometry and Applications, 3:133–153, 1993.

[4] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[5] K. Supowit and E. Reingold. The complexity of drawing trees nicely. Acta
Informatica, 18:377–392, 1982.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

